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ABSTRACT
Several algorithms to predict the next place visited by a user
have been proposed in the literature. The accuracy of these
algorithms – measured as the ratio of the number of cor-
rect predictions and the number of all computed predictions
– is typically very high. In this paper, we show that this
good performance is due to the high predictability intrin-
sic in human mobility. We also show that most algorithms
fail to correctly predict transitions, i.e. situations in which
users move between different places. To this end, we ana-
lyze the performance of 18 prediction algorithms focusing
on their ability to predict transitions. We run our analysis
on a data set of mobility traces of 37 users collected over a
period of 1.5 years. Our results show that even algorithms
achieving an overall high accuracy are unable to reliably pre-
dict the next location of the user if this is different from the
current one. Building upon our analysis we then present a
novel next-place prediction algorithm that can both achieve
high overall accuracy and reliably predict transitions. Our
approach combines all the 18 algorithms considered in our
analysis and achieves its good performance at the cost of a
higher computational and memory overhead.
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INTRODUCTION
Predicting human mobility has long been a topic of inter-
est for both researchers and practitioners. Models of human
mobility have been used for planning urban development,
to study the spread of diseases, or to predict the number of
calls a telephone station must be able to carry [21]. Recently,
human mobility models have also been considered to sup-
port a plethora of new applications, like urban navigation or
home automation. The ability to predict when a resident will
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arrive at home allows for instance to automatically control
the home’s heating system [10]. Similarly, reliably predict-
ing the next place a person will visit (e.g., the grocery or
the gym) allows to provide her with convenient information
(e.g., bus timetables or advertisements) [19].

Several algorithms to predict the next pace that will be vis-
ited by a user have been presented in the literature [10, 23,
1, 2, 4, 9, 11, 19, 20]. Many of these next place predic-
tion algorithms estimate users’ future whereabouts using as
input the sequence of locations visited by the users in the
past. These sequences – to which we also refer to as mobility
traces or historical data – can for instance be captured lever-
aging users’ mobile phone as location sensors [12]. Coarse-
grained mobility traces can also be obtained from phone call
records, whereby the position of the base station to which the
phone was associated during the call represents an estimate
of the position of the user [21].

While different next place prediction algorithms may use
different features of the historical data to compute their pre-
dictions, their performance is typically measured in terms of
prediction accuracy. The prediction accuracy is computed as
the ratio of the number of correct predictions and the num-
ber of all computed predictions. An accuracy of 80% thus
indicates that in 80% of the cases the algorithm predicted
the future whereabouts of the user correctly. Recent studies
have shown that humans tend to spend most of their time in
few important places. For instance, humans spend on av-
erage 60% to 65% of their time at home and between 20%

and 25% at work (or school) [15]. Thanks to this regular-
ity of human behavior, a naı̈ve algorithm that predicts the
next location to be equal to the last observed one will thus
easily achieve average overall accuracies equal to or higher
than 80%. However, the same algorithm will always make
incorrect predictions when the user moves between two dif-
ferent locations (e.g., from home to the office or vice versa).
The applications mentioned above, however, must be able to
know when transitions between places will most likely take
place. The behavior and performance of the application is
indeed strongly influenced by the occurrence of such tran-
sitions. For instance, an automatic heating system will per-
form poorly if transitions of the user from and to the home
are not predicted correctly most of the time.

In this paper, we show that even algorithms that achieve high
prediction accuracy fail to reliably detect transitions. To sup-



port this claim, we analyze the performance of 18 prediction
algorithms. We run our analysis on a large data set of hu-
man mobility traces that have been recently made available
to the public [12]. We thus argue that the performance eval-
uation of next place prediction algorithms should explicitly
consider, along with the prediction accuracy, also the abil-
ity of the algorithms to predict transitions between places.
Building upon the results of our analysis, we introduce a
novel next place prediction algorithm that combines the pre-
dictive power of all the considered 18 approaches. We let
these 18 approach run in parallel so that each computes its
own prediction. Our algorithm, called MAJOR, predicts the
user’s next whereabout from the 18 individual estimates us-
ing an heuristic method based on majority voting. The pre-
diction accuracy of our algorithm is comparable to that of
state-of-the-art approaches. MAJOR can however also reli-
ably predict transitions. Furthermore, we can estimate the
confidence of MAJOR’s predictions.

The remainder of this paper is organized as follows. We first
introduce the terminology and mathematical notation used
throughout the paper and review related work. We then de-
scribe the setup of our analysis of the accuracy of next place
prediction algorithms and discuss the obtained results. We
then present and evaluate the MAJOR algorithm and provide
some concluding remarks.

TERMINOLOGY AND NOTATION
Following the notation introduced in [8], we define relevant
places of a user as the set of places “where the user spends a
substantial amount of time and/or visits frequently” [8]. The
home, the office, or the gym are typical examples of users’
relevant places. We indicate with Lj , j = 1 : NL, the j-th
relevant place and define the set L = {L1, L2, . . . , LN

L

}
as the set of NL places relevant to user i.1 Physical loca-
tions (coordinates) that cannot be associated to one of the
NL relevant places of the user are assigned to a symbolic
“irrelevant” place Lx. For each relevant place Lj we fur-
ther define the probability pj of the user of being at place Lj

at any time. This probability can either be known a priori
or be estimated a posteriori from the actual mobility traces
of the user. If L1 corresponds for instance to the home of
the user, p1 = 60% implies that the user spends 60% of her
time at home. Without loss of generality we assume that
p1 > p2 > . . . > pN

L

, i.e., Lj is the (a priori) j-th most vis-
ited place of the user. Please note that a “naı̈ve” prediction
algorithm that always returns L1 as the next location of the
user achieves a prediction accuracy equal to p1.

