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Abstract—In the context of communication services, presence
is defined as the willingness and ability of a user to communi-
cate across a set of devices with other users, and thus an up-to-
date user presence status represents an essential prerequisite
for real-time communications. Smartphones are a rich source of
presence-related contex information, however; this information
is currently not applied by the prevailing over-the-top commu-
nication systems to implicitly change user presence status in
accordance with his/her context and typical daily behavior.
Smartphone battery limitations and the abundance of context
data generated from built-in sensors and mobile applications
are the major factors limiting the adoption of rich presence
solutions in state-of-the-art communication solutions.

This paper presents an approach to learning and inferring
user presence status on smartphones using the available context
data with a goal to enable non intrusive and energy-efficient
maintenance of presence status without user intervention. We
apply the Mobile Data Challenge (MDC) data set collected
during the Lausanne Data Collection Campaign from October
2009 until March 2011 in our evaluations.

Keywords-presence service; rich presence; supervised learn-
ing; Logistic Regression;

I. INTRODUCTION

Presence service is often referred to as the dial tone of
the 21st century since it enables users (i.e. watchers) to
subscribe to presence information generated by their contacts
(i.e. presentities), and to receive their presence updates in
real-time [1]. Presence status is typically changed either
explicitly based on direct user intervention or implicitly, for
example, when a device running a presence agent is idle
for a certain period of time. Over-the-top communication
systems, e.g. Skype and GTalk, naturally integrate presence
as one of its essential services, and are increasingly used
on smartphones. However, existing smartphone implemen-
tations currently support only explicit change of presence
status which requires direct user intervention. Moreover, if
a Skype or GTalk client is running in the background on your
smartphone while it is idle for a longer period of time, the
presence status visible to your contacts remains ‘available’
regardless of your current context.

The paper proposes an approach to continuous learning
and inferring user presence on smartphones which can
automatically update user presence as well as free users
from the annoying manual task of changing his/her presence
status, such as putting it into the silent mode. Smartphones

are a rich source of context data related to user presence. In
particular, a call log, ring tone status and calendar events are
good indicators of whether a user is available or unavailable
for communication. For example, one may conclude that
a user is available for voice communication when he/she
accepts incoming calls while there are no scheduled events
in the calendar. On the contrary, the user is either busy or
unavailable when the phone is in the silent mode or when
he/she rejects an incoming call. The patterns of presence
changes are individual for each user. For example, some
users ignore phone calls while driving or running, while
others are at certain locations available only for texting.
Next, some users accept phone calls during meetings but
only from certain contacts, while others reply to missed calls
via messaging. Thus the goal of our learning algorithm is
to identify personal presence-related patterns of user be-
havior for each individual user, and to infer user presence
status such that it can be changed implicitly over time. In
addition, we would like to identify presence-related features
which are energy friendly.

Presence management is an important service for real-time
communication, and both the industry and standardization
bodies have invested significant efforts over the last decade
into the process of developing a suite of services collec-
tively known as Instant Messaging and Presence. The IETF,
being the main standardization body in this domain, has
adopted two competing protocol suites in parallel, namely,
SIP presence [2] and Extensible Messaging and Presence
Protocol (XMPP) [3]. As presence information is event-
based and generated in an ad-hoc fashion, it is disseminated
in real-time from one source to many destinations follow-
ing the publish/subscribe push-based communication model.
This makes presence management implementations more
complex compared to traditional client-server applications,
especially due to typically large numbers of users. Addition-
ally, presence solutions typically ship all generated presence
updates from presentities to watchers in real-time, which
means that, in practice, one of your contacts who frequently
changes his/her presence status may drain out the battery
on your smartphone. Thus, a solution for implicit presence
maintenance needs to reduce the frequency of presence
status updates while maintaining a suitable accuracy level.
A reduced frequency of presence status updates, on one



hand, saves the energy on both presentity and watcher
phones, and on the other, greatly reduces the messaging load
on presence servers which multiply each presence message
received from a presentity with a number of its watchers,
and deliver the resulting messages to watchers in real-time.

