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Abstract. The technological advances in smartphones and their widespread
use has resulted in the big volume and varied types of mobile data which we
have today. Location prediction through mobile data mining leverages such
big data in applications such as traffic planning, location-based advertising,
intelligent resource allocation; as well as in recommender services including
the very popular Apple Siri or Google Now. This paper, focuses on the
challenging problem of predicting the next location of a mobile user given
data on his or her current location. In this work, we propose NextLocation -
a personalised mobile data mining framework - that not only uses spatial
and temporal data but also other contextual data such as accelerometer,
bluetooth and call/sms log. In addition, the proposed framework represents
a new paradigm for privacy-preserving next place prediction as the mobile
phone data is not shared without user permission. Experiments have been
performed using data from the Nokia Mobile Data Challenge (MDC). The
results on MDC data show great variability in predictive accuracy of about
17% across users. For example, irregular users are very difficult to predict
while for more regular users it is possible to achieve more than 80% accuracy.
When compared against existing results, our approach achieves the highest
predictive accuracy. Finally, we propose an alternative business model for
mobile advertising that uses NextLocation framework.

1 Introduction

Next place prediction is a particular problem of location prediction where the
challenge consists of predicting the next location of a mobile user given his current
location [15, 11]. Most existing work models next place prediction as a classification
problem, where spatial and temporal data is used for training.

However, issues such as the integration of other rich contextual data, available
on smartphones nowadays such as accelerometer, bluetooth and call/sms logs
have not been seriously investigated. In addition, most existing approaches focus
mainly on the classification problem assuming the data in a centralised server while
other problem specific issues related to user behavioural changes, privacy, data
management and scalability have not been explored in-depth.

To address these issues in this paper, we propose NextLocation - a novel inte-
grated framework for the next place prediction problem - that predicts the next
location using only current location and contextual data for each mobile phone
user. NextLocation learns an “anytime” classification model which incorporates
past data to predict the next place in an incremental manner. It enables greater
personalisation and privacy while bringing the whole learning process on-board
the mobile device. Moreover, in addition to spatial and temporal information, the
proposed approach combines other context information available on the mobile
device. The main advantages of the NextLocation for next place prediction are:

– Privacy-preserving as this is a key user need to be in control of the their personal
mobile phone data [13, 7]. Using NextLocation for mobile data mining, personal
mobile phone data is not shared with an external party without permission.



– Reduced communication overheads in terms of bandwidth as well as battery
drain since local processing is usually less expensive than wireless data transfer
[18].

– Dynamic instead of static model building facilitates the model adaptation so it
reflects up-to-date user behaviour.

– Allows online estimation of personalised next place predictive accuracy.
– Enables an alternative business model where advertisement providers can push

content that is relevant to a certain location and the user will only receive it
when is about to visit it.

The rest of the paper is organised as follows. The following Section reviews the
related work. Section 3 presents next place prediction as a classification problem,
which is followed by a detailed description of the feature engineering from Nokia
Mobile Data Challenge (MDC) in Section 4. The proposed approach for next place
prediction (NextLocation) is presented Section 5. The experimental setup and
results are discussed in Section 6. In Section 7, we propose an alternative business
model for mobile advertising that uses the proposed approach. Finally, in Section 8,
conclusions of this work and future work are presented.

2 Related Work

Location prediction assumes that mobile sensor observations from wireless local
network (Wi-Fi), Global System for Mobile Communications (GSM), Global Posi-
tioning System (GPS) are available. The prediction task consists of using such data
to know and understand the user’s current location. The research on mobile user
visiting behaviour, can bring additional value to different domains, such as mobile
advertising [1], resource allocation [22] and disaster relief [23].

[19] proposed a general model for semantic trajectories, and introduced the
concept of stops and moves. The locations of interest are the locations where the
user stops for a period of time and the semantic trajectory represents the visiting
history of semantic places (for example, work, home, restaurants). [16] proposed a
clustering-based approach to discover the interesting semantic places in trajectories.