We model the place at which the user is at time t as a vari-
able X(t) that can take values in the set L. We refer to a
continuous-time next-place prediction algorithm as an algo-
rithm that can compute an estimate of the place at which
the user will be at time t + �, 8� 2 R+. This estimate is
indicated as bX(t+�), whereas � is referred to as the the pre-
diction horizon. Several algorithms also allow to estimate
the residence time at a specific place [23, 2]. In this case,
the estimation problem is formulated as finding the mini-
1For simplicity, we do not explicitly indicate the index i in the pa-
rameters N

L

, L
j

, L, etc..

mal value �⇤ of � such that bX(t + �⇤) 6= X(t). If time is
divided into slots (e.g., 15-minutes slots, 96 slots per day),
then X[k] represents the place the user is at time slot (or time
step) k. Accordingly, we refer to a slot-based next-place pre-
diction algorithm as an algorithm that computes the estimate
bX[k + n] of the place the user will be at n time steps ahead

of k. An algorithm is then said to compute a correct n-step
ahead prediction if bX[k + n] = X[k + n]. On the contrary,
a wrong prediction occurs if bX[k + n] 6= X[k + n]. The
n-step ahead prediction accuracy An of a prediction algo-
rithm over an interval of Ns steps is then defined as the ratio
of the number of correct predictions computed in the inter-
val and Ns. We further say that a place transition T occurs
at time step k + 1 when X[k + 1] 6= X[k]. Accordingly,
a self-transition occurs when X[k + 1] = X[k]. A depar-
ture event from location Lj occurs when X[k] = Lj and
X[k + 1] 6= Lj . Similarly, an arrival event to location Lj

occurs when X[k] 6= Lj and X[k + 1] = Lj . The time
instants at which an arrival or departure event occurs are in-
dicated as arrival time and departure time, respectively. The
difference between arrival and departure time is indicated as
residence time.

To characterize the ability of a prediction algorithm to cap-
ture place transitions, we propose a set of metrics that rely
upon the definitions of true positive, false positive, true nega-
tive, and false negative events typically used in classification
problems [25]. We introduce these metrics later in the pa-
per and use them to analyze the performance of a plethora of
next place prediction algorithms. Before going into the de-
tails of our analysis, though, we summarize related work and
outline the novelty of our approach in the following section.

RELATED WORK
Several algorithms to sense and predict human mobility have
been presented in the literature. A number of approaches fo-
cus on identifying users’ relevant places [1, 6, 8]. These al-
gorithms can be broadly categorized into fingerprint-based
and geometry-based algorithms [15]. Fingerprint-based al-
gorithms use radio-frequency (RF) signals from stationary
sources such as base station of mobile phone operators or
Wi-Fi access points to identify relevant places [5, 8, 15].
When a “stable radio environment” [15] is detected – e.g.,
when a certain number of Wi-Fi access points is visible over
a prolonged period of time – a relevant place is accordingly
identified. Fingerprint-based algorithms typically do not pro-
vide positioning – i.e., they are agnostic of the actual geo-
graphical position of relevant places. Geometry-based algo-
rithms, on the other hand, build upon the knowledge of the
actual positions of the user (e.g., latitude/longitude coordi-
nates) and cluster them into relevant places [1, 7, 26]. In this
paper, we leverage the (fingerprint-based) PlaceSense algo-
rithm by Kim et al. to identify relevant places [8].

Several authors have also investigated the next place predic-
tion problem. Performing next place prediction means esti-
mating, given some input data like the current location of the
user and/or the time of the day, the next place that will be vis-
ited by the user [1, 2, 4, 9, 11, 19, 20]. Early work in this area
has for example targeted the facilitation of call handovers in



cellular networks by predicting the next cell in which a user
will be located [23, 24]. More recent work has focused on
predicting when users will leave or arrive at home in order
to automatically control the heating system [20]. Next place
prediction algorithms can be categorized according to the
type of input information they use to compute the prediction.
In particular, we differentiate between spatial and temporal
features. The former include information about, e.g., which
place(s) have been visited by the user before the current one.
The latter correspond to information about, e.g., at which
time of the day the user visits certain places. Ashbrook et
al. for instance leverage only spatial features as input data
to a second-order Markov model [1]. A performance com-
parison of a number of different predictors based on spatial
features is provided in [24]. Approaches based on spatial
features can forecast the next place visited by the user but not
the corresponding arrival, departure, or residence time. The
NextPlace algorithm by Scellato et al. uses non-linear time
series analysis to predict both the arrival and residence time
at users’ relevant places. It does not use information about
previously visited places and is thus agnostic of the spatial
information inherent in users’ mobility traces. Scott et al.
make instead use of both temporal and spatial features [20].

In a seminal paper published in 2010, Song et al. explore the
fundamental limits that characterize human mobility [21].
To support their findings, they leverage a large data set of
mobile phone call detail records (CDR) (50,000 users, three
months observation period). They identify relevant places
visited by the users as the area covered by the base station
to which phones connect. For each user, the sequence of
places visited during the whole observation period is com-
puted. The considered temporal granularity is one hour, i.e.,
only the location at which the user stayed for the longest
time during a one-hour interval is stored. By adapting the
information-theoretic concept of entropy to the realm of hu-
man mobility, Song et al. provide an answer to the question
of with which probability “an appropriate predictive algo-
rithm can predict correctly the users future whereabouts” [21]
given the entropy of the sequence of previously visited loca-
tions. This probability is called the predictability ⇧ of the
user and represents an “upper bound that fundamentally lim-
its any mobility prediction algorithm in predicting the next
location based on historical records” [13]. Furthermore,
Song et al. show that ⇧ is bounded from below by the prob-
ability ⇧

