Source code for bob.fusion.base.algorithm.Weighted_Sum

#!/usr/bin/env python

from __future__ import absolute_import, division

import logging

import numpy

from .Algorithm import Algorithm

logger = logging.getLogger(__name__)


class Weighted_Sum(Algorithm):
    """weighted sum (default: mean)"""

[docs] def __init__(self, weights=None, **kwargs): super(Weighted_Sum, self).__init__(classifier=self, **kwargs) self.weights = weights self.str["weights"] = weights
[docs] def fit(self, X, y): pass
[docs] def decision_function(self, scores): if self.weights is None: return numpy.mean(scores, axis=1) else: return numpy.sum(scores * self.weights, axis=1)