In this work, we are interested in a related but more challenging location prediction
problem, which aims to predict the next location without knowing in advance the
readings from future sensor data. In general, the mobile data used for the next
location problem consists of the historical information about the visit sequences
and associated context information (for example, timestamps, accelerometer,
bluetooth and call/sms log) from these visits.

There is extensive research on the problem of predicting future locations. Most
of such work creates a model based on frequent patterns and association rules from
a history of user/collective trajectories as an ordered sequence of locations that are
timestamped [15]. Other sequential learning models such as Hidden Markov Models
[14], Conditional Random Fields [17], Particle Filter [4] have been also applied to
this problem. However, the problem addressed in this paper is different because,
for any user, the prediction of the next location assumes only knowledge about
the current location (without data about previous locations). This limited/reduced
history makes our problem more general as it is not unusual to have gaps in mobile
sensor data. Gaps refer to significant time periods where the mobile phone is not
collecting data (for example, when the mobile phone has run out of battery).

Recently the Nokia Mobile Data Challenge (MDC) released a large dataset for
research and one of the dedicated tasks consisted of next place prediction [11]. From
this MDC challenge, several approaches were able to predict the next place with
high accuracy [3, 21, 8, 12, 20]. The proposed approaches focused on learning a model
for each user which captures the spatio-temporal trajectory of user visits. Great
effort was dedicated to feature engineering for each approach.



Still, two main issues remain relatively unexplored in the literature of next place
prediction. First, privacy issues arise from using such data, although there are
efforts in the direction of anonymization [11]. Second, rich context information can
be exploited for personalisation. In this paper, we try to address these issues by
proposing a mobile data mining framework that does not require the raw data to
be disclosed and that the model built is highly personalised.

3 Next Place Prediction: Definition

First let us assume we are interested in finding the next destination of a single user
when (s)he is still at the current location. It is easy to generalise from this problem
to multiple users. Consider L = {l1, ..., ln} to be the set of values of visited (for
at least a certain amount of time) spatial locations, the T = {t1, ..., tn} to be the
set of timestamps and C = {c1, ..., cn} to be the set of context information where
ci represents itself a set of attribute value pairs that are in available at ti. This
context information is usually the data available in the user’s mobile phone and can
be collected from the accelerometer, bluetooth, call/sms log, wlan (Wi-Fi) or
phone status (consider that for some users charging the phone is only performed
at certain locations).

Given a series of historical visits to different locations in the past, that constitutes
the data available for training H = {(L,C, T )} = {(l1, c1, t1), ..., (lk, cj , tj)} and
the context C = ctx(ti) at T = ti of the latest location L = loc(ti), the next
place prediction problem can be formulated as finding the most likely location

argmaxl∈L

(
p(Lnext = l|T = ti, C = ctx(ti), L = loc(ti))

)
Please note that the prior only considers the current location and not the past

location or a sequence of previous locations as is usually modelled using Hidden
Markov Models (HMM) [14] or Conditional Random Fields (CRF) [17]. The reason
for this is simple, it is not always possible to have a sequence of visits without gaps,
therefore, we prefer to define the more general problem where we are able to make
a prediction if we at least know the current location.

In Section 6 we will describe in detail a particular instantiation of the problem, the
feature engineering process, and report and discuss the results of our experiments
with real data.

4 Mobile Data Challenges

In this section, we discuss the challenges that come from collecting mobile data for
the next place prediction problem. Understanding the whole data process and its
requirements allowed us to design and explore the alternative solution proposed
in this paper. The following subsections describe what we consider some of the
challenges that need to be addressed to transform the data available in the mobile
phone into a format that can be used to induce a model useful for next place
prediction as defined previously.