Non intrusive, flexible and energy-efficient maintenance
of presence information is the main goal of our project
Presence@FER [4] which builds a scalable rich presence
platform. Rich presence extends the basic presence status
with additional context information, e.g., operating mode
of a user phone and characteristics of user environment
such as location, mood or planned events in calendar. Our
rich presence platform supports context-aware filtering of
presence updates: Watchers may define specific interests
related to their contact status, while presentities have the
means to control the disclosure of their presence informa-
tion. In addition, we have built an Android client [5] for rich
presence which supports both explicit and implicit presence
updates triggered by, e.g., calendar events or accelerometer
readings. As our initial field trial demonstrates a potentially
large frequency of rich presence updates, the proposed
approach to presence inference in this paper is designed
with a goal to reduce this frequency and achieve a favorable
trade-off between energy and accuracy.

Presence inference may be regarded as a special light-
weight case of activity recognition that has recently gained
large interest from the research community [6], [7], [8].
We argue that although activity recognition is vital for a
wide spectrum of applications, it represents too much of
an overhead for state-of-the-art presence solution. On one
hand, it consumes a lot of energy on end-user devices, and
on the other, activity-related data is personal and sensitive. In
addition, such detailed information is in general not required
in communication services, especially not in corporate en-
vironments. Thus we propose a ”light-weight” approach to
presence inference which detects only four possible presence
states which are sufficient for communication purposes:
available, available for texting, busy, and unavailable. Using
the Nokia Mobile Data Challenge (MDC) dataset [9] which
comprises detailed phone logs for 38 users collected over
8154 user-days, we identify a set of features for presence
inference and show that the GSM cell identifier and ring
tone status alone are good indicators of presence status for
a large fraction of users. Therefore the use of energy-greedy
sensors can be avoided for presence inference. Furthermore,
our approach creates almost 3 times less load on presence
servers than an approach which would change user presence
status based on individual user actions, and has the potential
to limit the energy consumption on smartphones due to
presence messaging.

The main paper contributions can be summarized as
follows: 1) We identify a set of features relevant to presence
in accordance with state-of-the-art real-time communication
services; 2) We design an automaton for modeling presence

status changes based on user actions, and propose a novel
approach to implicit change of user presence by grouping
user actions and assigning presence status to groups of
actions; 3) We apply the proposed presence model to prepare
the data from the MDC data set as input for user presence
inference, test a selected classifier performance, and identify
good features for presence status inference which are also
energy-efficient; and 4) We estimate the benefits of the
proposed approach in terms on messaging load on presence
servers based on the MDC data set. To our knowledge,
this is the first published work which evaluates presence
maintenance on smartphones based on an extensive real-
world data log.

The paper is structured in the following way: Section II
introduces a presence model and identifies a set of features
relevant to presence. Our approach to learning and inferring
user presence is outlined and evaluated in Section III. Sec-
tion IV gives an overview of related work, while Section V
concludes the paper and identifies directions for future
work.

II. PRESENCE MODEL AND FEATURE SELECTION

For the purpose of user presence status detection, we
need to identify relevant actions which influence presence
status of a user. We associate a user ui with a set of
actions ordered in time Ai = {ai1, ai2, ai3, ...}. When a
user places a call, reads a message, or an event noted in
user calendar starts, such action may change user presence
state. There are two basic presence states: available and
unavailable. A user is either available when he/she is willing
and able to communicate by any means, or unavailable
when he/she is not able to communicate, regardless of the
reason. Furthermore, we identify two additional presence
states relevant to our model: available for texting occurs
when a user is able to communicate only via text messages,
and busy indicates the user is currently occupied, e.g., in a
meeting. The status available for texting is a special case of
the status available, because when a user is available, he/she
is also available for texting, while the opposite does not hold.
The state busy is a subset of unavailable, because when a
user is busy, he/she might be available to selected individ-
uals or groups, e.g., for boss and important clients during
working hours, or for family members in case of emergency,
although the user is in general unavailable. Thus the iden-
tified presence states are represented by the following set:
S = {available, available for texting, unavailable,
busy}.