max, which is achieved by a maximum likelihood
algorithm that always predicts the next location of the user to
be the most probable one given the previous history. While
the work by Song et al. provides fundamental insights into
the limits of predictability in human mobility, we focus on
the specific role of transitions and analyze the performance
of existing algorithms under this perspective. Building upon
the work by Song et al., McInerney et al. [14] address the
problem of measuring the momentary predictability. To this
end, they introduce a metric called Instantaneous Entropy
(IE). While Song et al. use the entropy of a mobility trace
over a given time interval to compute the overall “a posteri-
ori” predictability of a user, instantaneous entropy (IE) aims
at measuring the momentary predictability at each time in-
stant. Thus, while the analysis by Song et al. is done offline

and defines a theoretical upper limit in predictability, the IE
can be determined while the user is moving. In our previ-
ous work [17] we have analyzed the performance of IE and
demonstrated its shortcomings. Building upon these results
we propose to estimate the uncertainty related to a next place
prediction as the “degree of disagreement” among a set of
predictors.

PERFORMANCE ANALYSIS OF NEXT-PLACE PREDICTION
ALGORITHMS
The performance of next place prediction algorithms are typ-
ically evaluated in terms 1-step ahead prediction accuracy
A1. As discussed above, high values of A1 – which is de-
fined as the ratio of the number of correct predictions and the
number of all prediction attempts – are easy to achieve even
by “naı̈ve” predictors. This is mainly due to the fact that hu-
mans spend most of their time in few, well-defined places.
For instance, Montoliu et al. have shown that humans spend
between 60% and 65% of their time at home [15]. An algo-
rithm that predicts the next place of the user to be always
the home can thus achieve accuracy values between 60%

and 65% for most users. Montoliu et al. have also shown
that for most users the second most relevant places is either
the workplace of (or the school attended by) the user. They
also found that people spend between 20% and 25% of their
time at this location. A typical user thus spends, on aver-
age, at most 20% of her time at locations that are neither
her home nor her workplace (or school). A “naı̈ve” next
place prediction algorithm can thus easily achieve accura-
cies of about 80% by predicting the next place visited by
the user to be the home if the current place is the home or
the workplace (or school) if the current place is the work-
place (or school).2 Such an algorithm will however always
fail to correctly predict a transition of the user from home
to the workplace (or school) and vice versa. The ability
to reliably predict transitions is however crucial to support
many applications, like urban navigation or smart heating
control. For instance, the more accurately it is possible to
predict transitions from and to the home, the higher the en-
ergy savings that can be achieved through an automatic heat-
ing control system. These observations allow us to point out
that evaluating the performance of next-place prediction al-
gorithms only in terms of A1 might bring to misleading con-
clusions. In particular, optimizing the algorithms to make
them achieve high values of A1 might lead to approaches
that are useless in practical settings.

To illustrate this issue in a quantitative manner we analyze
the performance of 18 next-place prediction algorithms. We
run our analysis using actual human mobility traces from a
large, publicly available data set. To measure the perfor-
mance of the considered algorithms we use a set of metrics
that allow to evaluate both the average prediction accuracy
as well as the ability of the algorithms to predict transitions.
In the following, we describe the data set and the method we
used to extract users’ relevant places, the 18 predictors and

2This is consistent with the result obtained by Song et al. that the
lower limit of the predictability of human mobility is about 80%,
on average [21].



the metrics. The results of our analysis are then discussed in
the following section.

Data set and identification of relevant places
We perform our analysis of the performance of next-place
prediction algorithms on a set of mobility traces derived from
data collected during the Lausanne Data Collection Cam-
paign [12]. The data has been made available to the public
in 2012 in the context of the Nokia Mobile Data Challenge
(MDC) [12]. The data set contains data collected on the mo-
bile phones of 37 users over about 1.5 years. The data in-
cludes GPS traces, records of Wi-Fi scans, Bluetooth scans
and phone calls.

We extract Wi-Fi scan traces from this data set and apply the
PlaceSense algorithm [8] to derive the most relevant places
for each user. We use the default settings as described in [8]
apart from the value of the similarity parameter. Instead of
using the 68% value proposed in [8] we have adopted a sim-
ilarity value of 30%. The reason for this choice is that the
default value of 68% causes a high number of close-by rel-
evant places to be identified. In particular, over 75% of the
detected places have a median distance to their closest rele-
vant place equal to or less than 10 meters. As for our analysis
this fine-grained place detection is not needed, we have re-
duced the similarity value to 30%. This way, 54% of the
detected relevant places have a median distances of less than
100 meters to the closest relevant place.

We build the sequence of places visited by each user over
the whole observation period considering 15-minutes slots
and determining the place visited by each user in each slot.
We then represent the obtained sequences using the notation
introduced above. For example, if a user is detected to be
at her most visited location (L1) for two slots, then at an
unknown place (Lx) for one slot, and then at her third most
visited location (L3) for one slot, the corresponding mobility
trace will be indicated as: L1L1LxL3. Figure 1 shows the
percentage of time users in our MDC data set spend at their
three most visited locations. The x-axis indicates the iden-
tifier of the user while the y-axis reports time in percentage
with respect to the whole observation period. On average,
users spend 56% of their time at location L1, 14% at loca-
tion L2 and 7% at location L3. 8% of the time is spent at
other locations while for 15% of the time the algorithm does
not recognize the visited place as a relevant one. The mo-
bility traces derived from the MDC data set thus show very
similar characteristics to those analyzed by Montoliu et al.
[15]. Like in [15], we find that users spend most of their
time at their two most visited locations.3 This shows that the
mobility traces we consider in this paper have characteristics
similar to those used by other authors and derived from other
data sets. We thus expect our results to be representative also
beyond the specific data set considered here. Verifying this

3The fact users in our data set show lower values of p1 and p2 with
respect to those reported in [15] might be traced back to missing
data, partially due to users’ mobile phones being turned off. (Ac-
cording to a number of studies [18, 3] users turn off their mobile
phones about ⇠22% of time.)
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Figure 1: Percentage of time spent by the 37 users in their
three most visited places. The plot also indicates the per-
centage of time spent in other places rather than the three
most visited ones and the percentage of time for which the
actual place is unknown (Lx).

assertion by repeating our analysis on different data sets is
left to future work.

