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Abstract

This technical report describes the homeset algorithm, a simple yet effective approach to
estimate home occupancy schedules from unlabelled sensor data. The algorithm relies on Wi-Fi
scan data to determine when residents are at home and when not. We validate our approach
using a data set from the Nokia Lausanne Data Collection Campaign that contains mobile
phone traces of 38 participants collected over more than one year. Since the data is unlabelled,
we indirectly validate our results leveraging the information hidden in anonymised GPS traces
collected by the mobile phones of home occupants. We further show that the homeset algorithm
is able to autonomously determine the reliability of the computed schedules. Finally, we show
how these schedules can be used to predict the future occupancy behaviour of mobile phone
owners.

1 Introduction

A number of studies have shown how behavioural patterns of both groups and individuals can be
discovered by analysing data collected using off-the-shelf mobile devices [3]. For instance, mobile
phones have often been used to gather mobility traces of individuals [3, 4]. The analysis of these
traces enables, e.g. identification of places of interest in the daily lives of individuals [4] or even the
prediction of places that will most likely be visited by the mobile phone holders [7].

The use of mobile phones for the collection of mobility traces thus makes it possible to explore,
model and predict human behaviour. Retrieving mobility traces at a fine temporal and spatial scale,
however, may consume a significant amount of resources. For instance, the continuous operation of
GPS is known to shorten battery lifetime of mobile phones significantly [2]. In practical settings,
the use of GPS is thus typically “rationed” and combined with other technologies, in particular cell-
or Wi-Fi-based localisation [6]. This, however, also requires reliance on third-party services and
might thus raise privacy issues.

To reduce the impact of these issues, collecting data at a much coarser scale might still be
sufficient to support a large set of applications and at the same time preserve mobile phone resources
and protect users’ privacy. Such scenarios include applications that rely on knowledge about when
households’ occupants are likely to return home, like home automation applications (e.g. automatic
heating control), location-based reminders or notification services to ensure the presence of children
at home.
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In this report, we focus on this specific class of applications and present a novel approach for
discovering the daily occupancy patterns of private households using mobile phones. Our approach
allows mobile phones to autonomously estimate the occupancy schedules of their owners. To this
end, we leverage Wi-Fi scan traces, i.e. the information that mobile phones gather about visible Wi-
Fi access points. The approach requires scans to be performed only at a coarse temporal scale (e.g.
every 15 minutes). By performing a time-based clustering of these traces, our homeset algorithm
can accurately reconstruct the probabilistic occupancy schedule – i.e. the probability of her mobile
phone being at home at any given time and day – of each household’s occupant. These probabilistic
schedules can then be used to estimate future occupancy schedules and thus support the class of
applications mentioned above.

We evaluate our approach using Wi-Fi scan traces gathered in the context of the Lausanne
data collection campaign (LDCC). This campaign was launched in 2009 by the Nokia Research
Center in Lausanne, Switzerland and the collected data was recently released in the context of
the Nokia Mobile Data Challenge (MDC) [6]. The released data set contains more than one year
worth of traces of Wi-Fi scans, GPS coordinates, accelerometer readings and several other sensors,
as well as demographic information for 38 of the mobile phone users that participated in the data
collection campaign. The participants are identified by the identifier used in the LDCC data set
(i.e. participant "007").

As the data set does not contain information about places of interest of the LDCC participants
(e.g. we have no information about where the “home” of the participants is), we evaluate our findings
by developing a heuristic approach that leverages the GPS traces in the data set. In particular,
we first select those GPS coordinates that have been truncated in order to obfuscate the actual
position of the mobile phone. We then apply a temporal clustering procedure on these coordinates
to observe in which time frames specific coordinates have been obfuscated. Finally, we infer the type
of place (e.g. home or work) corresponding to a specific set of coordinates depending on when they
have been truncated (e.g. coordinates corresponding to the home are typically obfuscated during
the night). This approach allows us to gather the ground truth information necessary to empirically
evaluate the reliability of our homeset algorithm – without any need to retrieve the actual location
of the participants’ homes.

After describing our method to derive probabilistic occupancy schedules and how we evaluated its
performance, the report describes how the obtained schedules can be used. To this end, we first show
how future occupancy schedules can be predicted relying on historical data. Further, we present
preliminary results showing that it is possible to use selected features of the occupancy schedules
to automatically recognise specific classes of individuals (e.g. full-time workers vs students).

