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ABSTRACT

Predicting the arrival and residence time of individuals at their rel-
evant places enables a plethora of novel applications. In this work
we first analyze the theoretical predictability of arrival and resi-
dence times and then evaluate the performance of eight different
residence time predictors. We show that these predictors tend to
underestimate the time a user will spend at her relevant places.
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1. INTRODUCTION

Places where a person “spends a substantial amount of time and/or
visits frequently” [2] are typically referred to as relevant places. On
a typical day, an individual might move from one relevant place to
the other and spend different amounts of time in each place. The
time spent at each place is referred to as residence time [6, 10, 11].
The times of the day at which a person arrives at or leaves from a
place are called arrival time and departure time, respectively [6, 10,
11]. The ability to predict when a person will arrive and how long
she will stay at a specific place is fundamental to enable a number
of applications like, e.g., smart heating control or urban naviga-
tion [5]. A number of algorithms that can perform these predictions
have been presented in the literature [6, 11, 9]. This poster abstract
presents our preliminary results on investigating both the theoreti-
cal and practical limits of the prediction performance achievable by
arrival and residence time prediction algorithms.

To investigate the predictability of arrival and residence times we
build upon recent work by Song ez al. [1]. In their work Song et
al. focus on the problem of predicting the next place that will be
visited by a person, provided that the sequence of places she visited
so far are known. In this context, they define the predictability 11
as the “upper bound that fundamentally limits any mobility predic-
tion algorithm in predicting the next location based on historical
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records” [7]. They also show how the value of II can be computed
from the entropy S; of the sequence of places visited by a per-
son — or user — ¢. Building upon this approach, we investigate the
predictability of arrival and residence times. Our analysis allows
to evaluate how close the performance of existing algorithms are to
the theoretical limits. In particular, we investigate the actual perfor-
mance achieved by eight algorithms in predicting residence times
and show that these values are underestimated by most algorithms.

2. PREDICTABILITY OF ARRIVAL AND
RESIDENCE TIMES

In this section we present the results of our analysis of the pre-
dictability of arrival and residence times. To this end, we first intro-
duce the mathematical notation and describe the setup of our study.
We would like to point out that we focus on the average predictabil-
ity of a user over a given period of time — as in Song et al. ’s work
[1] — and not on the momentary predictability as done in [8, 4].

2.1 Terminology and notation

We indicate with Lj, 7 = 1 : Np, the j-th relevant place of a
user ¢ and define the set £ = {L1, Lo, ..., Ln, } as the set of N,
places relevant to user i.! The places are ordered according to the
total amount of time spent at each place, e.g., L is the place at
which the user spends most of her time (L; is typically the home).
Locations visited by the user that cannot be associated to any rele-
vant place are assumed to be “irrelevant” to the user and are marked
using the symbol L,. We further define the mobility trace M'T of
a user ¢ as the sequence of places visited by the user during the
observation period T,,s. The observation period is thereby virtu-
ally divided in slots of length A,. For instance, if the observation
period is one day and the length of a slot is 15 minutes then the mo-
bility trace will be a vector of 96 elements, whereby the elements
of the vector take values in {£, L, }.

We further define the arrival time trace AT (L;) as the vector
containing the ordered sequence of arrival times at place L;. The
length of the vector is not fixed a priori since the number of ar-
rival events occurring in the mobility trace might vary from user
to user and from place to place. The values of the elements of
AT(Lj) are the indexes of the time slots at which arrival events
takes place. Using again the example above, in which T, = 1
day and A, = 15 minutes, the mobility trace has 96 elements.
The first element (index 1) corresponds to the time slot spanning
the period from 00:00 to 00:15 and the last elements (index 96)
to the slot from 11:45 p.m to 12:00 p.m.. Consider for instance
a user for whom L is the home and that during the observation

'To simplify the notation, we omit the use of the subscript i. The
quantities defined here however always refer to a specific user .
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Figure 1: Normal probability plot of arrival time and residence time predictability vectors.

period had come back home at 17:00, then went out again and re-
turned at 22:00. The corresponding arrival time trace for L will be:
AT (L,) = [68, 88]. Arrival time traces of two different places can
be combined: AT'(Lj, Ly) will for instance indicate the ordered
union of the two vectors AT(L; and AT(Ly). AT(L) indicates
the union of the arrival time trace of all L;, j = 1: Np.

