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Abstract—One of essential parts of mobile applications using
Wi-Fi is an energy-efficient Wi-Fi sensing. Lately, there have
been many studies on Wi-Fi sensing algorithms using surrounding
informations (e.g., bluetooth ID [1], cell ID [2] and speed [3], etc).
Based on the correlation between such informations and Wi-Fi
encounters, the algorithms can determine the wake-up time from
sleep mode to detect a Wi-Fi AP efficiently. In this paper, we
measure and compare the impact of each surrounding information
on the Wi-Fi sensing efficiency by analyzing the uncertainty
of information-conditioned remaining time of a mobile until its
next Wi-Fi encounter. Using three metrics (i.e., information gain,
conditional expectation and variance) on a real mobility trace,
we measure to what extend each surrounding information can
reduce the uncertainty of the remaining time, which turns out to
be the improvement of Wi-Fi sensing efficiency. Comparing such
gains from all surrounding informations, we show that the cell
ID information is more energy-efficient than bluetooth ID, speed
and even all possible combinations of them in Wi-Fi sensing.

I. INTRODUCTION

A number of smartphone and tablet users start to generate
much heavier mobile traffic from their mobile applications [4].
This mobile data explosion is expected to be a major obstacle
to the success of the mobile communication service business.
Upgrading to 4G is clearly one solution, yet mobile network
operators are still seeking for many other low-cost alternatives
to diversify the solution options.

Another solution of mobile data explosion is offloading
cellular data to Wi-Fi access points (APs)! which have much
higher bandwidth and lower price than 3G. Recently, many
studies have shown that the Wi-Fi offloading is highly promis-
ing. Lee et al. [S] showed that about 70% of cellular data
can be offloaded to Wi-Fi if users can tolerate an hour delay.
In practice, several delay-tolerant applications over Wi-Fi are
deployed and popularly used, e.g., iCloud [6] and Microsoft
Pocket Outlook [7], which show the possibility of Wi-Fi of-
floading. At above applications, mobile data traffic is not served
until encountering an AP and when a mobile device contacts
with an AP spontaneously, the data is delivered through the AP.
However, to fully utilize Wi-Fi APs in users’ vicinity when
they move, a smartphone is required to consume additional
energy for AP scanning in the background process, which is
one of users’ biggest concerns [1]-[3], [8], [9]. In fact, current
smartphones turn on and scan an AP on demand [3] to save
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'We simply use ‘AP’ instead of *Wi-Fi AP’, unless confusion arises.

energy. However, this on-demand method losses vast amount
of WiFi contacts [3].

Many algorithms for energy-efficient Wi-Fi sensing exploit
surrounding informations (e.g., cell ID [2], a bluetooth contact
list [1] and speed [3]), which are intrinsically available (e.g.,
cell ID) or easily measurable (e.g., speed, bluetooth) on a mo-
bile device, when they predict AP contacts and determine sleep
period. The basic intuition behind them is that the correlation
between AP contacts and surrounding information is useful in
predicting the current or future AP contacts. However, those
algorithms essentially require additional energy for gathering
surrounding informations [1] as well as the computing resource
for matching patterns of gathered information to the history
data. Consequently, they may incur additional overheads which
may be crucial for battery-equipped smartphones. Hence, it is
important for a Wi-Fi sensing algorithm to pick the most effi-
cient surrounding information. To the best of our knowledge, it
is still unclear that (i) which surrounding information is more
useful than others and (ii) how much surrounding information
can increase the Wi-Fi prediction accuracy. In this paper, we
provide an analytical framework to understand and compare
the impact of three popular surrounding information (3G cell,
speed and bluetooth information) and their combinations on
the sensing efficiency, which in turn provides the engineering
insight on the design of an efficient Wi-Fi sensing algorithm.