Before presenting the homeset algorithm and discussing its performance in Section 3, we sum-
marise related work in Section 2. We then present two examples on how the derived occupancy
schedules can be used in Section 4. Section 5 concludes the report and presents our outlook for
future work.

2 Related work

The idea of using mobile phones to discover human mobility patterns has been explored extensively
in the last few years [3]. Several authors have focused on identifying places of interest (e.g. work-
place, home) and on predicting transitions between such places [1, 4]. Our work is related to these
approaches since we aim to identify – although not locate – the home of a mobile phone user in
order to build a probabilistic schedule which estimates the probability that she will return home at
a future time interval.

In [7], Scellato at al. address the problem of estimating the arrival time of a user at specific
location as well as “the interval of time spent in that location”. To this end, fine-grained location
traces need to be collected and evaluated centrally. Similarly, the PlaceSense algorithm by Kim
et al. [4] uses a sampling rate of 0.1 Hz to find semantic places, which resulted in short battery
life-times that would not be suitable for a long term deployment. Furthermore, since PlaceSense
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Figure 1: The homeset is the set of access points in the vicinity of the home access point APHS0 .
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Figure 2: Cumulative probabilities for intervals from 1 minute to infinity across all participants.

requires a stable scan window (i.e. a consistent set of beacons) to detect entrance to a place, it
struggles on data sets with relatively low sampling rates such as the MDC data set used in this
report. In contrast, our homeset algorithm requires collecting only coarse-grained traces of Wi-Fi
scans and can operate locally on the user’s phone.

Other authors have also focussed on the problem of predicting the occupancy of private house-
holds in order to support home automation applications. Existing approaches to discover occupancy
schedules mainly rely on the availability of data from a GPS logger to compute distance from home
or ad-hoc sensors (e.g. passive infrared sensors) installed in the home [5, 8]. While the installation
of ad-hoc sensors poses an additional burden in terms of costs and maintenance effort, the con-
tinuous operation of a GPS module is typically avoided due to energy constraints [6]. Thus GPS
data is often replaced by or combined with information gathered through Wi-Fi- or GSM-based
localisation services [4, 6]. Figure 1 shows a comparison of GPS based presence detection with our
homeset algorithm. Related work [5] has put a user as home if she was in a 100 m radius of her
home. We therefore argue that being within the coverage area of a Wi-Fi network is sufficient to
detect occupancy at a much lower energy cost.

3 The Homeset Algorithm

The goal of the homeset algorithm is to compute the probabilistic occupancy schedule of the residence
of a mobile phone owner. A schedule is represented as a matrix P with 7 columns, one for each
day of the week and Ns rows. Ns is the number of temporal slots within a day. Ns can be set
to an arbitrary value, depending on the desired time granularity of the schedules. Figure 2 shows
that in the MDC data set, the interval between consecutive Wi-Fi scans is less than 15 minutes
in 95% of the cases. In the context of this work we thus consider slots of 15 minutes, such that
Ns = 24× 60/15 = 96.

As an example, figure 3 shows the probabilistic occupancy schedule derived for participant 007 of
the MDC data set1. This schedule reveals that participant 007 is usually away from home between
8am and 7pm during weekdays, while her behaviour is far less regular on the weekends.

To compute the probabilistic occupancy schedules, the homeset algorithm relies on logs of Wi-
Fi scans only. Each time a mobile phone detects the presence of a Wi-Fi access point it stores
several pieces of information. Among these, the homeset algorithm only uses the timestamp of

1Figures 9 to 13 in the appendix show the schedules for all 38 participants included in this report.
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Household 007: female,39-44,working full time (WiFi)
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Figure 3: Probabilistic Wi-Fi occupancy schedule for participant 007. The participant is most likely
not to be at home on weekdays between 8am and 7pm.

1pm 2pm1.30pm
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scan ∩HS 6= ∅
scan ∩HS = ∅

Figure 4: Interval classification based on multiple scans and homeset.

the scan and the MAC addresses of the visible access points. A single Wi-Fi scan is thus a tuple
< ts,AP0, AP1, . . . , APm−1 > where m is the total number of access points seen in a particular scan
and APi is the MAC address of and thus uniquely identifies, a specific access point.