The MDC Open Challenge data set used in our evaluation
contains a raw list of presence-related actions (the total of
17,861,168 actions for 38 users) divided into the following
logs:

• call log specifies the time of the call, call type (voice or
message), SMS status, direction and anonymized phone
number,



Figure 1. An automaton for user presence status assignment

• calendar log stores for each entry its time, status (ten-
tative/confirmed), type (appointment/event) and class
(public/private),

• system log identifies a phone profile (normal, silent,
etc.), battery level, charging state, and ringing type,

• accelerometer and GPS sensor log contains accelerom-
eter samples and GPS coordinates, and

• GSM cell identifier log stores anonymized cell ids.
Feature selection. The call log is vital to determine the

presence status of a user because it directly indicates his/her
(un)availability. We use the call type (voice call or short
message) and direction (incoming, missed, or outgoing)
as presence features. The calendar log is another valuable
source of presence information. All calendar entries with
confirmed status are relevant to presence, both appointments
and events, while additional features are class (public and
private) and location of the entry. The system log con-
tains important presence-related information, such as ring
type (normal, ascending, ring once, beep or silent). The
accelerometer and GPS sensor logs are used in combina-
tion to classify user movement as stationary, walking, or
running. Additionally, we find GSM cell identifiers related
to presence because a user might be available in a particular
GSM cell while unavailable in another cell.

Since the MDC dataset does not include user feedback
on their presence status (”the ground truth”), we can only
estimate a presence status from user actions. For example,
when a user answers a phone call while the ring tone is set
to normal and there are no scheduled events in the calendar,
one can safely conclude that his/her status is available.
Conversely, when a phone call is ignored or rejected while
the user is in a meeting, it is safe to conclude the user is
busy.

We define an automaton comprising the four states defined
in S, and identify significant actions which cause presence

state changes. The automaton is depicted in Fig. 1 where
circles represent the states while arrows indicate action-
triggered transitions. Short arrows depict merged transitions
from all other states to simplify the figure. For example, a
user enters the state available when he/she answers a phone
call or sets the ring tone to normal regardless of the previous
state. Such actions obviously indicate user’s willingness
to communicate. The indicators for the status unavailable
are the following: a missed/rejected phone call, start of a
private calendar entry, and setting the ring tone to silent.
Our assumption is that users do not want to be disturbed
during private calendar entries and/or when they set the ring
tone to silent. Furthermore, we change the presence state to
busy when a user sets the ring tone to beep or ring once,
and switch it to available for texting when he/she sends
a short message while the previous state is either busy or
unavailable. The status available also changes due to public
calendar events and appointments. An appointment changes
a user state from available to busy, while the start of a public
event sets it to available for texting. We assume that during
a public event voice conversation might be inappropriate
while texting might be more convenient. Another interesting
transition is triggered by accelerometer and/or GPS sensor
readings which indicate that a user is traveling, running, or
walking. Our assumption is that such activities might lead
to the state unavailable. Furthermore, if a user is in a state
busy when he/she misses a call, the automaton does not
change his/her status to unavailable, since it is a special
case of the status unavailable. Similarly, when a user sends
a text message this action does not change his/her state from
available to available for texting.

Note that the automaton changes user presence status
based on individual actions (we have used this automaton to
implement the rich presence Android client presented in [5])
and represents our perceived presence status management
which may not hold for all smartphone users. Moreover, each
action may trigger a state change which is impractical for
presence service implementation due to potentially huge load
on the presence server and smartphone battery limitations.
Therefore, we group the actions from the set Ai into non-
overlapping frames that contain actions from a time window
of five minutes, and associate each frame with only one
of the possible states. This approach is similar to the one
presented in [8] for sequencing accelerometer data into 5
second frames to identify locomotive micro-activities. Our
assumption is that periodic changes of user status every five
minutes are acceptable for presence users while being bene-
ficial for system load. Additionally, such approach increases
the probability to correctly estimate current user status based
on a sequence of activities, and produces an improved input
to the classifier. Note that a comparable approach is proposed
in a paper which identifies the level of intimacy in user
context from the MDC data set [10]. As the MDC data set
does not include the ground truth about intimacy levels, the



authors have designed an algorithm to estimate it based on
relevant features.

Formally, an action vector Aij ∈ Ai models an action
frame j for user ui to collectively determine a user presence
state. We define the following algorithm to associate Aij

with a state sij ∈ S. First we associate each action ak ∈ Aij

with a state sk ∈ S based on the automaton depicted in
Fig. 1 to create a sequence of states Sij associated with
Aij . Next we count the number of available and unavail-
able occurrences in Sij (available for texting is counted
as available, and busy as unavailable). In particular, we
distinguish the number of available and unavailable states
in Sij by log types: The highest priority is given to calendar
and call log entries, followed by changes of ring tone, user
movements and locations determined by accelerometer/GPS
sensor readings, and GSM cell identifiers. If there are
calendar log entries in Aij and the number of available states
associated with it is larger than the number of unavailable
states, we conclude the user is available. Otherwise, the
user is unavailable. Finally, we decide whether the user is
available/available for texting, or unavailable/busy based on
the dominance of state occurrences. In case there are no
calendar log entries, the same procedure is invoked on the
call log, followed by the system log, etc. In the end of this
process, each action vector Aij for user ui is associated with
a single state sij .