One of the most important metrics in AP sensing is the
remaining time until encountering an AP, which we focus on
this paper?. Based on the distribution of a remaining time con-
ditioned by the given surrounding information, a sensing algo-
rithm is able to determine Wi-Fi sleep periods until next sensing
to optimize its objective.® If the uncertainty of a remaining
time is pretty high, those algorithms may consume huge energy
with consecutive AP detection failures or miss several APs in
vicinity. We study the impact of each surrounding information
on Wi-Fi sensing metric (i.e., remaining time), using 1 year
traces of 38 participants distributed in Nokia mobile data
challenge (MDC) competition [10]. Based on three analysis
techniques, we quantify to what extent each surrounding in-
formation (i.e., cell ID, bluetooth, speed and combinations of
multiple information) can reduce the uncertainty in estimating
remaining time. Comparing them, we finally conclude that
using only cell ID in the AP sensing is most efficient among all

2we regard remaining time as a random variable

3We call this family of algorithms as a canonical form of sensing
algorithms.
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Fig. 1. the illustration of the definition of remaining time X and Xpz.

possible candidates which include even the combination of cell
ID and bluetooth ID. To the best of our knowledge, it is the
first work that provides a theoretical framework to compare the
impact of each surrounding information on a Wi-Fi sensing.

II. RELATED WORK

There are two ways of sensing Wi-Fi APs: (i) The first one
is to stay in Wi-Fi idle-listening mode where the mobile can
detect the beacon packets from APs in a vicinity [11], [12],
and (ii) the second is to repeatedly “sleep and scan” with Wi-
Fi sleep mode [13]. Comparing the above two schemes, [12]
shows that “sleep and scan” consumes much less energy than
using “idle-listening mode”, since the energy consumption in
Wi-Fi sleep mode is negligible. However, “idle-listening mode”
can immediately detect APs as soon as it enters the coverage of
the AP, whereas “sleep and scan” may experience the detection
delay due to the sleep interval.

Many of previous researches have studied on the efficient
“sleep and scan”, exploiting the correlation between AP con-
tacts and surrounding information. WiFisense [3] uses ac-
celerometer information to sense a user’s movement which
improves the Wi-Fi contact estimation. Cellular footprint [1],
[2] utilizes the currently associated cell tower to estimate the
on/off state of Wi-Fi contact. In addition, Bluefi [1] exploits
the logs of bluetooth contacts which can be measured with ten
times less energy than scanning APs. In [1], users maintain
the list of bluetooth devices which are located in AP coverage,
and when a bluetooth device in the list is detected, the mobile
turns on Wi-Fi from the sleep mode and scans APs. In this
paper, among those candidates of surrounding information, we
quantify which information is most efficient in Wi-Fi sensing
algorithm. To the best of our knowledge, this is the first work
to compare the impact of each surrounding information.

III. MODEL AND SENSING METRICS

A. Models

Wi-Fi AP on/off process. We assume that the average through-
put of all APs are the same so that we regard a number of
available APs as a unique AP. Wi-Fi APs are deployed over

many hot-spots as well as other human-visiting places (e.g.,
office, home and campus). However, due to the small coverage
of APs and users’ mobility, each mobile frequently moves in
and out of Wi-Fi AP coverage, which in turn generates Wi-Fi
AP on/off processes experienced by mobile users.

Wi-Fi Sensing. Each mobile is occasionally sensing Wi-Fi
APs or turned off (i.e., Wi-Fi sleep mode) to save energy. We
assume that if data traffic is arrived at a Wi-Fi transmission
queue [5]-[7], a sensing algorithm computes the length of
sleep period based on the the average remaining time which
will be described later and turns it into a sleep-mode. Then,
after the sleep period, it wakes up and scans AP beacon signals.
It is well known that Wi-Fi sensing consumes considerable
amount of energy [3]. If the device is not under AP coverage,
it fails to detect an AP and sets a new sleep period.
Surrounding information. During the above sensing proce-
dure, each smartphone can measure its surrounding informa-
tions (e.g., cell ID, bluetooth ID and accelerometer). We assume
that bluetooth and accelerometer are implemented on every
smartphone and known to the Wi-Fi sensing module. Using
them, a smartphone can exploit three surrounding informations
(i.e., GSM cell ID, bluetooth and speed) on the energy-efficient
sensing. For cell ID information, we denote C as a set of GSM
cell IDs and C' € C as a GSM cell ID. In a similar way, we
denote B as a set of bluetooth IDs* and S as a set of user speed
range (e.g., slow, medium and fast). B € B is the condition
of bluetooth ID and S € S is a user speed range. We call an
element in sets C, B and S as an event.

