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Abstract. We investigate behavioral prediction approaches based on
subspace methods such as principal component analysis (PCA) and in-
dependent component analysis (ICA). Moreover, we propose a personal-
ized sequential prediction approach to predict next day behavior based
on features extracted from past behavioral data using subspace meth-
ods. The proposed approach is applied to the individual call (voice calls
and short messages) behavior prediction task. Experimental results on
the Nokia mobility data challenge (MDC) dataset are used to show the
feasibility of our proposed prediction approach. Furthermore, we investi-
gate whether prediction accuracy can be improved (i) when specific call
type (voice call or short message), instead of the general call behavior
prediction, is considered in the prediction task, and (ii) when workday
and weekend scenarios are considered separately.
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1 Introduction

To make accurate prediction on individual activities and behavioral patterns are
new research directions in data mining, machine learning, and pervasive com-
puting research communities. Based on data collected from mobile devices such
as smart phones, one can predict and understand an individual’s behavior and
provide useful services or information to the individual. The industry takes a se-
rious interest in these research topics with their game-changing potential in the
highly competitive mobile device market [6]. Eagle and Pentland [2] introduced
the eigenbehavior to represent repeating structures in an individual’s behav-
ior using principal components similar to those for eigenface [7]. They further
claimed that “dimensionality reduction techniques [. . . ] will play an increasingly
important role in behavioral research”.

In this paper, the two main contributions are (i) our investigation on whether
independent components can be as useful as principal components in their rep-
resentation of individual behavior and (ii) a sequential prediction approach to
predict daily personal behavior modeled at hourly intervals. Our proposed ap-
proach assumes that the behavior of interest represented by primary (either
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principal or independent) components remain (almost) unchanged in the near
future (e.g., the next few days). We demonstrate the feasibility of our proposed
sequential prediction approach on the individual mobile call behavior prediction
task. For this task, the objective is to predict whether an individual will call
(voice call or/and short message) within some hour interval on the next day.
Moreover, we investigate (i) whether predicting specific call type (voice call or
short message) is a better problem setting than the general call behavior predic-
tion setting; and (ii) whether splitting the training data to workday and weekend
data can improve the prediction performance.

2 Dataset and Data Preprocessing

In Section 2.1, we briefly describe the Nokia Mobility Data Challenge (MDC)
dataset that is used in this paper. In Section 2.2, we describe how we process
the MDC data for the mobile call prediction task.

2.1 Nokia MDC Dataset

The MDC dataset consists of smartphone data collected in the Lake Geneva
region from October 2009 to March 2011. Data types related to location (GPS,
WLAN), motion (accelerometer), proximity (Bluetooth), communication (phone
call and SMS logs), multimedia (camera, media player), and application usage
(user-downloaded applications in addition to system ones) and audio environ-
ment (optional) were collected [6]. A total of 185 participants were involved. 38%
of the participants are females and the rest are males. About two thirds of the
participants are of age ranging from 22 to 33. Individual data was collected using
the Nokia N95 smartphone and a client-server architecture. The open challenge
data subset from the MDC dataset consisting of data from 38 participants for
8154 days are used in this paper. We focus on the voice calls, short messages,
and the time they occurred.

2.2 Data Preprocessing

The call log data, consisting of call time, call duration, call type (short message
or voice call), and etc. Call time and call type are used in our investigation.
We, first, categorize about 2 years of daily call information for all participants
into valid and invalid days. A valid day is a day where there are some phone
activities (either voice calls or short messages). Otherwise, when there is no
phone activity, it is a invalid day. Invalid days are ignored in the construction of
the call behavior matrix for a participant so that there can be no row of zeros (i.e.
no phone activity). Hence, we may not have consecutive days of call behavior
vectors in the matrix. This call behavior matrix construction assumes that a
person must have daily phone activity. Towards this end, the trivial prediction
of no phone activity is not possible for our approach.
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The call behavior of a participant is characterized by a Di × 24 matrix Mi,
where i is the unique index for a participant and Di is the total number of valid
day used to construct our matrix for participant i. The call behavior matrix con-
sist of binary values, one and zero, representing the existence or the non-existence
of phone activity, respectively. Figure 1(a) shows the first 60 consecutive valid
days of the phone activities for participant 2. Figure 1(b) shows the total number
of valid days for the thirty-eight participants. Data from participant 7 include
only 25 valid days and hence his data are not used in our experiments.
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(b) Valid days for all participants

Fig. 1. The MDC data

3 Behavioral Representations

In Section 3.1, we introduce eigenbehavior and its implementation using principle
component analysis (PCA). In Section 3.2, we introduce independent component
analysis (ICA) as an alternative behavioral representation.