Prediction algorithms
Let us indicate with p⇤[k] = {p⇤1[k], p⇤2[k], . . . , p⇤N

L

[k]} the
probabilities, at time step k, of the next location of the user
being L1, L2, . . . , LN

L

, respectively. For simplicity, we use
the notation p⇤ to indicate p⇤[k]. In their seminal work Song
et al. [21, 22] have shown that given the probabilities p⇤ the
highest prediction accuracy A⇤1 is obtained by a predictor
that chooses, at each time step k, the next location as the
location of the user Lj such that p⇤j [k] = max(p⇤[k]). This
Maximum Likelihood (ML) predictor is thus the one that can
achieve the highest accuracy among all predictors that use
the same strategy to compute the probabilities p⇤.

For our analysis, we consider a set of predictors that use the
ML strategy to determine the next location but differ from
each other for how they compute the probabilities p⇤. The
simplest predictor that we consider computes the value of
p⇤j [k],8k as the probability pj of the user being at place Lj

at any time. This algorithm – which we dub the Prior pre-
dictor – will thus always choose the most visited place L1

as the next place. Most of the approaches existing in the
literature use more complex methods to compute p⇤. In par-
ticular, they involve other features in the computation of p⇤,
including the current location of the user (spatial features) or
the time of the day (temporal features). In other words, the
probabilities p⇤ become conditional probabilities.

Several approaches make the values of p⇤ vary depending on
the current location of the user X[k] [1]. Other approaches,
like, e.g., [23, 16], consider also the previous location of the
user X[k � 1]. These two approaches correspond to the use
of a 1st or 2nd order Markov model, respectively. Compar-
ing several different prediction algorithms Song et al. have
indeed shown that 2nd order Markov models provide for the
best overall performance in terms of A1, on average [23].4
Besides making the probabilities p⇤ depend on the current or
previous locations of the user, several approaches also con-
sider temporal features. For instance, Scott et al. consider
4More specifically, the best performance is provided by a 2nd order
Markov model with fallback option to 1st order. This means that a
1st order model is used whenever no sufficient data is available to
compute the probabilities necessary to run the 2nd order model.



whether the prediction needs to be computed for a weekday
or weekend while Song et al. also use the time of the day
and the day of the week [22, 20].

From the behavior of next-place prediction algorithms exist-
ing in the literature we thus define a set of predictors that
takes into account also the above mentioned spatial or tem-
poral features. In particular, we identify five main features
that can be considered when computing the probabilities p⇤:
the current location of the user, the current and previous lo-
cation of the user, the time of the day, the day of the week,
and the day being a weekday or a day of the weekend. We
refer to these five features with the symbols P1, P2, H , D,
and W , respectively. Features P1 and P2 indicate a depen-
dency of p⇤ from the location of the user while features H ,
D, and W account for time-dependencies.

The basic idea behind each combination is described as fol-
lows. First, we obtain the users’ mobility traces until time
instant k. Then we derive the values of all five temporal
and spatial features at time instant k. For instance, if the in-
stant k corresponds to 6 p.m. on a Monday, the user returns
home at 6 p.m. but was still at work at 5:45 p.m., then the
values of the features P1, P2, H , D, and W are: Home,
{Work, Home}, 6p.m., Monday, and Weekday, respec-
tively. We define different combinations of these features to
derive a set of 18 different prediction algorithms, listed in
Table 1. The first column of the table specifies the name
of each algorithm. A symbol is included in the name of a
predictor if the predictor uses the corresponding feature to
compute p⇤. For instance, the P1 approach corresponds to
an algorithm that makes the probabilities p⇤ depend on the
current place of the user. If Lj is the current place, the prob-
ability for a place Lk to be visited next is computed as the
ratio of the number of times the user has visited Lj and the
number of times the user has visited Lk after having been in
Lj . The place with the highest probability of “being next” is
then taken as the prediction. This corresponds to the use of
a 1st order Markov model. The approach named WP1 also
relies on a 1st order Markov model as described above but it
computes different sets of probabilities for weekdays or days
of the weekend. DP2 considers the day of the week as well
as both the current and previous location of the user. And so
on.

The second and third column of Table 1 specify the features
used by each of the algorithms. We recall that all the al-
gorithms listed in Table 1 choose, at time step k, the next
location using a maximum likelihood strategy [22]. The
place with the highest value of p⇤[k] is thus the predicted
next place. This ensures that performance differences be-
tween the algorithms are only due to the different strategies
used to compute the probabilities p⇤ from the historical mo-
bility traces.

Performance metrics
We characterize the ability of a prediction algorithm to cap-
ture transitions using a set of metrics that draw upon the
definitions of true positive, false positive, true negative, and
false negative events typically used in classification prob-

Table 1: Next place prediction algorithms considered in our
analysis.