B. Canonical form of Wi-Fi sensing algorithm

Throughout this paper, we consider a canonical form of Wi-
Fi sensing algorithms commonly used in Wi-Fi networks [1]—
[3]. Tt works as follows. 1) When the upload request is
arrived [5]-[7], the mobile first measures current surrounding
information such as cell ID, bluetooth MAC address and
speed. 2) Exploiting the correlation between each surrounding
information and previous Wi-Fi contacts in history data, the
mobile estimates the remaining time until the next Wi-Fi AP
contact as well as its randomness (distribution). 3) Based on the
estimation of the remaining time, the mobile sets the best sleep
period with respect to the energy-efficient sensing and goes
into the Wi-Fi sleep mode. Note that computing the best sleep
period depends on the objective and intelligence of algorithms,
which is not our focus. 4) When a mobile wakes up and fails
to detect an AP, it repeats the procedure from 2)’.

C. Remaining time

We consider a scenario where packet transmission requests
over Wi-Fi from delay-tolerant applications are uniformly dis-
tributed over entire time span. In this case, the randomness
(or uncertainty) of the remaining time from a random request
arrival to the encountering an AP is directly related to the
efficiency of sensing algorithms. For instance, if an algorithm
sets its sleep period as the expected remaining time, the
error in estimating the sleep period due to high uncertainty

4Since multiple bluetooth devices can be encountered at a same time, we
regard a list of bluetooth IDs in the vicinity as a condition B.



of the remaining time may incur consecutive sensing failures
with huge energy consumption. In another example where an
algorithm aims at minimizing loss of Wi-Fi contact opportunity
and the uncertainty of the remaining time is still high, the
algorithm tries to scan APs densely over time spending a lot
of sensing energy, since candidate values of future remaining
times tend to be widely and uniformly distributed under high
uncertainty. However, the lower uncertainty of remaining time
enables us to estimate more correct sleep period, which in turn
facilitates more efficient Wi-Fi sensing.

We denote X as a random variable of remaining time from
a uniformly sampled time to the next AP encounter in a Wi-
Fi AP on/off process. In addition, we define another type
of remaining time whose start time is uniformly sampled
only when a surrounding information is measured. This is
because, some surrounding information such as bluetooth ID
may not be always available on smartphones. We denote such
remaining time as X 4 where A is the set of the corresponding
surrounding information. Fig. 1 illustrates how to measure the
remaining time X, X¢ and Xp in a Wi-Fi on/off process.
In Fig. 1(a), X¢s are measured from a user’s Wi-Fi on/off
process and its associated cell id sequence. Since cell id can
be always available in each smartphone, X¢ is the same as X.
Note that when a mobile is under AP coverage, the sampled
remaining time is zero. In case of using bluetooth information,
smartphones do not always encounter the bluetooth devices but
sparsely encounter them due to small coverage of bluetooth
radio range. Hence, when we analyze the remaining time on
condition that there is at least one neighboring bluetooth device,
i.e., Xp from a real trace, we do not sample them uniformly
over entire time span but only when bluetooth devices are
measured as illustrated in Fig. 1(b).

IV. ANALYSIS TECHNIQUES

Comparing the impact of all surrounding informations is
rather challenging, since the contribution to a sensing efficiency
is not well-defined. To tackle this problem, we introduce three
notions - Information gain, Conditional bias and Conditional
normalize variance - that quantify the contribution of a sur-
rounding information.