The homeset algorithm uses these scans to identify a set of access points that are located within,
or in the immediate proximity of, the household of a mobile phone owner. We call this set the
homeset (HS) and assume it contains n access points, so that HS = {APHS0 , APHS1 , ..., APHSn−1}.
We will for now assume n > 1 and discuss the initialisation of the HS below.

Figure 4 shows occupancy classification with the homeset algorithm. Given a Wi-Fi scan
< ts,AP0, AP1, . . . , APm−1 > the homeset algorithm tests whether {AP0, AP1, AP2, ..., APm−1} ∩
HS 6= ∅. If this statement returns true, the algorithm assumes the household to be occupied in
the slot i of day j identified by the timestamp of the scan. This observation is then stored in a
occupancy frequency matrix O of dimensions Ns×7, i.e. the element oij of matrix O is incremented
by 1. Concurrently, a total observations matrix T is maintained and used to store the total number
of times a Wi-Fi scan has been registered in a particular slot i of a day j. Note that both oij and
tij are incremented at most once in each time slot.

The elements of the probabilistic occupancy schedule matrix P are then computed as:

pij =

{
oij/tij if tij > 0

0.5 otherwise

As indicated in this equation, as long as no scans are available, the homeset algorithm assumes
there is an equal chance for a participant to be at home or away (pij = 0.5).

By repeating this procedure over a few weeks, the desired probabilistic schedules can be com-
puted. We will discuss below how to automatically determine when a schedule can be considered
mature.

3.1 Initialisation of the homeset

In order to initialise the homeset in practical settings, one could require the user to manually enter
the MAC address of the household’s private access point, if one exists or to actively scan for nearby
access points while at home.

To eliminate this manual effort in initializing the homeset from the available MDC data, we
computed the the empirical probability ωx of seeing access point x at least once between 3am and
4am on any particular night. This procedure relies on the assumption that people spend most
of their nights at home. The access point with the highest value for ωx is set to be APHS0 . Once
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Figure 5: Maturity statistics for participant 002 (the maturity statistics for all 38 participants may
be found in figures 14 to 23 of the appendix).

APHS0 has been identified, the homeset is constructed by including inHS any other access point that
appears in a Wi-Fi scan together with APHS0 . This approach significantly increases the reliability
of the homeset algorithm.

To measure this increase in reliability we define a metric called stability. We compute the
stability πx of an access point x over a time interval Tπ, which we set to be at night between
3am and 4am. If APHS0 is seen at least once within Tπ, then it is reasonable to assume that the
household must be occupied during the whole period. Indeed, although theoretically possible, it
is unlikely that typical household occupants will leave the home between 3am and 4am. However,
in some scans registered in the period Tπ APHS0 does not appear. If the homeset algorithm relied
on APHS0 only, the household would be declared as occupied in given slots within the period Tπ
and unoccupied in others. This instability would clearly cause false negatives to appear and thus
decrease the reliability of our algorithm. To demonstrate that the homeset approach significantly
improves on this aspect, we thus compute the stability πx as the ratio of two quantities. The
numerator is the total number of scans in which the access point x appears in the period Tπ. The
denominator is the total number of scans in the period Tπ, whereby the scans are counted only if
the access point x is seen at least once in the period Tπ. A value of πx equal to 1 thus means that
if the access point is seen on any given night, it is going to be seen in all other scans between 3am
and 4am and thus that it is a stable indicator of household occupancy.

The rationale behind the homeset algorithm is that a set of access points has a higher stability
than a single one, even if this one is the private access point of the household. Table 1 shows
evidence of this observation for selected participants included in our MDC data set. For participant
009, for instance, using the whole HS instead of the single primary access point only, increased
stability from 0.477 to 0.954.

3.2 Maturity of the schedules

A given probabilistic occupancy schedule can be considered mature only when sufficient data has
been collected to construct it. In real settings, the actual maturity of the schedule must be measured
before it starts being used to, for instance, control a heating system. We say that a schedule is
mature when at least 95% of the slots contain at least 1 observation. For most of the participants
in our MDC data set, maturity is achieved within 4 weeks.