Finally, we define the residence time trace RT (L;) as the vector
containing the sequence of residence times at place L;. The length
of a residence time is thereby indicated as the number of slots
the user stays at place L; before moving to another place. Using
again the example mentioned above and assuming the user stayed
at home between 17:00 and 18:30 and then again from 22:00 to the
end of the observation period (midnight), then: RT'(L1) = [6, §].

2.2 Evaluation setup

We run our analysis on data collected using smart phones in the
context of the Lausanne Data Collection Campaign (LDCC) [3].
The subset of LDCC data available for this study consists of records

collected from 38 users over about 1.5 years including a large amount

of location data. We use the Wi-Fi scans available in the data set
as input to the PlaceSense algorithm by Kim et al. [2]. This way,
we derive the set £ of relevant places for each user. We use the
same parameter settings as in [2] apart from the value of the sen-
sitivity parameter which is set to 30% as in [9]. We then derive
the mobility trace of each user using a A, of 15 minutes. The ob-
servation period varies depending on the amount of data available
for each user. Minimum, maximum, average, and median of the
observation periods is 86, 407, 203, and 189 days, respectively.

From these mobility traces we derive the vectors RT' (L), RT(L1),

RT(LQ), RT(Lg), AT([,), AT(L1), AT(LQ), and AT(Lg) We
compute the predictability of these traces obtaining one data point
per vector and per user. For instance, we compute the predictability
associated with the sequence of values in RT'(L) for each of the 38
users and combine these values in the predictability vector Il g ().
Similarly, we compute the predictability vectors [Tz (z, ), lIrT(L,)>
HRT(L3) . HAT(L), HAT(Ll)a HAT(LQ)’ HAT(L3)~ The predictabil—
ity of the arrival time traces and residence time traces is computed
using the same method used by Song ef al. to compute the pre-
dictability of mobility traces [1]*.

2.3 Evaluation results

Figure 1 shows the normal probability plot of the predictability
vectors g2y, Urr (L, ), HRT(L2)s IRT(L43)s AT () AT (L)

The results by Song ef al. are obtained under the assumption that
the sequence of locations is the realization of a stationary ergodic
process. This assumption is not likely to be fulfilled if long se-
quences (e.g., over several years) are considered. In our work,
however, we consider shorter sequences (e.g., several months).

M ar(Ly)» IaT(L,) and of the predictability of the mobility traces.
On a normal probability plot’, data showing a normal distribution
fits on a line. The x-axis indicates the predictability, computed
as described above. The y-axis indicates the probability that the
arrival time, residence time, or mobility trace of a user shows a
predictability equal or lower than the corresponding value on the
x-axis. For instance, the large "X’ marker in Figure 1 shows that
the residence time of 50% of the users has a predictability of 71%
or less (when all locations in £ are considered). This implies that
the prediction accuracy achievable by an algorithm that predicts the
residence time does not exceed 71% for about 50% of the users.

Figure 1 also shows that the overall predictability of the mobility
traces is higher than that of the arrival times and residence times.
This means that it is in general easier to predict the next location of
a user rather than the arrival or residence time at specific locations.
The curves in Figure 1 further show that the predictability of the
arrival times at location L1 is low (about 60%) and lower than the
predictability of the arrival times at locations Lo and L3. Further-
more, the predictability of the arrival times is in general lower than
the predictability of the residence times.

Figure 2 shows the Cumulative Distribution Function (CDF) of
the residence time at places L1, L2, L3, and L, averaged over all
users in the data set. The curve corresponding to L1 is significantly
“smoother” than the Lo, L3, and L. This indicates that the amount
of time users spend at L; varies more than the time spent at other
locations. This offers an explanation of the predictability values
observed above: the high dispersion of residence times at L; in-
creases the number of potentially predictable value, leading to an
overall lower predictability.
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Figure 2: Cumulative distribution function of residence time for
Ll, Lz, L3, and Lz.