A. Information gain

Information gain [14] is based on the concept of entropy.
Entropy is a measure of the uncertainty associated with a
random variable. The entropy of random variable X is defined
as H(X) =), P[X = x;]log P[X%mi, where P[X = z;] is
the probability that X = x;. In case where X is a continuous
variable (e.g., remaining time), X should be discretized to
X’ and compute H(X) = > . P[X' = z;]|log P[X,_mi)
our analysis, we divide the states of remaining time by 5
minutes, i.e., X' € {0,5mins, 10mins, ...}, and we regard
X’ = bmins if bmins < X < 10mins. The conditional
entropy of X given another random variable Y is H(X|Y) =
> PIY = y;]JH(X|Y = y;), where Y is a random variable of
a surrounding information. The information gain is H(X) —

H(X|Y) and the relative information gain is H(X)H(iw
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This metric indicates the amount of uncertainty reduction in
X from our knowledge (surrounding information) Y.

B. Expectation and Variance

We further develop two notions based on conditional ex-
pectation and variance of X. Since entropy is measured by
splitting continuous random variable X into discrete states, it
cannot capture the amount of time error in estimating X (i.e.,
X —E[X)).

Conditional bias. We define the conditional bias in expectation
as Y, P[Y = y]|E[X|Y =y;] — E[X]|. This measure
shows how much the estimated value conditioned on an event
y;j» E[X|Y = y,] is deviated from the expectation of X. If
the deviation from the expectation is large, the surrounding
information is significant in predicting the remaining time.
Normalized conditional variance. The normalized condi-
tional variance is defined as >, P[Y = y;[Var(X|Y =
y;)/Var(X). Variance not only represents the uncertainty in
estimating the remaining time, as in entropy, but also captures
the value of X. The decrement in variance can be interpreted
as the reduced estimation error by conditioning the surrounding
information. In particular, if the variance Var(X|Y = y;)
gets smaller by a condition y;, the condition can significantly
improve the accuracy of remaining time estimation as well as
the efficiency of a Wi-Fi sensing algorithm.

V. METRIC ANALYSIS: SINGLE INFORMATION

We use mobile traces of 38 participants distributed by Nokia
in Mobile Data Challenge (MDC) [10]. The traces contain
WiFi contact and surrounding informations such as cell ID,
bluetooth ID and accelerometer experienced by participants for
about one year. Using three analysis techniques in Section IV,
we evaluate the impact of surrounding informations on the
remaining time as well as the Wi-Fi sensing efficiency. Based
on those evaluations, we compare the contribution of each
surrounding information.

A. Remaining time on each condition

Conditional distribution. We depict the cumulative distribution
function (CDF) of remaining times for a randomly selected
participant (the user index is 4 in other figures.) in Fig. 2. In
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Figures 2(a) and (b), we depict remaining times conditioned by
encountered cell ID and bluetooth ID, respectively. Since each
participant encountered a lot of cells and bluetooth devices, we
pick the top five IDs sorted by the fraction of the contacts over
the total experiment time. In Fig. 2(a), the cell of top! (green
line) is conjectured to be a hot-spot area where Wi-Fi APs are
densely deployed, since the remaining time in this area is lower
than that in others.

Similarly, in Fig. 2(b), the bluetooth device of top! (green
line) may be located close to a Wi-Fi AP. From both cases, we
observe that the conditional distributions of remaining times
are quite different from each other.