III. CLASSIFICATION AND EXPERIMENTS

The proposed approach to learning and inferring user
presence applies the supervised learning approach which
consists of a training phase followed by an online classifica-
tion phase. The output of the training phase is a classification
model for a single user which is subsequently used during
online classification. We use the Apache Mahout API [11]
in our evaluation, and have selected the Online Logistic
Regression (LR) [12] as our machine learning algorithm.
LR predicts a discrete outcome of an event from a set
of variables that may be either numerical or categories.
The Mahout implementation of LR uses the Stochastic
Gradient Descent [13] optimization method, and has shown
to be fast and robust for high-dimensional classification
problems and large training sets [12]. LR uses action
vectors Ai1, Ai2, ...Ain associated with presence statuses
si1, si2, ...sin as input: sij is determined for each Aij based
on the approach explained in Section II.

Classifier evaluation. We use a five-fold cross validation
(i.e. 80-20% split of the data) to evaluate the performance of
our classifier. Figure 2 shows the accuracy of the classifier
for a selected subset of users which is in general extremely
good for most users. We have selected seven representative
users for whom the classification accuracy is more than 85%
and two users with degraded accuracy (users u9 and u89).
The accuracy is given for three different experimental setups:
during the training phase, during online classification and

Table I
CLASSIFIER CONFUSION MATRIX FOR A REPRESENTATIVE USER

User 51 Available Unavailable Texting Busy
Available 0.91 0.07 0.01 0.01
Unavailable 0.02 0.98 0.00 0.00
Texting 0.05 0.23 0.73 0.00
Busy 0.00 0.00 0.00 1

Table II
CLASSIFIER CONFUSION MATRIX FOR A WORST-CASE USER

User 89 Available Unavailable Texting Busy
Available 0.52 0.48 0.00 0.00
Unavailable 0.01 0.99 0.00 0.00
Busy 0.00 0.00 0.00 0.00
Texting 0.00 0.00 0.00 0.00

evaluation including all features as classifier input (Eval-
uation 1), and during online classification and evaluation
when a subset of features is used as classifier input. The first
experiment measures accuracy and evaluates the classifier in
parallel with the learning process. Evaluation 1 considers all
listed features, while evaluation 2 uses only user ring tones
and GSM cell identifiers as algorithm features. It is visible
that the accuracy obtained during training and evaluation
1 does not deviate too much except for a few users. If a
complete log from a smartphone is provided as input to the
classifier, the accuracy is greater than 70% for all users,
while for most users it is over 90% which is considered
as an excellent result. Results obtained in evaluation 2 are
more variable. However, one can conclude that ring tone
and GSM cell identifiers yield discriminative information
for presence inference while they are extremely favorable
features in terms of energy consumption.

The following two tables investigate more deeply the
accuracy with a reduced set of features. Table I shows the
classification accuracy for a representative user (u51) in a
confusion matrix. One can conclude that the classification
accuracy is quite high for states available, unavailable, and
busy, while it is a bit lower (73%) for available for texting,
which is typically not well represented in our training set.

Table II shows the classification accuracy for a worst-case
user u89. The classifier has problems to correctly classify the
status available, while the accuracy is extremely high for the
status unavailable. It is interesting to note that this user was
not recognized to enter the states busy and available for
texting, and thus the classifier has no knowledge regarding
probabilities to enter those states. Our approach does require
some fine-tuning to successfully cover such borderline cases.