The continuous straight line in figure 14(a) shows the total number of observations that would
be counted if we had at least one Wi-Fi scan in each slot. The other two curves compare this
“ideal” complete schedule with the average and median number of scans that are actually observed
for an exemplary participant in our MDC data set. This plot clearly shows that during any week,
the actual number of observation is smaller than the number of slots. However, if the user can be
observed over several weeks, then maturity can be reached quickly, as shown in figure 19(a).
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ID πAPHS
0

ωAPHS
0

πHS ωHS Score In HS?
002 0.555 0.953 0.963 1.0 13 X
005 0.229 0.424 0.414 0.909 2 ?
007 0.859 0.654 0.892 0.946 16 X
009 0.477 0.78 0.954 0.962 n.a. n.a.
010 0.75 0.678 0.852 0.956 2 ?
017 0.805 0.978 0.981 0.985 8 ?
023 0.715 0.487 0.987 1.0 16 X
026 0.588 0.875 0.963 0.971 3 ?
034 0.883 0.481 0.866 0.57 16 X
042 0.674 0.678 0.964 0.931 10 X
050 0.668 0.948 0.979 1.0 10 X
051 0.516 0.982 0.985 1.0 2 ?
056 0.943 0.975 0.985 1.0 6 ?
060 0.921 0.977 0.983 0.996 12 X
063 0.851 1.0 0.995 1.0 5 ?
068 0.857 0.912 0.998 1.0 5 ?
075 0.634 0.481 0.892 0.659 16 X
077 0.76 0.875 0.961 0.938 n.a. n.a.
082 0.899 0.968 0.992 0.989 16 X
083 0.664 0.988 0.998 1.0 16 X
089 0.512 0.643 0.971 0.857 5 ?
094 0.794 0.584 0.832 0.887 n.a. n.a.
109 0.468 0.884 0.94 0.977 9 ?
111 0.676 0.462 0.975 1.0 11 X
117 0.375 0.825 0.964 0.997 15 X
120 0.77 0.72 0.96 0.805 13 X
123 0.813 1.0 0.994 1.0 5 ?
126 0.546 0.841 0.957 0.955 2 ?
127 0.704 0.689 0.949 0.974 16 X
139 0.472 0.391 0.916 0.457 n.a. n.a.
141 0.314 0.839 0.985 0.873 7 ?
160 0.538 0.876 0.984 1.0 16 X
165 0.615 0.968 0.962 0.992 n.a. n.a.
169 0.692 0.736 0.98 1.0 14 X
172 0.476 0.915 0.958 0.954 15 X
179 0.812 0.368 0.971 0.974 16 X
185 0.448 0.696 0.972 0.983 10 X
186 0.914 1.0 0.964 1.0 16 X

Table 1: Empirical probability ω and stability π of the primary access point AHS0 only and the
extended set of access points, the homeset HS, for all participants included in the data set (n.a.:
not available, ?: score too low)

6



1 
2 
3 
4 
5 
6 0 

2 

4 

6 

8 

10 

12 

0
0

:0
0

 

0
1

:0
0

 

0
2

:0
0

 

0
3

:0
0

 

0
4

:0
0

 

0
5

:0
0

 

0
6

:0
0

 

0
7

:0
0

 

0
8

:0
0

 

0
9

:0
0

 

1
0

:0
0

 

1
1

:0
0

 

1
2

:0
0

 

1
3

:0
0

 

1
4

:0
0

 

1
5

:0
0

 

1
6

:0
0

 

1
7

:0
0

 

1
8

:0
0

 

1
9

:0
0

 

2
0

:0
0

 

2
1

:0
0

 

2
2

:0
0

 

2
3

:0
0

 

L
o

c
a

ti
o

n
 

N
u

m
b

er
 o

f 
o

b
se

r
v

a
ti

o
n

s 

Time of day 

Figure 6: Time-frequency analysis of the anonymised locations for participant 002. Locations with
less than 10 observations are excluded.

3.3 Validating the homeset algorithm

In order to thoroughly validate the homeset algorithm, a precise schedule of the absence from or
presence in, the household of the mobile phone owners would be necessary. As this information is not
available in the MDC data set, we set out to validate our findings indirectly by verifying whether the
access points included in the homeset are plausibly close to the location of the participants’ homes.
To this end, we used the GPS data available in the MDC data set and considered the fact this data
had been partially modified in order to protect the privacy of the participants. In particular, the
latitude and longitude coordinates of sensitive places, like the participants’ homes or workplaces,
have been occasionally truncated to the 3rd decimal digit. As the coordinates are reported along
with a timestamp, we could retrieve statistics about when participants were in sensitive places, even
though it was not possible to retrieve where exactly the participants were at that specific time.

