COMPUTATIONAL BIOIMAGING GROUP

Michael Liebling

Senior Researcher
Idiap Research Institute

Associate Professor (on leave)
Electrical and Computer Engineering
University of California, Santa Barbara

Idiap Innovation Day
Thursday 1 September 2016
Meet the team:

- Michael Liebling, Senior Researcher
- Kevin Chan, Idiap trainee (15–16) & UCSB PhD student
- Christian Jaques, PhD Student
- Olivia Mariani, PhD Student
Computational Imaging

Image Processing vs Computational Imaging

Image Processing:
Input: Image → Output: Image

Computational Imaging:
Input: Signal data + sensing models → Output: Image

Computational Bioimaging
Computational imaging applied to bio-related systems:
- develop hardware-software systems with applications in biological sciences
- quantitative image analysis of bioimaging data (2D, 3D, 4D, 5D)
The imaging-space in biology is high-dimensional

Bottlenecks that limit resolution and breadth
• optical resolving power, data bandwidth
• available time
• sample integrity (keep the sample healthy!)

Can we perform high-dimensional imaging without sacrificing resolution or image quality?

- engineering (optics, image processing)
- developmental biology
- bio-physics
Day 22 (Human) Adult (Human)

Congenital Heart Defects:
occur in 0.8% of newborn infants,
are the leading cause of birth defect related deaths
Advantages:

- zebrafish are vertebrates
- reproduce externally and rapidly
- relatively transparent embryos
- may be genetically engineered to express fluorescent markers in specific tissues [e.g. Tg(gata1:GFP)]

48 hpf (hours post fertilization)
mb: midbrain
ot: otocyst
e: eye
h: heart
yolk: yolk mass
Fast 4D: Measure slices over multiple heartbeats
4D in vivo, Fast Confocal Microscopy is Possible

Before synchronization

After synchronization

A.S. Forouhar, ML
[Tg(cm1c2:GFP) 38 hpf zebrafish, Huai-Jen Tsai, National Taiwan University]
liveHeart: Heart shape influences blood flow and vice-versa!

Time-lapse of valve development and function gain from 84hpf to 110hpf

open valve

closed valve

anterograde flow

retrograde flow

valve length

J. Ohn (UCSB); Collaborators: J. Vermot, W. Supatto, N. Mercader
Key idea: Combine multiple (time-offset) low temporal resolution movies to create high temporal resolution movie.

Key idea: Combine multiple (time-offset) low temporal resolution movies to create high temporal resolution movie.

Main result: Temporal resolution increase by factor $1.5 \times$

Christian Jaques, Olivia Mariani, Kevin Chan

Fast imaging to:

- boost limited camera frame rate
- overcome low light situations
- improve spatial resolution by limiting motion blur

Future developments:

Acknowledgments

Contact: michael.liebling@idiap.ch, http://www.idiap.ch

Idiap
Christian Jaques
Olivia Mariani
Kevin Chan

UCSB
Kevin Chan
Nikhil Chacko (PhD’15)
Michael Lee (PhD’15)
Sandeep Bhat (PhD’13)
Jungho Ohn (PhD’13)

Hard- and Software
Imaris (Bitplane AG)
µManager (Nico Stuurman)
Leica Microsystems
Olympus
Carl Zeiss, AIM

Zebrailish
Shuo Lin, UCLA
H.-J. Tsai, Nat. Taiwan U.
Le Trinh, USC

Funding
Swiss National Science Foundation
NIH (NHLBI R01 HL078694)
NSF (DMR 0960331)
Hellman Family Fellowship
Santa Barbara Cottage Hospital
Regent’s Junior Faculty Fellowship

UCSB
Dmitry Fedorov
B.S. Manjunath

Caltech
Arian S. Forouhar
Mory Gharib

IGBMC, Strasbourg
Julien Vermot

École Polytechnique, Palaiseau
Willy Supatto

Uni Bern
Nadia Mercader

University of Southern California (USC)
Le Trinh
Scott E. Fraser

BCM Houston (Mouse)
Irina Larina
Mary E. Dickinson

U. Houston (OCT)
Kirill Larin

a*star, Singapore
Kar Lai Poon
Vlad Korzh
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. BioImaging Group</td>
<td>2</td>
</tr>
<tr>
<td>What is comp. bio-imaging?</td>
<td>3</td>
</tr>
<tr>
<td>Biology is high-dimensional</td>
<td>4</td>
</tr>
<tr>
<td>liveHeart: an ANR-SNSF collaboration</td>
<td>5</td>
</tr>
<tr>
<td>Human heart</td>
<td>6</td>
</tr>
<tr>
<td>Zebrafish embryos</td>
<td>7</td>
</tr>
<tr>
<td>Gated imaging animation</td>
<td>8</td>
</tr>
<tr>
<td>4D heart reconstruction</td>
<td>9</td>
</tr>
<tr>
<td>Blood flow ↔ shape</td>
<td>10</td>
</tr>
<tr>
<td>Superresolution in Heart</td>
<td>11</td>
</tr>
<tr>
<td>A380 Demo</td>
<td>13</td>
</tr>
</tbody>
</table>