Presence service load. Let us discuss the number of gen-
erated messages from user smartphones for implicit changes
of presence status. Table III compares implicit changes
of user presence when either individual preprocessed user
actions or action vectors are applied. An average number
of actions relevant to presence generated by 38 MDC
volunteers is 16.5 per hour with a standard deviation of 9.35,



Figure 2. Classification accuracy during training and online classification

Table III
COMPARING INDIVIDUAL ACTIONS WITH ACTION VECTORS

Average number of actions/ Average number of
action vectors per user state changes per user

within 1 h (stdev) within 1 h (stdev)
Actions 16.5 (9.35) 0.72 (0.52)
Action vectors 11.4 (2.47) 0.27 (0.2)

Table IV
ESTIMATE OF PRESENCE SERVER LOAD (50.000 USERS)

Incoming no. of Outgoing no. of
messages per second messages per second

Actions 10 200
Action vectors 3.744 74.8

while the number of action vectors within the same period
is 11.4 (stdev=2.47). These actions generate on average 0.72
presence state changes within one hour for 1 user, which is
on average 36,000 state changes for a average server with
50,000 users. An average number of state changes within one
hour due to action vectors is 0.27 which generates the total
of 13,500 implicit presence messages from 50,000 users to
the presence server within one hour. Thus we conclude that
our approach creates 2.67 times less incoming messages due
to implicit presence status changes then the approach based
on individual actions and automaton depicted in Fig. 1. In
addition, as each periodic message is quite costly in wireless
networks1, potential battery savings are significant.

Table IV estimates the load on a presence server hosting
50,000 users. We compare the number of incoming server
messages per second when either actions or action vectors
are applied for presence updates. Again, the savings are
significant, especially the number of outgoing messages
which is estimated based on a conservative assumption that

1A recent study shows that periodic transfers in mobile application which
account for only 1.7% of the overall traffic volume contribute to 30% of
the total handset radio energy consumption [14].

each user has only 20 contacts receiving his/her presence
updates. Further experiments and measurements are needed
to estimate true energy savings on smartphones.

IV. RELATED WORK

Presence inference is related to activity recognition which
has recently gained large interest from the research commu-
nity. The Nomatic prototype [6] is designed to automatically
infer users’ place, activity, and availability from phone
sensors. The system monitors user presence over time, learns
user context (place, activity, mood) from prior behavior, and
prompts users to confirm their activity prior to publishing
it. Thus, in contract to our approach, it requires explicit
user intervention as the authors stress that presence contains
sensitive personal information. CenceMe [7] supports user
activity recognition from sensor-enabled mobile phones and
shares this information through social networks. CenceMe
designs audio and activity classifiers and presents split-level
classification, whereby activity recognition (e.g., walking,
in conversation, at the gym) executes in part on the phones
and in part on the backend servers due to high computational
requirements. In contrast to [6] and [7] that rely on multiple
phone sensors to recognize user context, [8] shows that the
accelerometer sensor alone provides good features to detect
semantic user activities. The subsequent paper from the
same group of authors investigates how the accelerometer
sampling frequency and choice of features affect power
consumption on smartphones [15].

We take an orthogonal approach to the previously listed
works and argue that although activity recognition is vital
for a wide spectrum of applications, it represents too much
of an overhead for state-of-the-art presence solution. On one
hand, it consumes a lot of energy on end-user devices, and
on the other, activity-related data is personal and sensitive
while its dissemination to others should be handled with
special care. In addition, such detailed information is in gen-



eral not required in communication services, especially not
in corporate environments. Thus we design a light-weight
solution for presence inference which detects only four pos-
sible presence states which are sufficient for communication
purposes. Further context information may be included in
such presence update messages, e.g., user location, event
type, but only with explicit user consent.

V. CONCLUSION

The paper proposes an approach to learning and infer-
ring user presence on smartphones tailored to the needs
of state-of-the-art real-time communication services: non-
intrusiveness and energy-efficiency. We use an LR classifier
from the Mahout API to perform an evaluation of our
approach on the MDC dataset. The results show that the
classifier achieves high accuracy with the features extracted
from the call logs, calendar entries, system logs, and sensor
reading from both accelerometer and GPS. Another interest-
ing finding is that features that do not consume much energy,
such as ring tone status and GSM cell identifier also provide
good accuracy for presence inference. Our approach is tuned
to reduce the number of presence status updates generated
on smartphones which consequently greatly reduces the
messaging load on presence servers as well as smartphone
battery consumption due to presence messaging.

Our future work will be directed to designing a solution
for presence inference on Andriod phones which can be
integrated with our existing Presence@FER platform for
context-aware rich presence management. This is a chal-
lenging task since it is known that traditional classifiers
are not well adjusted to the limited resources of mobile
devices [16]. Furthermore, we plan to conduct a small-scale
study to collect explicit user input on their presence status to
further evaluate our approach. This will lead us to the final
goal, namely to offer automatic and energy-efficient rich
presence management in mobile environments with minimal
user intervention.
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