3.1 Eigenbehavior and Principal Component Analysis

Eigen representations have become one of the most popular techniques in pattern
recognition (e.g. face recognition [7]) because of its strong discriminative ability.
Eagle and Pentland [2] proposed using the so-called eigenbehavior to measure
the distance between people, which is then used for the construction of a social
network. They also apply the eigenbehavior for individual location prediction
[1]. Eigenbehavior is based on the application of principal component analysis
[5, 2] on task-dependent daily individual behavioral representations.

Given an individual’s daily m-dimensional behavior vectors, Γ1, Γ2, . . . , Γi,
. . . , ΓD, for a total of D days. Based on the convention used in [1], the average
behavior of the individual is

Ψ =
1

D

D∑
i=1

Γi. (1)
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The behavior deviation for a particular day from the mean behavior is

Φi = Γi − Ψ. (2)

Principal components analysis (PCA) is then performed on these vectors gen-
erating a set of m orthonormal vectors that can be linearly combined that best
describe the distribution of the set of behavior vectors. The vectors and their
corresponding scalars computed from PCA are the eigenvectors and eigenvalues
of the covariance matrix

C =
1

D

D∑
i=1

ΦiΦ
T
i (3)

3.2 Representing behavior using Independent Components

The goal of PCA is to find a set of orthogonal components that minimize the
error in the reconstructed data. In fact, PCA seeks a transformation of the
original data into a new frame of reference with as little error as possible, using
fewer factors (i.e., principal components) than the original data. In particular,
PCA is a popular approach to perform dimensionality reduction [7].

Here, we investigate whether independent components derived from indepen-
dent component analysis (ICA) can be used to obtain behavior representation
as useful as eigenbehavior for prediction tasks. In contrast to PCA, ICA seeks,
not a set of orthogonal components, but a set of independent components. Two
components are independent if any knowledge about one implies nothing about
the other.

Again, given an individual’s daily m-dimensional behavior vectors, Γ1, Γ2,
. . . , Γi, . . . , ΓD, for a total of D days. Each behavior vector

Γi =

n∑
i=1

wisi (4)

is assumed to be generated by the set of independent components si, i = 1, . . . , n
and wi, i = 1, . . . , n, are the corresponding weights.

Our ICA representation is constructed using the InfoMax algorithm [3]. It is
based on maximizing the output entropy (or information flow) of a neural net-
work with non-linear outputs. Assume that x is the input to the neural network
whose outputs are of the form φi

(
wT

i x
)
, where the φi are some non-linear scalar

functions, and the wi are the weight vectors of the neurons [3]. Then ICA model
can be obtained by maximizing the entropy

H
[
φ1
(
wT

1 x
)
, · · · , φn

(
wT

nx
)]

(5)

of the outputs [4]. The MATLAB implementation of InfoMax algorithm is pub-
licly available in DTU toolbox [8].
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4 Behavior Prediction Approaches

In Section 4.1, we introduce the approach proposed by Eagle and Pentland [2]
that predicts the later part of the day based on information on the earlier part of
the day. In Section 4.2, we describe our proposed sequential prediction approach
for the next day(s) based only on data from previous days.

4.1 Single-Day Method

Both PCA (or eigenbehavior) and ICA share the same idea that the daily be-
havior vector obtained in Section 2.2 can be treated as a combination of several
primary daily behavior components generated by either approach. An individ-
ual’s primary daily behavior components represent a space upon which all of
his daily behavior can be projected with different levels of accuracy. Using the
primary behavior components, it is possible to predict the future behavior for
an individual.