Location detection The raw data of each user’s location is usually estimated
based on GPS and Wi-Fi that is then transformed into a semantic place which
captures most of the mobility/location-based information without including the
actual geographic coordinates/access points. Moreover, information from social
networking services that support location, such as Four-Square, Facebook or Google
Latitude already allows the user to ‘check in’. These services already include
automatic location detection which can be leveraged to create or enrich the temporal
series of semantic locations, that we require for next place prediction. Therefore,



this paper will not focus on semantic place (for example, place tagged as home,
workplace, or transportation place) prediction but on next place prediction that we
formally define in Section 3.

User Specificity Next place prediction is a user specific problem as the set of
locations visited is personal and even if this set might overlap among different users
the trajectory of user visits to different location is most likely unique. It is therefore,
hard or impossible to accurately learn joint models over multiple users as can be
performed in other classification tasks such as activity/speech recognition. The user
specificity challenges motivates the usage of a personalised model.

Evolving data The user movement behaviour might change over time. For
instance, changing house/city/country/workplace can have a profound impact on
the most recent movement pattern. Therefore, we propose that modelling should
be adaptive and the usage of an incremental anytime model, that incorporates
new information and forgets old outdated information. Moreover, the model should
incorporate novel locations seamlessly.

Sparse and missing data It is possible to have missing data or gaps in the
sequence of visits to particular locations. This is the main reason that led us to
formulate the next place prediction problem considering only the current location
and not a sequence of past locations that precede the current location in time. This
challenge is related with model evaluation as the number of observations (evidence
that from location li the user moved to location lj) and how representative they
are of user mobility patterns will have a high impact on the accuracy of the learnt
model.

5 Next Place Prediction: NextLocation

The framework proposed in this paper, that we call NextLocation, models next
place prediction as a classification problem. However, instead of executing the
traditional learning process (i.e., data collection, data transfer, model building,
model deployment), we create an integrated framework that is executed on the
mobile device itself.

One key innovation of NextLocation is that it preserves user privacy as it allows
the building of a model for next place prediction without disclosure of private user
data. Such framework gives the user control over who can use this model results
(i.e., the next location predictions) without disclosing the real locations visited and
associated context data.

Figure 1 illustrates NextLocation learning process and its components. We can
observe that the pre-processing component, anytime model, and accuracy estimator
play a central role in the proposed framework. Each of these components perform
the following:

– Pre-Processing - the raw data must be pre-processed/transformed for next place
prediction. Here, the location data from a visit is enriched with other context
information. The pre-processing component only requires to keep a short term
window of data. When updating the model, the data represents the previous
visit location and its context information, and the target variable (to predict)
is the current location.

– Anytime Model - must be able to integrate new information as it is available
(such as new visits) and must be also able to predict the next location. Any
classification algorithm that to learns incrementally can in principle be used in
this component to create/update the anytime model. Moreover, these algorithms
are light-weight and can be executed using the computational resources usually
available on current smartphones. However, it is beneficial if the algorithm can
adapt the anytime model when there is evolution in the observed data.

– Accuracy Estimator - comparing the anytime model prediction with the actual
destination allows to keep an estimate of next place prediction accuracy.



Past data can be discarded once it is incorporated into the anytime model,
consequently, the memory consumption of the NextLocation learning process is very
low compared to approaches that require to collect all data and process it in batch
mode.

Fig. 1: NextLocation: framework overview

Adapting the model Given the issue of data evolution it is important to adapt
the anytime model. For instance, adapting the model to a new living environments
that causes a change in the user mobility patterns. In such situations it is likely
that the most recent past represents the activities of interest and less importance
should be given to older records that represent past behaviour. The simplest
solution to achieve model adaptation is that the anytime model represents only
the most recent records that belong to a sliding window of fixed size or weigh the
records accordingly to their age. In our experiments we preliminarely explored more
sophisticated approaches such as drift detection (detect and adapt to changes in the
data) but we plan to study the adaptation issue in more detail in further research.