Name Spatial features Temporal features

Prio none none
W none weekday/weekend

WP1 current location weekday/weekend
WH none weekday/weekend and time of the day

WHP1 current location weekday/weekend and time of the day
D none day of the week

DP1 current location day of the week
DH none day of the week and time of the day

DHP1 current location day of the week and time of the day
P1 current location none
H none time of the day

HP1 current location time of the day
P2 current and previous location none

WP2 current and previous location weekday/weekend
WHP2 current and previous location weekday/weekend and time of the day
DP2 current and previous location day of the week

DHP2 current and previous location day of the week and time of the day
HP2 current and previous location and time of the day

lems [25]. The mathematical definitions of all the metrics
introduced below are reported in Table 2. We define a true
positive transition event as the event that occurs when a tran-
sition is predicted and it actually occurs. In mathemati-
cal terms this corresponds to the condition [

bX[k + 1] 6=
X[k])&(X[k + 1] 6= X[k])] being fulfilled. The number of
these events over an interval of Ns slots is indicated as TTP .
The corresponding true positive transition rate TTPR is
defined as the ratio of TTP over the sum of all transition
events. A false positive transition event occurs when a tran-
sition is erroneously predicted to occur. We indicate with
TFP the number of false positive transition events over an
interval of Ns slots and define the corresponding false pos-
itive transition rate TFPR as the ratio of TFP over the
sum of all self-transitions. Further, a true negative transi-
tion event occurs when the next location is correctly pre-
dicted as being the same as the current one. The number of
such transitions over an interval of Ns slots is indicated as
TTN and the corresponding rate as TTNR. Finally, a false
negative transition event occurs when a transition occurs but
is not correctly predicted. Accordingly, TFN indicates the
number of such events occurring over an interval of Ns slots
and the corresponding rate TFNR is defined as the ratio of
TFN and the actual number of transitions in the same inter-
val.

We further define the transition precision TPre as the ratio
of the number of correctly predicted transitions (TTP ) and
the total number of predicted transitions (TTP + TFP ).
Similarly, we define the transition recall TRec as the ratio of
the number of correctly predicted transitions (TTP ) and the
sum of all actually occurred transitions. Finally, to capture
the dependency between precision and recall, we define the
transition harmonic mean TF1 as indicated in Equation 8.

Besides looking at transitions in general, we also analyze the
performance of the considered algorithms in terms of their
ability to predict arrival and departure events to a specific
place Lj . We accordingly define the metric TF1ArrLj as
the TF1 computed over those time slots in which the con-
dition [(X[k] 6= Lj)&(X[k + 1] = Lj)] is fulfilled. Sim-



Table 2: Performance metrics.

TTP =
P

N

s

k=1 [( b
X[k + 1] 6= X[k])&(X[k + 1] 6= X[k])] (1)

TTPR = TTPP
N

s

k=1 (X[k+1]6=X[k])
(2)

TFP =
P

N

s

k=1 [( b
X[k + 1] 6= X[k])&(X[k + 1] = X[k])] (3)

TFPR = TFPP
N

s

k=1 (X[k+1]=X[k])
(4)

TTN =
P

N

s

k=1 [( b
X[k + 1] = X[k])&(X[k + 1] = X[k])] (5)

TTNR = TTNP
N

s

k=1 (X[k+1]=X[k])
(6)

TFN =
P

N

s

k=1 [( b
X[k + 1] = X[k])&(X[k + 1] 6= X[k])] (7)

TFNR = TFNP
N

s

k=1 (X[k+1]6=X[k])
(8)

TPre = TTP

TTP+TFP

(9)

TRec = TTP

TTP+TFN

(10)

TF1 = 2 ⇤ TPre⇤TRec

TPre+TRec

(11)

D

KL

=
P

i=1 R(i) ⇤ log

R(i)
Q(i) (12)

CP (Nmax

p

) =
P

N

s

k=1 [( b
X[k]=X[k])&(Nmax

p

=N

max

p

[k])]
P

N

s

k=1 N

max

p

=N

max

p

[k]
(13)

TrP [k] =
P

N

ALG

alg=1
b
X[k + 1] 6= X[k] (14)

ilarly, we define TF1DepLj as the metric TF1 computed
only for the time slots in which [(X[k] = Lj)&(X[k + 1] 6=
Lj)] is fulfilled. We focus in particular on transitions to and
from L1 and L2 and thus consider the metrics TF1ArrL1,
TF1DepL1, TF1ArrL2, and TF1DepL2. We further mea-
sure the distance between the empirically observed places
distribution Q depicted in Figure 1 and the corresponding
distribution R computed by each predictor. To this end, we
use the Kullback-Leibler Divergence (KL-Divergence) de-
fined as in Equation 12.

RESULTS
Table 3 shows the results obtained running the 18 prediction
algorithms described in the previous section over the mobil-
ity traces of the 37 users. Each row reports the performance
of one of the considered predictors in terms of the metrics in-
troduced above. Each column thus reports the value of one
of the metrics for all 18 predictors. The figures in the table
are median values of all 37 users. Each algorithm was used
to predict the next location 1-time step ahead. The last row
of Table 3 reports the performance of a “fictive” optimal al-
gorithm – dubbed Best. If at least one of the 18 considered
predictors correctly predicts the next location, Best will pick
this prediction as its own. The three-but-last rows of Table 3
report the performance of the MAJOR approach that will be
introduced in the next section.

The results reported in Table 3 allow to make a number of
observations. For instance, the first column of the table shows
the performance of all predictors in terms of prediction ac-
curacy A1. The highest accuracy (87%) is achieved by WP1

and P1 immediately followed by DP1, P2, and WP2 (86%).
This shows that using Markov models of 1st or 2nd order –
i.e., including the features P1 or P2 in the computation of
p⇤ – guarantees for the best performance in terms of A1, on
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Figure 2: Correlation between A1 and TTPR (left) and A1

and TF1DepL1 (right).

average. This confirms what also observed by Song et al.
in [23] as well as by other authors [2]. The same algorithms
show different abilities to correctly predict the occurrence of
a transition. For instance, the TTPR of P2 is only 10%.
This means that P2 correctly predicts the occurrence of only
10 over 100 transitions.