One straightforward way to predict the future behavior for an individual at
the later part of a particular day is to reconstruct an entire daily behavior vector
using only behavior information from an earlier part for that day [2]. Let

A = [Φ1,Φ2, . . . ,Φi, . . . ,ΦM] (6)

denotes the primary behavior matrix calculated from N days of behavior data
such that each column contains one principal/independent component Φi that is
a 24−dimensional vector corresponding to the ith primary behavior component.
Assuming the first p hours behavior for that day, Γ1:p, are known. Hence,

Asv = Γ1:p (7)

where As is a p ×M matrix corresponding to the first p row of A. Then one
obtains a M -dimensional reconstruction vector

v = As
−1Γ1:p (8)

where As
−1 is the pseudo inverse matrix of As. To predict the rest of the day,

i.e., p+ 1 to 24 hours in Γ, one reconstructs the entire behavior vector using

Γ = Av. (9)

The above predictive model assumes dependency of behavior within the same
day, and the relationship stays relatively stable. We refer to this prediction ap-
proach as the single-day method.

4.2 Multiple-Day Method

An alternative prediction approach is to model the daily behavior as a whole
day event and then predict the next day(s). Assuming a sequence of D days
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Fig. 2. Multiple-day method for generic future behavior prediction

of 24-dimensional behavior vectors in our prediction scenario, one predicts the
behavior for day Ds+1 given behavior information from previous Ds days. Based
on the assumption that there cannot be too much changes in a person’s behavior
within a short time interval, our proposed approach models daily behavior within
a fixed temporal window of Ds days (see Figure 2) and predict the next day’s
(day Ds + 1) behavior based on this daily behavior model. We first obtain the
primary behavior matrix representing the behavior from day 1 to Ds, denoted
as ΓDs

1 corresponding to the red bounding box in Figure 2. According to our
assumption, ΓDs+1

2 (denoted as the green bounding box in Figure 2) share the
same primary behavior matrix as ΓDs

1 . Note that row Ds + 1 represents the
unknown next day behavior that we want to predict.

Using the Ds days of daily behavior vectors, one obtains the daily behavior
model as a set of Ds-dimensional primary components, Φ′i, i = 1, . . . , 24. The
first M primary components are chosen to construct the primary behavior matrix

C = [Φ′1,Φ
′
2, . . . ,Φ

′
M] (10)

where each column of C correspond to a primary vector. Then one obtains the
M × 24 reconstruction matrix

V = Cs
−1ΓDs

2 (11)

where Cs
−1 is the pseudo inverse matrix of the (Ds − 1) ×M matrix Cs corre-

sponding to the first Ds − 1 rows of C, since

ΓDs
2 = CsV (12)

Then, the prediction of day Ds + 1 can be obtained as the last row of

Γ = CV. (13)

This method makes use of the relationship embedded in the historical data from
the previous Ds days. We refer to this prediction approach as the multiple-day
method. Note that the multiple-day method can be used to predict not only
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the behavior for the next day (i.e., Ds + 1) but also the next n(<< Ds) day’s
behavior. The modified prediction scheme for day Ds + n is

Γ = C
(
C′s
−1

ΓDs
n+1

)
(14)

where C′s is a (Ds −n)×M matrix corresponding to the first Ds −n rows of C.

5 Experimental Results

First, we study the prediction performance of two subspace approaches, PCA and
ICA, utilizing different number of daily behavior vectors via the single-day and
multiple-day methods. Then, we investigate whether the prediction performance
can be improved by (i) considering the call types: short messages and voice calls;
and (ii) then further splitting the data into workday and weekend observations.
For illustration purposes, we apply only the PCA-based single-day and multiple
day methods for this investigation. For all our empirical results, we use 4 primary
components for either PCA or ICA. Since the objective of the prediction task
is to predict whether an individual will or will not call (i.e., 1 or 0) within
some hour interval the next day, a threshold is required to decide on the final
prediction. Here, the threshold is set to 0.5.