Conditional bias. To measure the difference of each conditional
distribution, we compute the conditional bias in terms of
expectation as we defined in Section IV. Fig. 3 shows the
CDF of conditional biases measured from all participants. For
50% of participants, the expectations conditioned by both cell
and bluetooth IDs are biased more than 110% against E [X],
while speed shows only 30% bias. Thus, we address that both
cell and bluetooth informations are crucial in predicting a
remaining time while speed information is less important than
cell and bluetooth IDs. If we use the surrounding information
in estimating the remaining time, a scanning algorithm would
yield the biased sleep time according to given condition (e.g.,
shorter sleep time in top! cell ID and longer sleep time in top2
cell ID in Fig. 2(a)), which is more accurate than E [X]. Com-
paring conditional biases from cell and bluetooth informations,
we observe that the cell information deviates the expectation
slightly more than bluetooth. Yet, the conditional bias does not
represent how precisely we can estimate remaining time based
on surrounding information, because it does not contain the
second moment of the distribution, such as variance.
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B. Information gain of surrounding elements

Now, we analyze the uncertainty of remaining time which is
closely related to the efficiency of a Wi-Fi scanning algorithm.
Entropy. Figure 4 plots the distribution of conditional entropy
of remaining time for 38 participants. Recall that Xz is a
remaining time where a smartphone encounters at least one
bluetooth device. Comparing the entropy of X with Xp, the
uncertainty of a remaining time with a bluetoothe device is
much smaller than the uncertainty of X which is measured over
entire time span. In other words, the existence of a neighboring
bluetooth device irrespective of its ID is still closely related to
the AP contacts. For example, if we visit an office where Wi-Fi
APs are located, there may exist bluetooth mouses, keyboards
or headsets which can be measured by smartphones. In the
following section, we will analyze the uncertainty reduction
when we know IDs of each surrounding information.

The impact on X. Figures 5(a) and (b) show the information
gain of cell, bluetooth IDs and speed range on X. In the
set of bluetooth events, X which corresponds to encountered
bluetooth IDs, we add the bluetooth-off event to fairly compare
the impact on X with cell IDs. Information gains from cell IDs
are shown to be larger than that from bluetooth IDs for most of
participants. The average information gain of cell ID, bluetooth
ID and speed range is 17%, 6% and 7%, respectively. The small
information gain of speed range can be easily followed by the
result of its conditional bias in Section V-A, which shows much
lower deviation than cell and bluetooth IDs. The reason behind
the huge difference between cell and bluetooth IDs is that the
opportunity of meeting surrounding bluetooth devices occurs
sparsely, whereas the cell information is always available. In
fact, the fraction of time that at least one bluetooth device is
recorded over the total experiment time is 29% on average.
From this result, we conclude that the cell ID information is
much more effective in Wi-Fi sensing than bluetooth and speed.
The impact of cell and bluetooth IDs on X . Now, we focus
on the remaining times where there exists at least one bluetooth
device in the vicinity. We have already shown that X has less
uncertainty than X in Fig. 4. In addition, in Fig. 6, the average
information gains of cell and bluetooth IDs are 24% and 27%
respectively, which shows that both cell and bluetooth IDs
provide significant information gains on Xp. In other words,
using cell and bluetooth IDs rather than using only bluetooth
on-off events can reduce a huge amount of uncertainty in
Wi-Fi contact estimation. Due to the difference between the
radio ranges of bluetooth and cellular signals, cell information
provides coarse-grained location information, while bluetooth
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information provides fine-grained location information. Hence,
we observe that information gain of bluetooth on X is slightly
higher than cell ID for most participants. From this result,
we conclude that the information gain of bluetooth IDs on X
is low because the bluetooth information is sparse, and the
information gain of bluetooth IDs on Xp is significant.

C. Normalized conditional variance

So far, we have discussed on the uncertainty of remaining
time when each surrounding information is exploited. The
information gain, however, does not provide how much the
estimation error is, since entropy is based on discretized and
independent states. Recall that remaining time is divided into
discrete and independent states whose sizes are 5 minutes in
computing information gain. Thus, we further study the nor-
malized conditional variance for each surrounding information.

Figures 5(c) and (d) show the normalized conditional vari-
ances for all participants. Note that we consider only the events
of bluetooth IDs, rather than including the bluetooth off event
when conditioning bluetooth information. In Figure 5(c), the
normalized variances for all participants are 0.6, 0.55 and 0.92
on average for cell ID, bluetooth and speed respectively. Most
participants’ variances conditioned by speed are larger than that
of cell IDs and bluetooth IDs. This implies that the estimation
error based on bluetooth ID and cell ID can be much smaller
than that of speed. The variances of bluetooth ID is smaller
than that of cell ID, because the relatively small radio range
of bluetooth devices may provide more fine-grained location
information than cell IDs.