On-line Model Evaluation As part of the proposed framework we keep an
estimate of the anytime model accuracy online. Here we briefly formalise the
evaluation procedure. The prequential-error [6] is computed based on an accumulated

sum of a loss function L between the anytime model prediction l̂i and the location
that is visited next li. Note that the prequential error estimated over the entire
learning process can be strongly influenced by the first part of the error sequence,
where only a small number of records has been processed by the learning algorithm.
Therefore, the estimate of the model accuracy can also be represented over a sliding
window or using fading factors instead of the whole learning process.

6 Experimental evaluation

This section describes the experiments that were performed to evaluate NextLocation
approach feasibility and accuracy. The data used in the experiments has been
released for the Nokia Mobile Data Challenge (MDC) [11], and was collected from
the smartphones of almost 200 participants over the course of over one year in a
real world environment.



There was a significant effort into data transformation/feature engineering. We
used a total of 70 features including: 11 temporal features, 8 accelerometer features,
2 bluetooth features, 23 calllog (call/sms) features, 20 visit related features, 6
system features.

6.1 Nokia MDC Dataset

The MDC data was collected on a 24/7 basis over months. In the Dedicated Track of
this competition, which included the task of next place prediction, the raw location
data is transformed into the sequence of visits to symbolic places.

The users in MDC data are sampled into three separate sets. The training data
set (called setA) consists of mobile phone data collected from 80 persons during a
period of time varying from a few weeks to two years. The unseen data for each
participant in setA is used to build the test data set (called setC), where the unseen
data corresponds to the continuation of setA (in time). The setC ground truth was
never released after the challenge. However, the a validation set (called setB)was
released and is used to evaluate the results. The validation set contains visits that
were were randomly chosen from the last part of setA (in time). The validation
set was built by filtering data in setA with time intervals corresponding to the
randomly chosen visits.

For the MDC challenge, participants were free to estimate the context from
all the available data within a determined time interval (i.e., current location
corresponding to a visit in a place). The visits were timestamped with the start/end
point entering/leaving the location visited. Trusted visits (provided with raw features
in the form of trusted start, trusted end in the visit sequence tables) are more
reliable than untrusted visits. For this task only visits where the mobile user stays in
that location for 20 or more minutes are considered. Moreover, information about if
the transition for that visit location is to be trusted or not is available (i.e., reliable
sensor data).

The MDC database has 5 main types of data: environmental, personal, phone
usage, phone status, and visits data. This data is represented across 18 tables, with
more than 130 raw attributes, and is approximately 50 GB in size. Our focus for
this paper is on Task 2, using only the labels for next place prediction. A detailed
description of the data collection campaign is available in [11].

A significant challenge that we observed when working with this data, was the
fact that while some users had highly regular patterns of movement, for some users
there was significant variability. Clearly, the former mobile users have a higher
predictability of movement, than the latter. This is further compounded by the fact
that some mobile users have significantly more data than the others (though it must
be said that more data does not necessarily in this case imply higher predictability).

6.2 Data transformation

In the MDC dataset the transformation of raw location data into a sequence visits
(each visit is more than 20 minutes as provided in the challenge) to symbolic places
was already processed. The sequence of visits is timestamped is the key data for
next place prediction and is similar to what has been proposed in [19]. However,
other context information that might be used improve the predictive performance
of needs to be derived from the raw data associated to those visits. In the our
experiments we ended up with 70 features. In this section we describe our feature
extraction process. We would like to note that these features were all calculated
per user and using a sliding window approach, this is, the raw data is processed
locally and then discarded without the need to keep all the information in main



memory. A frequency table with statistics about the different locations is also kept
to calculate more sophisticated features (such as from bluetooth).

Temporal features From the start and end timestamps of a particular visit
several temporal features were generated. The duration of the visit, the day of
the week, weekend or workday, period of the day in two different sets: (AM/PM) ;
(morning, afternoon, evening, night). hour of the day (0h-24h). These features can
be calculated from both the start and end timestamp.