From Figure 3, we observe that both PCA-based and ICA-based multiple-day
methods perform better than the single-day methods. Moreover, their prediction
performance are comparable. PCA-based single-day method performs slightly
better than ICA-based single-day method. One thing to note is that the single
day approach has to use the first p (here, p = 12, i.e., using first half of the day
to predict the second half) hourly observations to calculate the reconstruction
vector, v in (8). Thus, it is impossible to predict the whole day. On the other
hand, the multiple-day method uses the previous days’ observations to calculate
the reconstruction matrix V in (11). Therefore, it can predict an individual’s
behavior for the entire day.

From Figure 3, we see that the number of daily behavior vectors used for
optimal prediction performance is seventy for the PCA-based single-day method
and the multiple-day methods. However, PCA-based single-day method has com-
parable prediction performance when the number of days used is between 10 and
80. The performance of ICA-based single-day methods degrades as the number
of days used increases.

Using 20 days and 70 days of data to build the behavior matrices, we in-
vestigate the distribution of participants at various level of average prediction
accuracy shown in Figure 4. Considering using 70 days of data, we observe
that the multiple-day method is very competitive due to its use of information
from previous 70 days when prediction is made. In particular, 21 out of the 38
participants achieve prediction accuracy of more than 80% for each multiple-
day method. Furthermore, one observes that prediction performance for single
methods can go as low as 55% for a user while multiple-day methods achieves a
minimum of 65% accuracy for the participants. Considering using only 20 days of
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data, PCA-based multiple-day method performs the best with 19 out of 38 par-
ticipants achieve 80% or more prediction accuracy. While PCA-based single day
performs relative well with 17 participants achieving accuracy of 80% or more,
we observe from the Figure 4 that prediction performance for 6 participants are
65% or below. Compared to the other approaches, the number of participants
with poor prediction performance is significantly higher. One notes that when
a small number of days of data are used, ICA-based methods have average pre-
diction performance with respect to the number of participants. Again, readers
are reminded that multiple-day and single-day methods can be considered to be
solutions for two different prediction tasks or problem settings.

Fig. 3. Effect of different number of daily behavior vectors on prediction performance.

Fig. 4. The number of participants achieving various average prediction accuracy for
the different approaches when the number of days to build the behavior matrix are 70
(left) and 20 (right), respectively.

From Figure 5, we observe that prediction performances are improved for
both methods when call types: short messages and voice calls, are considered.
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Hence, specific (call) behaviors are more predictable. One notes that the number
of days of data used has a significant effect on the PCA-based single-day method
for short messaging prediction.

Fig. 5. Prediction accuracy for PCA-based Single-Day Method (left) and PCA-based
Multiple-Day Method (right) when call behavior is further categorized into sending
short messages and making voice calls.

From Figure 6, we observe that in general the two methods have better pre-
diction performance for workday call behavior than for weekend call behavior.
It is particularly significant that short messaging behavior is less predictable
during weekends. The significant drop and haphazardness in the prediction per-
formance during weekends as the number of days of observation used increases is
most probably due to shortage of data for testing purposes. Hence, the empirical
results using more than 60 days of data should be ignored. Towards this end, we
conclude that PCA-based multiple-day method predicts well on voice call be-
havior for both weekend and workday, and occasionally even slightly better than
using weekend and workday data together (see bottom right graph in Figure 6).

6 Conclusions

In this paper, we investigate whether independent components can be as useful
as principal components in their representation of individual behavior. Moreover,
we propose a sequential prediction approach to predict daily personal behavior
modeled at hourly intervals. We demonstrate the feasibility of our proposed
sequential prediction approach on the individual mobile call behavior prediction
task using the Nokia MDC dataset. We observe that formulating a specific (voice
call or short message) behavior prediction problem is better than a general (call)
behavior prediction problem as one can obtain better prediction accuracy in
the former task. Also in general, we observe that workday behavior is more
predictable than weekend behavior.
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Fig. 6. Prediction accuracy for PCA-based Single-Day Method (top) and PCA-based
Multiple-Day Method (bottom) when short message data (left) and voice call data
(right) are split based on whether they occurred on weekends or workdays.
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