We thus first extract all the truncated instances of the GPS data from the data set. We then
assign each unique pair of truncated latitude and longitude coordinates to a symbolic location k.
For each location, we then create a frequency count vector ~CV k = (c0, c1, . . . , c23) with 24 elements,
one for each hour of the day. Over the whole data set, we then count the number of occurrences
of a location k in a given hour of the day and store this value in the corresponding element of the
vector CV k. We thus count how many times a specific symbolic location has been “anonymised”.

Figure 6 shows the results of this analysis for participant 002, whereby we only display the 6
most relevant symbolic locations. As visible in this picture, location 1 is anonymised most of the
times between 1pm and 5pm and is never anonymised before 8am or after 9pm. We thus conjecture
that this location corresponds to the workplace of the participant, as it is likely that between 1pm
and 5pm the participant is at work and thus there is a higher need to truncate coordinates that
correspond to this sensitive location. On the other side, location 5 is the one that is anonymised
most frequently and consistently over the whole course of the day. Therefore, we conjecture that
this is the location of the home of the participant.

In order to automatically assess if a particular set of coordinates can identify a home location,
we compute a score for each location. To make results comparable, we round CV k to binary values
and multiply it with a weighting vector ~w = (w0, w1, . . . , w23). Times between 9 and 17 (i.e. w9 to
w17) are set to 2

7 while all other times are set to 1. We chose this weighting assuming a normal nine
to five schedule with little presence during the day except on weekends. A set of coordinates can
score a maximum of 18.3 points under this metric. We have chosen a threshold of 10 for a location
to be accepted as a possible home location.

Once we retrieved the (truncated and thus anonymised) location of the home of each participant
using the method described above, we compare the symbolic location with the GPS coordinates of
the Wi-Fi access points. To this end, we compute the locations of the access points using temporal
matching between the Wi-Fi and anonymised GPS data. For 20 out of the 38 participants included
in the data set, a match was found. Of the remaining cases, 13 times the score of the candidate
locations was below 10 and in 5 cases no anonymised coordinates could be found for the homeset
access points. By comparing the homesets we could further identify 4 out of the 13 participants with
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Figure 7: Prediction errors and observations for participant 060.

low scores as couples (i.e. intersecting homeset, similar schedule, similar age, male and female). As
their candidate anonymised GPS locations were also identical, we could thus lift their combined score
over the threshold and validate 4 additional participants. Thus, for the majority of the participants
in the data set, we could verify that the coordinates of the symbolic location identified as the home
of the participants corresponded with the coordinates of access points included in the homeset, thus
establishing the reliability of our homeset algorithm.

4 Examples of the use of probabilistic occupancy schedules

The probabilistic schedules computed with the homeset algorithm can be used, among other things,
to control home automation systems. In particular, these schedules can be used to adapt to actual
schedules and predict the occupants’ future behaviour in order to control the heating system with
the goal of saving energy without losing comfort. In order to test the validity of this assumption we
performed a preliminary evaluation. We used the first four weeks of data to learn the probabilistic
schedules using the homeset algorithm. We then compared the probabilistic schedule with the
observed participant occupancy in the subsequent weeks. We refer to a difference between these
schedules as the prediction error.

Figure 7 exemplarily shows the results of this analysis for participant 060 – results for all other
participants may found in figures 24 to 28 of the appendix. In this case, our probabilistic schedule
correctly predicts the home occupancy of the participant for 80% of the observations.

This means that 80% of the observed slots over the course of a particular week have been
classified correctly. This accuracy figure is only meaningful if the number of observations is close
to the maximum (i.e. 672 15-minute time slots). In the case of participant 060, data for more than
80% of the slots are available per week, most of the time. However, during weeks 38 and 39, the
fact that we have data for less than 200 slots each (e.g. less than 3 days of data) does not enable us
to conclude that the prediction would produce meaningful results for these two weeks even though
the accuracy remains high.

In order to quantify the prediction error of the final probabilistic schedule we compute a vector
of the expected errors ~m, where t = 15 is the length of the interval in minutes. This essentially is
the probability of erring if we set the threshold for occupancy to 0.5.