Phone status features Several types of data about the phone status and the
phone operating system was recorded. From this data we derived features to capture
the phone status that was characteristic of the visit to a particular location. The
most frequent profile (general, silent), the most frequent ring tone used (normal,
silent), minimum and maximum battery level, phone charging status, maximum
inactive time.

Phone usage features From the phone usage, we consider the information
available in the call log, in particular, the most frequent number. We expect that
this might help us to capture situations where our next destination is highly
correlated with receiving a certain call or text. Usually, before a mobile user leaves
the current location for the next destination, the last call or SMS is quite predictive
of the next destination (for example, the mobile user calls the person who(s) he
will meet later in the next destination). The features generated where the most
frequent number: overall, in a call, in a text, in an incoming/outgoing overall, in an
incoming/outgoing call, in an incoming/outgoing text, missed call, and the same
features calculated but instead of the most frequent the last observation (e.g., last
number called, last text sent ). From the last call we calculate its duration and if it
is an incoming or outgoing call. In addition, we calculate the number of: missed
calls, incoming/outgoing calls, incoming/outgoing texts.

Environmental features For the environmental features we explored data from
4 different sensors, accelerometer, bluetooth, wlan and gsm. However, since the
data is anonymized per user it was impossible to capture information across users.
For instance, if two users are in contact with the same GSM tower or Wi-Fi access
point the hashed values or the corresponding cell tower ID and access point mac
address will appear different despite being the same physical object. Therefore, we
used information that is personalised and for which the hash key correspond to
the same object that might capture some useful information to the mobile user
destination. As environmental features we used:

– bluetooth: Similarly to the motivation behind the features we have generated
from the call log we tried to understand if there for a certain bluetooth device
nearby that influences the next place. We generated one feature that requires
some statistics about the current location and observed bluetooth mac addresses
for the location. The process tries to calculate the likelihood a certain mac
address in the current location is associated with a particular destination.

– accelerometer: Accelerometer features that might help to characterise the
activity at a given location [9]. This captures a different type of activity compared
to the phone status inactivity feature. For instance, there might be situations
with no interaction with the phone but since the phone is being carried by
the mobile user the accelerometer registers movement. In other situations, the
accelerometer registers no movement at all. The features used are: the minimum,
maximum, average and standard deviation of the 3 axis accelerometer vector
norm captured during the whole visit period and during the last 10 minutes.

Frequency tables Finally for situations where the amount of data of a given
user is scarce, we keep a simple frequency table of the most frequent destination
and the most frequent destination given the possible temporal features.



6.3 Techniques

In this work, we evaluated different classification techniques to compare across the
different models built. In our research, we have employed WEKA [10], a popular
suite of data mining software, to benchmark different classification techniques. We
have also explored Massive Online Analysis (MOA) [2] - an open-source framework
for data stream mining written in Java. Related to the WEKA project [10], it
includes a collection of machine learning algorithms and evaluation tools (e.g.,
prequential-error [6]) particular to data stream learning problems.

Using Weka We performed evaluation of the predictive accuracy using the
validation set on the training data. We decided to explore several classification
algorithms and our preliminary results indicated a slightly superior performance
of the J48 algorithm for decision tree induction. However, our understanding
while working with on this problem is that the quality of the instances (i.e.,
observations) and features that describe them are the most important factors
to achieve high predictive accuracy. Consequently, we studied feature selection and
instance weighting.

– Feature Selection - As final step after feature engineering, we performed feature
selection. This involved using well-known techniques for identifying/ranking
which features have the best ability to predict the next location based on the
subject’s current location.
We select dynamically for each user the best features (out of the 70 that we
constructed/used) using two well-known feature selection techniques from the
WEKA. First, information gain and second, cross-validated best feature subset
evaluation (CfsSubsetEval). Therefore, the set of features that is selected for each
user is different according to their productiveness for that given user/context.