To gain a better understanding of the performance of the dif-
ferent algorithms we report a subset of our results in Fig-
ure 2. The two plots depict the correlation between A1 and
TTPR (left) and A1 and TF1DepL1 (rigth). A data point
is reported on the plot for each of the 18 predictors. A
data point represents the median value, computed over all
37 users, of the corresponding metric. Different markers
represent different categories of the considered predictors.
Prior, Best, and MAJOR are as defined above. We then
differentiate between algorithms using spatial features (SF),
temporal features (TF) or both (SF+TF). The first category
includes predictors P1, P2, which compute probabilities p⇤

using information about the place of the user only. The sec-
ond category includes W , WH , D, DH , and H , i.e., pre-
dictors that consider temporal features only. The third cate-
gory finally includes all other approaches – WP1, WHP1,
DP1, DHP1, HP1, WP2, WHP2, DP2, DHP2, HP2 –
that combine both spatial and temporal features. Figure 2
(left) shows the existence of a negative correlation between
A1 and TTPR. This means that the higher the accuracy
of a predictor, the less the same predictor will be able to
capture transitions. In other words, being effective at captur-
ing transitions makes predictors more prone to failures, as
a higher risk is taken when computing the prediction. This
observation is supported by the existence of a negative cor-
relation between TTPR and TTNR (not shown for space
constraints). Figure 2 also shows that the MAJOR approach
approach achieves a very good trade-off between the values
of A1 and TTPR. Figure 2 (right) shows that most algo-
rithms can correctly detect departure events from the most
visited place L1 in less than 20% of the cases. This occurs
despite the overall accuracy A1 being very high. Indeed,
high values of A1 are obtained thanks to the fact that most
self-transitions (i.e., situations in which X[k + 1] = X[k])
are correctly detected. The plot also shows that the MA-
JOR approach outperforms other predictors in correctly de-
tecting departures from L1. The performance achieved by
the Best approach implies that in almost 75% of the situa-
tions there exists at least one of the 18 algorithms that cor-
rectly predicts the occurrence of a departure event from L1.
This allows to infer that depending on the specific situation



Table 3: Performance of all 18 predictors. Each performance figure is the median value over all 37 users. Each algorithm was
used to predict the next place 1-time step ahead.

A1 TTPR TTNR TFPR TFNR TRec TPre TF1 TF1ArrL1 TF1DepL1 TF1ArrL2 TF1DepL2 D
KL

Prior 52 77 56 23 44 77 22 34 13 3 7 20 0.61
W 52 77 56 23 44 77 22 34 14 3 7 19 0.44
WP1 87 5 99 95 1 5 35 8 5 1 2 1 0.004
WH 62 69 65 31 35 69 22 34 16 16 7 24 0.03
WHP1 75 37 84 63 16 37 25 28 15 9 3 15 0.03
D 52 76 56 24 44 76 22 34 14 4 7 17 0.38
DP1 86 6 98 40 2 6 32 10 6 1 3 2 0.005
DH 56 71 58 29 42 71 20 31 15 13 5 24 0.01
DHP1 64 54 73 46 27 54 22 30 14 12 5 21 0.10
P1 87 4 99 96 1 4 35 8 3 2 2 2 0.004
H 59 71 62 29 38 71 22 33 16 12 7 24 0.05
HP1 78 31 89 69 11 31 27 27 15 6 4 15 0.02
P2 86 10 97 90 3 10 31 15 12 1 5 1 0.01
WP2 86 11 97 89 3 10 30 16 11 1 5 2 0.01
WHP2 72 40 81 60 19 40 23 28 16 10 4 16 0.05
DP2 84 14 95 86 5 14 29 18 15 2 6 3 0.01
DHP2 60 56 67 44 33 56 19 28 14 11 4 18 0.15
HP2 75 35 84 65 16 31 24 27 16 6 5 15 0.03
MAJOR 82 21 93 79 7 21 32 25 19 3 5 21 0.006
MAJOR4 82 84 64 16 36 84 25 39 17 22 8 29 0.006
MAJOR6 82 72 77 28 23 72 32 44 20 17 11 34 0.006
MAJOR

comb

82 75 77 25 23 75 34 46 20 29 11 34 0.006
Best 93 90 99 10 1 98 90 93 87 70 77 99 0.013

the use of spatial, temporal, or both types of features might
allow to correctly predict the occurrence of departure events.
Which features allow to make a correct prediction might and
do however change over time. Further results about the abil-
ity of the single algorithm to correctly predict arrival and
departure events (from L1 and L2) are reported in Table 3
but are not discussed in detail due to space constraints.

The last column of Table 3 shows the values of KL-Divergence
(DKL) for each of the considered algorithms. Most predic-
tors, including MAJOR, exhibit very low values of DKL.
This indicates that the empirically observed places distribu-
tion Q (see Figure 1) and the corresponding distribution R
computed by each predictor are very similar. The results in
Table 3 also show that the higher the value of A1 the better
the match between the observed and the predicted distribu-
tions. To our surprise, the predictor Best does not exhibit the
better performance in terms of DKL.

The main conclusions we can draw from the results reported
and discussed above is that none of the considered predic-
tors is able to provide good performance both in terms of
A1 and in terms of ability to reliably predict transitions. To
overcome this drawback, we propose a novel next-place pre-
diction algorithm that combines several predictors instead of
relying on a single one. We describe and discuss this ap-
proach in the following section.

