References#

[STARE-2000]

A. D. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. 203-210, March 2000. https://doi.org/10.1109/42.845178

[DRIVE-2004]

J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B. van Ginneken, Ridge-based vessel segmentation in color images of the retina, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. 501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627

[CHASEDB1-2012]

M. M. Fraz et al., An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation, in IEEE Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept. 2012. https://doi.org/10.1109/TBME.2012.2205687

[HRF-2013]

A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, Robust Vessel Segmentation in Fundus Images, in International Journal of Biomedical Imaging, vol. 2013, p. 11, 2013. http://dx.doi.org/10.1155/2013/154860

[IOSTAR-2016]

J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits and B. M. ter Haar Romeny, Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores, in IEEE Transactions on Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016. https://doi.org/10.1109/TMI.2016.2587062

[DRIONSDB-2008]

Enrique J. Carmona, Mariano Rincón, Julián García-Feijoó, José M. Martínez-de-la-Casa, Identification of the optic nerve head with genetic algorithms, in Artificial Intelligence in Medicine, Volume 43, Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005

[RIMONER3-2015]

F. Fumero, J. Sigut, S. Alayón, M. González-Hernández, M. González de la Rosa, Interactive Tool and Database for Optic Disc and Cup Segmentation of Stereo and Monocular Retinal Fundus Images, Conference on Computer Graphics, Visualization and Computer Vision, 2015. https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf

[DRISHTIGS1-2014]

J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and A. U. Syed Tabish, Drishti-GS: Retinal image dataset for optic nerve head (ONH) segmentation, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56. https://doi.org/10.1109/ISBI.2014.6867807

[MANINIS-2016]

K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, Deep Retinal Image Understanding, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Cham, 2016, pp. 140–148. https://doi.org/10.1007/978-3-319-46723-8_17

[ORLANDO-2017]

J. I. Orlando, E. Prokofyeva and M. B. Blaschko, A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images, in IEEE Transactions on Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017. https://doi.org/10.1109/TBME.2016.2535311

[MEYER-2017]

M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A. Campilho, A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images, in Image Analysis and Recognition, vol. 10317, F. Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56

[IGLOVIKOV-2018]

V. Iglovikov, S. Seferbekov, A. Buslaev and A. Shvets, TernausNetV2: Fully Convolutional Network for Instance Segmentation, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 228-2284. https://doi.org/10.1109/CVPRW.2018.00042

[XIE-2015]

S. Xie and Z. Tu, Holistically-Nested Edge Detection, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 1395-1403. https://doi.org/10.1109/ICCV.2015.164

[LUO-2019]

L. Luo, Y. Xiong, Y. Liu, and X. Sun, Adaptive Gradient Methods with Dynamic Bound of Learning Rate, Proceedings of the 7th International Conference on Learning Representations (ICLR), Feb. 2019. https://arxiv.org/abs/1902.09843v1

[MASSA-2018]

F. Massa and R. Girshick, maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. 2018. Last accessed: 21.03.2020. https://github.com/facebookresearch/maskrcnn-benchmark

[LIN-2018]

J. Lin, pytorch-mobilenet-v2: A PyTorch implementation of MobileNetV2, 2018. Last accessed: 21.03.2020. https://github.com/tonylins/pytorch-mobilenet-v2

[RONNEBERGER-2015]

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015. https://arxiv.org/abs/1505.04597

[ZHANG-2017]

Z. Zhang, Q. Liu, Y. Wang, Road Extraction by Deep Residual U-Net, 2017. https://arxiv.org/abs/1711.10684

[SANDLER-2018]

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2018. https://arxiv.org/abs/1801.04381

[GALDRAN-2020]

A. Galdran, A. Anjos, J. Dolz, H. Chakor, H. Lombaert, and I. Ben Ayed, The Little W-Net That Could: State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models, 2020. https://arxiv.org/abs/2009.01907

[SMITH-2017]

L. N. Smith, Cyclical Learning Rates for Training Neural Networks, 2017. https://arxiv.org/abs/1506.01186

[GOUTTE-2005]

C. Goutte and E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, European conference on Advances in Information Retrieval Research, 2005. https://doi.org/10.1007/978-3-540-31865-1_25

[DRHAGIS-2017]

S. Holm, G. Russell, V. Nourrit, N. McLoughlin, DR HAGIS – A Novel Fundus Image Database for the Automatic Extraction of Retinal Surface Vessels, SPIE Journal of Medical Imaging, 2017. https://doi.org/10.1117/1.jmi.4.1.014503

[MC-2014]

S. Jaeger, S. Candemir, S. Antani, Y. X. Wáng, P. X. Lu, G. Thoma, Two public chest X-ray datasets for computer-aided screening of pulmonary diseases., Quantitative imaging in medicine and surgery. 2014. https://doi:10.3978/j.issn.2223-4292.2014.11.20

[JSRT-2000]

J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K. Komatsu, M. Matsui, H. Fujita, Y. Kodera, K. Doi, Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules., American Journal of Roentgenology. 2000. https://pubmed.ncbi.nlm.nih.gov/10628457

[SHENZHEN-2014]

S. Jaeger, S. Candemir, S. Antani, Y. X. Wáng, P. X. Lu, G. Thoma, Two public chest X-ray datasets for computer-aided screening of pulmonary diseases., Quantitative imaging in medicine and surgery. 2014. https://doi:10.3978/j.issn.2223-4292.2014.11.20

[GAAL-2020]

G. Gaál, B. Maga, A. Lukács, Attention U-Net Based Adversarial Architectures for Chest X-ray Lung Segmentation., 2020. https://arxiv.org/abs/2003.10304v1

[CXR8-2017]

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases., IEEE CVPR, pp. 3462-3471, 2017. https://arxiv.org/abs/1705.02315