– Instance Weighting - Another issue that we are faced in next place prediction is
the quality of the observations, this is, the uncertainty associated with them
(due to sensor reading uncertainty/unavailability) and also how relevantly they
represent the user mobility patterns. Since the data has information about the
uncertainty (a flag associated with a trusted visit, start and end time), we
decided to explore this information and perform instance weighting in function
of the confidence for their trusted start and end time.

Using MOA In MOA [2] we preliminarily explored different algorithms and
obtained good results with Hoeffding Trees. Because of the data evolution issue
described in this paper, we decided to explore with a drift detection technique
(SingleClassifierDrift). This algorithm implements a well known drift detection
method proposed in [5]. Because of the good preliminary results with Hoeffding
Trees it was used as the base learner parameter, using other Hoeffding tree classifier
variations we obtained similar results.

6.4 Results and discussion

The results presented in this section measure the accuracy on the validation set.
This allowed us to compare our approach to existing published results. In Figure 2,
uid stands for user ID and it does not run in sequence. We can observe that the
accuracy for each user on task can have high variance. The results also showed that
some more irregular users are very difficult to predict while for some regular users
is possible to achieve more than 80% accuracy. We should also note that the some
results are biased negatively as these users have a very short history of visits.

Feature Selection In Table 1, we can see the results of our experiments with
feature selection. We can observe that in general most features seem relevant to
the next place prediction. Consequently, since the feature selection process was



Fig. 2: Predictive accuracy across users

performed per user we make sure that the selection process was personalised. We can
see that keeping almost all the 70 features (92%) seems to give the best results. If the
set is reduced further a minor decrease in predictive performance is experienced. This
finding is interesting as it shows that our effort to build sophisticated features can
bring additional predictive accuracy to next place prediction. As feature selection
is not so useful for our already predictive features, the results from the subsequent
experiments use all the features (without any feature selection).

NFeat% 35% 71% 85% 92% 100%
Accuracy 58.1% 58.8% 59.51% 59.54% 59.4%
WeightT 0.0 0.25 0.50 0.75 1.0
Accuracy 57.7% 59.2% 59.3% 59.1% 59.4%
WeightS 0.0 0.0 0.5 0.5 0.7
WeightE 0.0 0.5 0.5 0.7 0.5
Accuracy 58.5% 59.4% 59.57% 59.48% 59.6%

Table 1: Accuracy with Feature selection and Instance Weighting

Instance Weighting In Table 1, we can see the results of our experiments with
instance weighting based on trusted transition. The weight assigned to the instances
in case they belong to a trusted transition is determined by WeightT . We can
observe that the results are similar among the experiments that still consider the
trusted transitions. However, not including weights for trusted transition instances
(WeightT = 0.0) will have a significant impact on performance. This can be a
consequence of the high number of untrusted transitions (42% of the data or 21356
visits) - in general, more data will be helpful.

In Table 1, different weights are assigned to the transactions based on the trusted
start/end flag. Again not including untrusted transitions affects the performance
as less instances are available for training. The combination of weights on trusted
start time WeightS = 0.7 and weights on trusted end time WeightE = 0.5 gives
the best overall results on the validation dataset.

Comparing with Nokia MDC best results Here we compare our best re-
sults (OurBest uses all 70 features, has WeightT = 1, WeightS = 0.7, and
WeightE = 0.5) with the best results published. Table 2 summarises the best
predictive accuracies of 5 other methods (the first three from winning teams). We
should note that the ones with asterisk (*) indicate that the reported predictive
accuracy was using a different evaluation strategy, and their results have likely over-
fitted the training data. This happens in results with a Artificial Neural Network
(ANN) proposed in [3] (60.83% in validation set with a significantly lower 56.22%



Method Validation Competition
ANN [3] 60.83%* 56.22%
SVM [21] 55.69% 52.83%
HPHD [8] 50.53% 52.42%
Ensemble [12] 55.3% -
DecisionTree [20] 61.11%* -
OurBest 59.6% -

Table 2: Comparision with Nokia MDC results

in competition’s test set) and in the J48 DecisionTree approach proposed in [20],
where the authors use their own test set as opposed to the proposed validation set
for the Nokia MDC.