A NOVEL NEXT-PLACE PREDICTION ALGORITHM
The results discussed in the previous section show that the
approach named Best achieves an average accuracy A1 of
93% and at the same time a TTPR of 90% and TTNR
of 99%. Best picks at each time step the correct next place
prediction, provided that at least one of the 18 considered
algorithms actually computed the correct estimate. The fact
that Best has an accuracy of 93% thus means that in 93%

of the time steps at least one of the 18 predictors is able to
correctly predict which place the user will visit next. This

in turn implies that only in 7% of the situations none of the
18 predictors was able to correctly estimate the next place of
the user. A TTPR of 90% further indicates that in 90% of
the cases at least one of the 18 predictors correctly predicted
the occurrence of a transition. And a TTNR of 99% indi-
cates that in 99% of the cases at least one of the 18 predic-
tors correctly predicted the occurrence of a self-transition.
Interestingly, the 93% accuracy value achieved by Best co-
incides with the upper limit of the predictability of human
mobility reported by Song et al. in [21]. This indicates that
by combining the predictive power of several predictors the
performance of the Best approach achieves values that are
very close to the theoretical predictability limits intrinsic in
human mobility. This also allows us to argue that the spa-
tial and temporal features considered in this paper allow to
exhaustively capture this predictability. Building upon these
considerations we thus propose a novel next-place predic-
tion algorithm that combines the predictive power of several
algorithms.

Our approach, called MAJOR, works as follows. MAJOR lets
a number NALG of next-place prediction algorithms run in
parallel. In particular, we set NALG = 18 and use the 18

predictors described in Table 1. At each time step k, MA-
JOR counts the number of predictors NpL

j

[k + 1] that in-
dicate the place Lj as the place the user will visit at time
step k + 1. We collect these counters in the vector Np[k +

1] = [NpL1 [k + 1], NpL2 [k + 1], . . . , NpL
N

L

[k + 1]]. Please
note that Np[k + 1] is computed at time step k. The value
of each NpL

j

[k + 1] can vary between 0 and NALG andPN
L

j=1 NpL
j

[k + 1] = NALG,8k. At time step k, the es-
timate of the location visited by the user at time step k + 1

is then chosen as the place Lj for which NpL
j

[k + 1] =

maxNp[k + 1]. If two or more of the NpL
j

[k + 1] counters
reach the maximal value, MAJOR chooses the next place
randomly among those receiving the maximal number of
“votes”. The name of the algorithm, MAJOR, comes from
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(a) Correct predictions.
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(b) Wrong predictions.

Figure 3: Number of approaches that agree on the next-place prediction for situations in which the prediction is correct (a) or
wrong (b).

the fact that it relies on a majority vote approach to choose
the next place of the user.

The row labelled as “MAJOR” in Table 3 shows the perfor-
mance achieved by this simple version of the MAJOR al-
gorithm. The data in the table shows that the 1-step ahead
accuracy A1 of MAJOR is 82%. This is 5% lower than
the two best performing “individual” predictors WP1 and
P1 but 12% higher than the average accuracy of all 18 indi-
vidual predictors, which is 70%. MAJOR also shows very
good performance in terms of TTNR and TFPR but is
able to correctly detect the occurrence of a transition only
in 21% of the cases (TTPR). This is due to the fact that
many of the individual predictors are indeed unable to de-
tect such transitions. Relying on simple majority voting as
described above thus makes MAJOR also unable to reliably
detect transitions. In order to cope with this problem, we
refine the design of MAJOR as described below.
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Figure 4: The x-axis shows the maximum number of algo-
rithms agreeing on the same next-place prediction. The cor-
responding y-values represent the number of times the pre-
diction is correct (showed as a percentage over the whole
number of computed predictions). Different lines corre-
spond to different users in the data set.

Confidence of MAJOR’s estimates
In order to improve MAJOR’s ability to detect transitions
we first measure the number of predictors that return cor-
rect or wrong predictions. We define Nmax

p [k + 1] as the
maximum number of predictors that provide, at time step k,
the same estimate for time step k + 1 (i.e., Nmax

p [k + 1] =

max(Np[k + 1]). We then calculate, for each user in our
data set, the values assumed by Nmax

p [k + 1] for the cases
in which the Nmax

p [k + 1] predictors estimate the correct
next place of the user. Figure 3a shows the correspond-
ing results. The segment in each box shows the median,

the edges of the box indicate the 25th and 75th percentiles,
and the whiskers cover 99.3% of the data (assuming it is
normally distributed). We observe that for most users the
value of Nmax

p [k + 1] for correct 1-step ahead predictions
is higher than 12 in more than 75% of the cases. I.e., when
12 or more predictors signal the same place as the next one,
then in 75% of the cases the corresponding prediction is cor-
rect. We then run the same analysis for situations in which
wrong predictions are computed. The corresponding results
are depicted in Figure 3b and show that the value of Nmax

p
in this case varies roughly between 6 and 12. This means
that when the maximum number of predictors agree on an
incorrect prediction then their number is between 6 and 12

in most cases. The fact so many algorithms might com-
pute a wrong estimate is due to the inability of most predic-
tors to correctly detect transitions. In particular, algorithms
that rely on spatial features have a strong bias in predict-
ing self-transitions and thus tend to “miss” the occurrence
of actual transitions in most cases. On the other side, al-
gorithms relying on temporal features incur in high false
positive rates because they tend to predict transitions more
often than approaches based on spatial features. Combin-
ing the capabilities of both spatial and temporal features is
MAJOR’s strength. In order to leverage the full potential
of this strength we slightly adapt MAJOR’s majority voting
approach and differentiate between situations in which self-
transitions or transitions are predicted, as described below.