~m = (m0, . . . ,m6) where mi =

n∑
j=0

min(pij , 1− pij)× t

Figure 8 shows the weekday expected errors E(m0, . . . ,m4) plotted against the mean of the weekday
absences for participants studying or working full-time. Like the expected errors, the weekday
absences were obtained from the probabilistic schedule by regarding the participant as absent if
pij < 0.5 and taking the longest continuous stretch of absence. It can be seen that participants
working full-time are in general staying away from home longer and have a more regular schedule.
Some exceptions are highlighted in the graph. Students are much more difficult to classify, however.
For some, the actual schedules vary so much (i.e. pij is close to 0.5) that the probabilistic schedule

8
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Figure 8: Weekday absences and prediction errors for full-time workers (crosses) and students (dots).
Full time workers are away for longer continuous stretches of time and are more predictable.

cannot accurately determine for how long they can expected to be absent. This means that a
prediction algorithm based merely on static schedules [5] would not consistently produce correct
predictions. Therefore, to overcome the irregularity, it must identify the type of household and adapt
to its occupants. This may mean either lowering the threshold (choosing comfort over savings) or
performing next place prediction.

5 Conclusions

This report introduced a novel algorithm to compute occupancy schedules of private households
using mobile phone data. Our homeset algorithm uses Wi-Fi scan data and is able to determine
when a schedule is mature enough and can thus be used to, e.g. predict occupants’ future behaviour.
To validate our findings we developed a second technique that automatically validates the homeset
using the anonymised GPS data contained in the MDC data set.
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Appendix

Household 002: female,28-33,studying full time (WiFi)
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(a) Probabilistic schedule for participant 002.

Household 005: female,39-44,working part time (WiFi)

Mon Tue Wed Thu Fri Sat Sun
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02:00
04:00
06:00
08:00
10:00
12:00
14:00
16:00
18:00
20:00
22:00

T
im

e 
of

 d
ay

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

li
ty

 o
f 

oc
cu

pa
nc

y

(b) Probabilistic schedule for participant 005.
Household 007: female,39-44,working full time (WiFi)
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(c) Probabilistic schedule for participant 007.

Household 009: female,33-38,working full time (WiFi)
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(d) Probabilistic schedule for participant 009.
Household 010: no info (WiFi)

Mon Tue Wed Thu Fri Sat Sun

00:00
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(e) Probabilistic schedule for participant 010.

Household 017: male,28-33,working full time (WiFi)

Mon Tue Wed Thu Fri Sat Sun

00:00
02:00
04:00
06:00
08:00
10:00
12:00
14:00
16:00
18:00
20:00
22:00

T
im

e 
of

 d
ay

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

li
ty

 o
f 

oc
cu

pa
nc

y

(f) Probabilistic schedule for participant 017.
Household 023: no info (WiFi)
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(g) Probabilistic schedule for participant 023.

Household 026: male,28-33,studying full time (WiFi)
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(h) Probabilistic schedule for participant 026.

Figure 9: Probabilistic schedules for participants 002 to 026.
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Household 034: no info (WiFi)
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(a) Probabilistic schedule for participant 034.

Household 042: no info (WiFi)
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(b) Probabilistic schedule for participant 042.
Household 050: female,39-44,working full time (WiFi)
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(c) Probabilistic schedule for participant 050.

Household 051: female,28-33,studying full time (WiFi)
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(d) Probabilistic schedule for participant 051.
Household 056: female,28-33,working full time (WiFi)
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(e) Probabilistic schedule for participant 056.

Household 060: female,39-44,working full time (WiFi)
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(f) Probabilistic schedule for participant 060.
Household 063: male,39-44,housewife/homemaker (WiFi)
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(g) Probabilistic schedule for participant 063.

Household 068: female,16-21,studying full time (WiFi)
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(h) Probabilistic schedule for participant 068.

Figure 10: Probabilistic schedules for participants 034 to 068.
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Household 075: female,28-33,studying full time (WiFi)
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(a) Probabilistic schedule for participant 075.

Household 077: male,28-33,working part time (WiFi)
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(b) Probabilistic schedule for participant 077.
Household 082: female,45-50,working full time (WiFi)
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(c) Probabilistic schedule for participant 082.

Household 083: female,22-27,working part time (WiFi)
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(d) Probabilistic schedule for participant 083.
Household 089: female,WRONG VALUE,working full time (WiFi)
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(e) Probabilistic schedule for participant 089.