From the results that can be comparable (without the asterisk) we can see that
our best results achieve the highest accuracy. This may be due to the large effort
put in feature generation as not a big difference was observed among different
techniques.

Online learning Here we report experiments with in MOA that its SingleClas-
sifierDrift algorithm. Evaluating for the same validation set we obtained an average
accuracy of 42.22%. Again for some more predictable users it was possible to get
close to 80% while for one user was not possible to predict anything. When we
compare the results with our best batch results in Figure 2, the batch approach
achieves better accuracy overall but that for a small amount of users the results are
better with the incremental approach. The batch approach is on average (per user)
17% better than the online approach. Still, when comparing the accuracy with the
published results for this dataset, the online approach is still very competitive.

7 Alternative mobile advertisement model

The approach proposed in this paper, NextLocation, can be used to support an
alternative model advertisement model that we describe in this Section. One of the
main ideas in the proposed model is that content is more relevant to a user for a
certain location at a certain time. For instance, a user might be interested in dinner
promotions before he is about to visit a certain mall at dinner time.

The alternative model consists of 3 parties. The users that are the target of
mobile advertisements, the telco provider to which the users subscribe, and the
advertisement providers that want to push advertisement content to mobile phone
users. Figure 3 illustrates the proposed advertisement model. On the center of the
figure we can see the telco provider that receives content C(l, t, d) which in this
illustrative model is associated with a location l, time t, and duration d. More
meta-data can be used to describe the content (i.e., type) but for simplicity we
limit this description to space and time. The users can share with the telco provider
N(l, t, a) which is associated with the next location l at time t and estimated
accuracy for that prediction a. The telco provider serves as a broker between the
users and the advertising providers. The main advantages of the proposed alternative
advertisement model are as follows for each of the involved parties:

– Users - can receive target advertisement without disclosing sensitive data (only
the predictions are shared) in a transparent way. There might be an incentive
to the user from the telco company if the user’s visits to places are highly
predictable.

– Telco - the telcos can push relevant content, such as SMS advertisements, that
is highly relevant to the mobile users’ spatio-temporal context and thus offer
a better service to the advertisement providers. In addition, can send more
relevant SMS advertisements, if they know where users might move next.



– Advertising providers - offers an additional advertisement channel (other than
mobile applications and websites) with significantly higher click-through or
conversion rate for their user targeting.

As a practical and novel application of NextLocation, we plan to explore this
idea further and discuss it with telco providers for feedback from the industry
standpoint.

Fig. 3: NextLocation: advertisement model

8 Conclusions and Future Work

In this paper we propose the NextLocation framework, that is a mobile data mining
approach to the next place prediction problem. The main advantage of NextLocation
is that it is a privacy-preserving solution that fully runs on the mobile device itself.
Sensitive data about the user locations and context are not disclosed. Moreover,
NextLocation uses an adaptive anytime model which enables adaptation to changes
in the user mobility patterns. Finally, it keeps an estimate of the anytime model
accuracy in real-time.

This paper also reports on our experiments analysing data from the Nokia
Mobile Data Challenge (MDC). The results on MDC data show great variability in
predictive accuracy across users, where irregular users are very difficult to predict
while for more regular users it is possible to achieve more than 80% accuracy. To
the best of our knowledge, our results achieve the highest predictive accuracy when
compared with existing approaches. Furthermore, we proposed an alternative mobile
advertising model that can be implemented using NextLocation.

In future work, in line with the last experiments on online learning conducted
in this work we plan to develop an online algorithm particularly designed for next
place prediction. We are also in contact with telcos to discuss the implementation
of the proposed alternative advertisement model.
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