3. PREDICTION OF RESIDENCE TIME

After exploring the theoretical bounds for the predictability of
users’ arrival and residence times, in this section we focus on the
accuracy achieved by existing, practical residence time prediction
algorithms.

3http: //www.mathworks.de/de/help/stats/normplot.html


http://www.mathworks.de/de/help/stats/normplot.html

5 [ Exact
5 g < 15 min
2 % [15-30 min
3¢ [[130-60 min
58 i-2h
c5 [J2-6h
£s [I>6h
o]
w o

o

a

LIO(1)
MarkovCDF O(1)

MarkovCDF-TA O(1) LI O(2f) MarkovCDF-TA O(2f)

LD O(1) LDO(2f)  MarkovCDF O(2f) Best

(a) Correct and underestimated residence time predictions.

Fraction of duration
prediction overestimation

100%,

[ Exact
M< 15 min
[ 15-30 min
[[130-60 min|
C1-2h
[J2-6h
[]>6h

@
<
*

D
3
*

N
5
*

n
IS
*

I
*

LIO(1)
MarkovCDF O(1)

MarkovCDF-TA O(1) LI O(2f)

MarkovCDF-TA O(2f)
MarkovCDF O(2f)  Best

(b) Correct and overestimated residence time predictions

LD O(1) LD O(2f)

Figure 3: Fractions of residence time under- and overestimated predictions.

3.1 Prediction algorithms

We consider eight different residence time predictors selected
from the literature [6, 11]. We use the location-dependent (LD),
location-independent (LI), MarkovCDF, and MarkovCDF time-aided
(MarkovCDF-TA) predictors. The Markov 1st O(1) and 2nd O(2)
order location-dependent (LD) predictor with the fallback option
O(2f) are described in [6, 11] and are used without further modi-
fications. As a LI predictor we use the LD predictor by removing
the explicit location dependency. For the predictors MarkovCDF
and MarkovCDF time-aided (i.e., the residence time depends on
the arrival time), we use the implementations proposed in [11]. We
further consider a fictive algorithm — dubbed Best — which always
takes, among the predictions computed by the other algorithms, the
one known to result in the smallest prediction error. We use the
same notation and data as described in Section 2 as well as the res-
idence time traces RT'(L;) (RT (L) for the LI predictor).

3.2 Results

We use the algorithms described above to predict the residence
time of each user at the locations L;, 7 = 1,..., Nr. We compute
the average prediction error of each algorithm and split the results
into correct predictions, overestimation, and underestimations, i.e.,
zero, positive, or negative error values. Figure 3(a) shows the per-
centage of both correct and underestimated predictions (the per-
centage is meant over the total of correct and underestimated pre-
dictions) for each of the nine considered algorithms. Figure 3(b)
shows the same data when along with correct also overestimated
predictions are considered.

Apart from the Best algorithm — which, as expected, always
shows the best performance — all the predictors exhibit similar per-
centages of prediction error ranges when the error is underesti-
mated. The LI O(1) predictor however generates the highest num-
ber of underestimated predictions. Overall, the number of overesti-
mations with respect to the correct predicitons is much smaller than
the number of underestimations. In particular, location-independent
Markov 1st order predictor together with the fictive Best approach
produce the smallest amount of overestimated predictions.

This allows us to conclude that the considered residence time
predictors tend to underestimate the time a user will spend at the
location L;. Further investigations on whether this consideration
can be generalized and on what are the reasons for this behavior
are part of our future work.

4. CONCLUSIONS

This poster abstract describes preliminary results on the analysis
of predictability of arrival time and residence time and on the eval-
uation of the actual performance of residence time predictors. We
observe that arrival time traces have an overall lower predictability
than residence time traces and that the higher the amount of time

a user spends at a specific place, the lower is the corresponding ar-
rival and residence time predictability. Our analysis of the perfor-
mance of residence time predictors shows that most predictors tend
to underestimate the time a user will spend at her relevant places.
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