Household 094: female,33-38,working full time (WiFi)
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(f) Probabilistic schedule for participant 094.
Household 109: female,28-33,working full time (WiFi)
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(g) Probabilistic schedule for participant 109.

Household 111: male,45-50,working full time (WiFi)
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(h) Probabilistic schedule for participant 111.

Figure 11: Probabilistic schedules for participants 075 to 111.
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Household 117: male,33-38,working full time (WiFi)
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(a) Probabilistic schedule for participant 117.

Household 120: no info (WiFi)
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(b) Probabilistic schedule for participant 120.
Household 123: female,39-44,working full time (WiFi)
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(c) Probabilistic schedule for participant 123.

Household 126: no info (WiFi)
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(d) Probabilistic schedule for participant 126.
Household 127: male,WRONG VALUE,working full time (WiFi)
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(e) Probabilistic schedule for participant 127.

Household 139: no info (WiFi)
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(f) Probabilistic schedule for participant 139.
Household 141: no info (WiFi)
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(g) Probabilistic schedule for participant 141.

Household 160: female,45-50,working full time (WiFi)
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(h) Probabilistic schedule for participant 160.

Figure 12: Probabilistic schedules for participants 117 to 160.
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Household 165: female,28-33,studying full time (WiFi)
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(a) Probabilistic schedule for participant 165.

Household 169: female,45-50,not currently working (WiFi)
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(b) Probabilistic schedule for participant 169.
Household 172: male,45-50,working full time (WiFi)
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(c) Probabilistic schedule for participant 172.

Household 179: missing data,45-50,other (WiFi)
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(d) Probabilistic schedule for participant 179.
Household 185: female,28-33,working full time (WiFi)
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(e) Probabilistic schedule for participant 185.

Household 186: no info (WiFi)
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(f) Probabilistic schedule for participant 186.

Figure 13: Probabilistic schedules for participants 165 to 186.

15



 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Mean observations
Median observations

Complete schedule

(a) Observation counts for participant 002.
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(b) Observation counts for participant 005.
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(c) Observation counts for participant 007.
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(d) Observation counts for participant 009.
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(e) Observation counts for participant 010.
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(f) Observation counts for participant 017.
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(g) Observation counts for participant 023.
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(h) Observation counts for participant 026.

Figure 14: Observation counts for participants 002 to 026.
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(a) Observation counts for participant 034.
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(b) Observation counts for participant 042.
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(c) Observation counts for participant 050.
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(d) Observation counts for participant 051.
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(e) Observation counts for participant 056.
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(f) Observation counts for participant 060.
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(g) Observation counts for participant 063.

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Mean observations
Median observations

Complete schedule

(h) Observation counts for participant 068.

Figure 15: Observation counts for participants 034 to 068.
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(a) Observation counts for participant 075.
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(b) Observation counts for participant 077.
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(c) Observation counts for participant 082.
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(d) Observation counts for participant 083.
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(e) Observation counts for participant 089.
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(f) Observation counts for participant 094.
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(g) Observation counts for participant 109.
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(h) Observation counts for participant 111.

Figure 16: Observation counts for participants 075 to 111.
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(a) Observation counts for participant 117.
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(b) Observation counts for participant 120.
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(c) Observation counts for participant 123.
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(d) Observation counts for participant 126.
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(e) Observation counts for participant 127.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Mean observations
Median observations

Complete schedule

(f) Observation counts for participant 139.
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(g) Observation counts for participant 141.
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(h) Observation counts for participant 160.

Figure 17: Observation counts for participants 117 to 160.
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(a) Observation counts for participant 165.
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(b) Observation counts for participant 169.
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(c) Observation counts for participant 172.
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(d) Observation counts for participant 179.
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(e) Observation counts for participant 185.
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(f) Observation counts for participant 186.

Figure 18: Observation counts for participants 165 to 186.
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(a) Missing observations for participant 002.
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(b) Missing observations for participant 005.
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(c) Missing observations for participant 007.
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(d) Missing observations for participant 009.
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(e) Missing observations for participant 010.
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(f) Missing observations for participant 017.
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(g) Missing observations for participant 023.
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(h) Missing observations for participant 026.

Figure 19: Missing observations for participants 002 to 026.
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(a) Missing observations for participant 034.
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(b) Missing observations for participant 042.
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(c) Missing observations for participant 050.