Before going further, we would like to outline that the con-
siderations above also allow to use the value of Nmax

p [k +

1] as an empirical measure of the confidence of the next
place prediction bX[k + 1] computed by MAJOR. To illus-
trate this point, we analyze the ratio of the number of cor-
rect 1-step ahead predictions and the total number of pre-
dictions for each possible value of Nmax

p . The ratio is indi-
cated as CP (Nmax

p ) and defined by Equation (13) in Table
2. We compute CP (Nmax

p ) for each user and for Nmax
p

values between 2 and 18. Figure 4 shows the correspond-
ing results whereas each line corresponds to one of the 37
users. The plot shows the existence of a positive correla-
tion between the value of Nmax

p and the percentage of cor-
rect predictions. Hence, as expected, higher values of Nmax

p
indicate a higher probability of MAJOR computing correct
1-step ahead predictions. The value of CP (Nmax

p ) thus in-
dicates, even though only empirically, the confidence of the
prediction bX[k + 1].
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Figure 5: Number of algorithms that predicts the occurrence
of a transition in the cases indicated on the x-axis.

MAJOR’s ability to predict transitions
The considerations reported above hint at the fact that the
ability of MAJOR to correctly predict transitions can be im-
proved by considering the actual number of predictors “point-
ing at” or not at a transition. To support this claim we discuss
the results reported in Figure 5. We first compute the num-
ber of predictors that, at each time step k, correctly predict
a transition to occur (irrespectively of from or to the tran-
sition occurs). The leftmost boxplot in Figure 5 shows the
corresponding results, averaged over all time steps. The plot
shows that the median number of approaches correctly pre-
dicting a transition to occur is 8. The second boxplot from
the left in Figure 5 shows instead that the median number of
approaches predicting a transition when actually none will
occur is 3. We thus suggest to introduce a threshold ↵ that
allows to differentiate between these two cases. In partic-
ular, along with the majority vote policy described above
MAJOR will predict a transition to occur when the num-
ber of approaches predicting a transition to occur is higher
than ↵. I.e., even if the majority of the approaches predicts
a self-transition, as soon as at least ↵ approaches predict a
transition to occur then MAJOR will also predict the tran-
sition to occur. If training data is available the actual value
of ↵ can be set offline. For instance, we have found that a
value of ↵ equal to 6 allows MAJOR to achieve the highest
TF1 value for our data set. We indicate this version of MA-
JOR as MAJOR6 and its performance metrics are reported
in the corresponding row in Table 3. Noticeably, the perfor-
mance of MAJOR6 exceeds those of individual predictors
for most of the considered metrics.

For some applications it might be interesting to tune MA-
JOR so as to increase its ability to detect transitions from
and to specific places like, e.g., L1, L2, or even Lx. We thus
now focus on arrival and departure events as well as self-
transitions from and to these locations. The 3rd, 4th, and
5th plot from left in Figure 5 are computed considering only
those time steps in which the place at k or k + 1 is L1. The
first of these three plots shows the number of predictors that
indicate a transition to L1 to occur (arrival event) when it
actually occurs. The second plot shows the number of pre-
dictors that indicate a transition from L1 to occur (departure
event) when actually no transition occurs (in this case thus a
self-transition to L1 occurs). The third plot shows the num-
ber of predictors that indicate a transition from L1 to occur
when a transition from L1 actually occurs. The other plots in

Figure 5 (6th to 11th from left) show the same results but rel-
ative to L2 and Lx. The 5th plot in Figure 5 allows to make
an interesting observation: when a transition from L1 oc-
curs, the median number of algorithm predicting it correctly
is 0. Also, in 75% of the cases less than 4 approaches will
correctly predict a transition from L1. Keeping the threshold
alpha equal to 6 will thus cause many of these transitions
not to be recognized by MAJOR. We performed an exhaus-
tive search and found that setting alpha equal to 4 allows
to achieve the highest value of the TF1DepL1 metric (see
also results in Table 3, row MAJOR4). At the same time,
alpha equal to 6 allows to achieve better performance for
most of the other metrics. We thus introduce a second thresh-
old, called � to differentiate these cases. We make MAJOR
use ↵ as a threshold to decide that a transition will actually
take place. For departure events from L1, however, MAJOR
will predict the transition to occur when at least � algorithms
will accordingly predict it to occur. According to the obser-
vations summarized above, we set ↵ = 6 and � = 4. The
performance achieved by MAJOR through the “combined”
use of both thresholds ↵ and � are summarized in Table 3,
row MAJORcomb. These results show that this version of
MAJOR not only achieves very high accuracy A1 (82%) but
also shows a superior overall performance in detecting tran-
sitions when compared to the individual predictors. Further
investigations concerning the design and performance anal-
ysis MAJOR are left to future work.

CONCLUSIONS
In this paper we have investigated the performance of 18

next-place prediction algorithms. Our analysis shows that
high average prediction accuracies can be obtained even by
“naı̈ve” algorithms that are largely unable to detect transi-
tions between different places. We have defined a set of
metrics that allow to characterize the ability of a predictor
to capture such transitions. We advocate that a comprehen-
sive description of the performance of next-place prediction
algorithms must include also an analysis of these metrics –
or at least of a subset thereof. Building upon the results of
our analysis we propose a novel next-place prediction algo-
rithm, called MAJOR, that can both achieve high prediction
accuracy and reliably predict transitions. MAJOR’s good
performance is obtained by combining the 18 approaches
considered in our analysis in a single algorithm and using
a majority vote approach to compute the final prediction.
We also showed that the number of individual algorithms
agreeing on the same next place prediction can be used as an
indicator for the confidence of MAJOR’s prediction.
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