VI. METRIC ANALYSIS : MULTIPLE INFORMATION

In this section, we further consider the combination of
surrounding informations, i.e., cell ID-bluetooth, cell ID-speed,

normalized variance (z)

(d) normalized conditional variance

Single information case : (a) the information gain for each participant (b) CDF of information gains (c) the normalized conditional variance for each

bluetooth-speed, since they are jointly available in smartphones.

A. Information gain of multiple elements

We test three combinations (i.e., cell ID-bluetooth, cell ID-
speed and bluetooth-speed). When an algorithm considers the
combination of cell ID and bluetooth, the mobile maintains
the statistics of remaining time conditioned by both cell ID
and bluetooth in a training period.

Figure 7(a) shows the information gain of three combinations
of surrounding information on X. The average information
gain of ‘cell-blue,‘cell-speed’ and ‘blue-speed’ are 22%, 20%
and 6.2%, respectively. We first find that the gains of ‘cell-
blue’ and ‘cell-speed’ are much higher than that of ‘blue-
speed’ combination for most users As cell ID information
shows the highest gain in single information case, the com-
binations containing cell ID performs much better than other
combination. In Figure 7(b), we plot CDFs of information gains
for all combinations and single information with cell ID. The
information gain of cell ID is observed to be comparable to
those of all possible combinations, which means that the cell
ID is the dominant factor of information gain. Comparing the
information gain between ‘cell-blue’ and ‘cell-speed’, we also
observe that adding bluetooth to cell ID provides 1.6% higher
average gain than adding speed or using cell ID itself. However,
such a small benefit may not be sufficient to compensate the
additional overhead from bluetooth information (e.g., energy
consumption for measuring the bluetooth devices [1]), for a
energy-hungry device.

B. Normalized conditional variance

Figure 7(c) plots the normalized conditional variance for all
participants, whose averages are 0.58, 0.6 and 0.7 for ‘cell-
blue’, ‘cell-speed’ and ‘blue-speed’, respectively. Similar to
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the results in information gain, the normalized variances of
‘cell-blue’, ‘cell-speed’ and cell ID are almost the same, while
‘blue-speed’ shows higher variance. This again proves that the
benefit from multiple surrounding informations is insufficient.
To sum up, we conclude that using cell ID only is the most
efficient way in Wi-Fi sensing and adding bluetooth and speed
with the additional overheads (e.g., energy consumption [1] and
processing overhead) gives a small benefit.

VII. CONCLUSION

In this paper, we quantify the effectiveness of each sur-
rounding information (i.e., cell ID, bluetooth ID and speed) on
Wi-Fi sensing efficiency using three analysis techniques (i.e.,
conditional bias, information gain, and normailized variance).
We further investigate the impact of multiple informations in
Wi-Fi sensing and compare them in terms of the uncertainty
reduction in remaining time. Even though the combination
‘cell-blue’ shows the highest information gain in Wi-Fi sens-
ing, we conclude that, for most of users, using only cell
information is more efficient than using speed, bluetooth and
other combinations. This is because, (i) bluetooth information
is sparsely available compared to cell information, (ii) users’
speed ranges are not closely correlated to Wi-Fi contact events,
(iii) using multiple information does not provide sufficient gain
to compensate for the additional overheads.

Our analysis result is based only on the Nokia trace where
their Wi-Fi and bluetooth contact patterns can be biased.
Thus, our conclusion could be modified in the future when
bluetooth devices become more prevalent and Wi-Fi APs are
densely deployed. However, we believe that our findings are
widely applicable to the current wireless environment and our
analysis can provide a new engineering insights on the design
of advanced Wi-Fi sensing algorithms.
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