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 m

is
si

ng
 o

bs
er

va
ti

on
s

Week

(d) Missing observations for participant 051.
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(e) Missing observations for participant 056.
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(f) Missing observations for participant 060.
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(g) Missing observations for participant 063.
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(h) Missing observations for participant 068.

Figure 20: Missing observations for participants 034 to 068.
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(a) Missing observations for participant 075.
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(b) Missing observations for participant 077.
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(c) Missing observations for participant 082.
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(d) Missing observations for participant 083.
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(e) Missing observations for participant 089.
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(f) Missing observations for participant 094.
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(g) Missing observations for participant 109.
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(h) Missing observations for participant 111.

Figure 21: Missing observations for participants 075 to 111.
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(a) Missing observations for participant 117.

 0

 100

 200

 300

 400

 500

 600

 700

 0  2  4  6  8  10  12  14

N
um

be
r 

of
 m

is
si

ng
 o

bs
er

va
ti

on
s

Week

(b) Missing observations for participant 120.
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(c) Missing observations for participant 123.
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(d) Missing observations for participant 126.
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(e) Missing observations for participant 127.
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(f) Missing observations for participant 139.
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(g) Missing observations for participant 141.
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(h) Missing observations for participant 160.

Figure 22: Missing observations for participants 117 to 160.
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(a) Missing observations for participant 165.
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(b) Missing observations for participant 169.
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(c) Missing observations for participant 172.
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(d) Missing observations for participant 179.
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(e) Missing observations for participant 185.
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(f) Missing observations for participant 186.

Figure 23: Missing observations for participants 165 to 186.
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(a) Prediction errors for participant 002.
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(b) Prediction errors for participant 005.
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(c) Prediction errors for participant 007.
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(d) Prediction errors for participant 009.
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(e) Prediction errors for participant 010.
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(f) Prediction errors for participant 017.
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(g) Prediction errors for participant 023.
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(h) Prediction errors for participant 026.

Figure 24: Prediction errors and number of observations for participants 002 to 026.
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(a) Prediction errors for participant 034.
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(b) Prediction errors for participant 042.
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(c) Prediction errors for participant 050.
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(d) Prediction errors for participant 051.
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(e) Prediction errors for participant 056.
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(f) Prediction errors for participant 060.
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(g) Prediction errors for participant 063.
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(h) Prediction errors for participant 068.

Figure 25: Prediction errors and number of observations for participants 034 to 068.

27



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35
 0

 100

 200

 300

 400

 500

 600

C
or

re
ct

 p
re

di
ct

io
ns

 [
%

]

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Correctness of predictions
Number of observations

(a) Prediction errors for participant 075.
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(b) Prediction errors for participant 077.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30
 0

 100

 200

 300

 400

 500

 600

C
or

re
ct

 p
re

di
ct

io
ns

 [
%

]

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Correctness of predictions
Number of observations

(c) Prediction errors for participant 082.
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(d) Prediction errors for participant 083.
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(e) Prediction errors for participant 089.
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(f) Prediction errors for participant 094.
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(g) Prediction errors for participant 109.
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(h) Prediction errors for participant 111.

Figure 26: Prediction errors and number of observations for participants 075 to 111.
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(a) Prediction errors for participant 117.
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(b) Prediction errors for participant 120.
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(c) Prediction errors for participant 123.
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(d) Prediction errors for participant 126.
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(e) Prediction errors for participant 127.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30
 0

 100

 200

 300

 400

 500

 600

C
or

re
ct

 p
re

di
ct

io
ns

 [
%

]

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Correctness of predictions
Number of observations

(f) Prediction errors for participant 139.
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(g) Prediction errors for participant 141.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  6  8  10  12  14  16  18  20  22
 0

 100

 200

 300

 400

 500

 600

C
or

re
ct

 p
re

di
ct

io
ns

 [
%

]

N
um

be
r 

of
 o

bs
er

va
ti

on
s

Week

Correctness of predictions
Number of observations

(h) Prediction errors for participant 160.

Figure 27: Prediction errors and number of observations for participants 117 to 160.
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(a) Prediction errors for participant 165.
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(b) Prediction errors for participant 169.
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(c) Prediction errors for participant 172.
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(d) Prediction errors for participant 179.
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(e) Prediction errors for participant 185.
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(f) Prediction errors for participant 186.

Figure 28: Prediction errors and number of observations for participants 165 to 186.
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