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ABSTRACT
In this work we investigate the limits of crowdsensing in
discovering the mapping of mobile network Cell-IDs to ge-
ographic locations. We employ original large-scale mobility
simulations, derived using the NRC-Lausanne dataset, to
determine the fraction of cells visited by a fixed number of
users over a time interval. This is vital to judge the ability
of crowdsensing to rapidly update an inadequate, malfunc-
tioning or obsolete Cell-ID database, thus preventing mech-
anisms such as Dynamic Cell-ID from obfuscating the net-
work. We show that crowdsensing is quite a powerful tool,
with for example only 25% more users than cells sufficing to
scan 99% of the network over a day.

1. INTRODUCTION
Nowadays, communications market players such as Google

or Apple utilize crowdsensing techniques to discover the struc-
ture of mobile networks. GPS-enabled phones of customers
send their current GPS coordinates and Cell Identifier (Cell-
ID) to a server that collects, clusters, fingerprints, and stores
such data from all customers. Such a Cell-ID database can
subsequently lead to the cell geolocations: given a Cell-
ID, an approximated position inside the cell is returned.
This enables services such as localization or friend proximity
lookup, even for mobile phones without GPS receivers. The
questions we address in this paper are: What is the required
minimal size of a user group needed for obtaining a critical
mass of knowledge about the mobile infrastructure? And,
how much time is needed to do so?

This is interesting for mobile operators who wish to mon-
etize their costly network infrastructure. Today, user loca-
tion is delivered for free by third parties (e.g., My Location
service by Google) exploiting the fact that the Cell-ID as-
signment is static and the signal covers a given geographic
area. The Dynamic Cell-ID mechanism, described in three
recent patents [1, 2, 3] and allegedly considered for deploy-
ment by China Mobile [4], may alter the situation. The
key idea is to mask part of the static Cell Global Identi-
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ties by providing different, dynamically generated Cell-IDs.
With frequent, for example daily changes, third-party Cell-
ID databases such as [5, 6] would have difficulty maintain-
ing correct Cell-ID information, enabling network operators
to commercialize the mapping of dynamic Cell-IDs to geo-
graphical coordinates.

Deploying Dynamic Cell-ID would have consequences. The
GPS-less devices, still a majority of all mobile phones (62%
in 2011 [7]), rely on network-based (Cell-ID) localization.
Third-parties would fail to provide free localization applica-
tions, unless they paid operators for the Dynamic Cell-ID
mapping, influencing customer’s end price. A-GPS-enabled
phones would be affected by having a longer time-to-first-fix
(order of minutes), as commercial Secure User Plane Loca-
tion (SUPL) servers would not be able to advise the A-GPS
receiver on the approximate satellite positions (based on the
current Cell-ID of the user) because SUPL-server databases
would become outdated every time the dynamic Cell-IDs are
changed. Finally, various cell-fingerprinting methods [8, 9],
popular in research and academia as cheap and reliable po-
sitioning methods, would be rendered inoperative.

There are two principal ways to deal with Dynamic Cell-
ID. Either the mapping may be bought from the mobile op-
erator, which might be costly or the operator might not be
willing to sell it. Or, third-parties can assign coordinates to
Cell-IDs by wardriving or crowdsensing methods. Wardriv-
ing is the act of searching for WiFi hotspots and other in-
formation, such as mobile network Cell-IDs, at particular
locations by driving around. Crowdsensing [10] refers to a
process of collecting data from sensing and computing de-
vices (mobile phones). While wardriving is time-consuming
and limited in resources (vehicles, drivers), crowdsensing is
advantageous in time and coverage, especially when many
mobile users are involved. Nevertheless, two questions arise:
How many crowdsensing participants are needed? And, how
long does it take them to scan the entire network?

To address these questions, we perform a large-scale simu-
lation of mobile user movements in a mobile network, count-
ing the number of distinct cells users visit over a period of
time. First, we build a mobility model, based on the NRC-
Lausanne dataset [11], that reflects both temporal properties
of human mobility patterns and the number of user-cell as-
sociations (Section 3). Such model is necessary for sampling
a high number of artificial, yet realistic user mobility pat-
terns to serve as a simulation input. Second, we simulate
movement of a different number of users over one day in an
approximation of a mobile network (Section 4). This sim-
ulation is vital because basic statistics on user movement



(average number of unique cells visited during a day) can-
not be used alone to form the mobility patterns, as different
users are likely to visit the same cells during the day. Among
others, we show that only 25% more users than the number
of cells in the network suffices to discover 99% of all cells in
one day (Section 5). Indeed, crowdsensing can be thus con-
sidered as a fight-back strategy against Dynamic Cell-ID.

Even if Dynamic Cell-ID is not deployed, the limits of
Cell-ID crowdsensing are still of interest. Networks evolve
constantly and relevant databases need to be verified and
updated frequently. They might fail, be maliciously manip-
ulated, or contain errors. For users, dependence on a large
enterprise such as Google may represent a risk and a privacy
issue. Competing crowdsensing services may thus get estab-
lished, requiring an unknown critical mass of users to obtain
a sufficiently precise view of the network infrastructure.

2. BACKGROUND
In this section, we present relevant background knowledge.
Mobile network. We consider an arbitrary commer-

cial mobile network (GSM, UMTS) consisting of thousands
of base stations, each equipped with a number of antennas
(typically three). The geographical area under an antenna
signal coverage is called a cell. Each cell is identified by a
unique Cell Global Identity (CGI), which consists of four
fields: Mobile Country Code, Mobile Network Code, Lo-
cation Area Code (LAC), and Cell-ID. While the first two
fields are specific to the country and operator, the latter two
are assigned by the mobile operator.

Dynamic Cell-ID. Dynamic Cell-ID [1, 2, 3] works on
the principle of masking one or both of the LAC and Cell-ID
parts of a CGI to mobile devices. A new, dynamic Cell-ID
is calculated by the base station and is transmitted to the
mobile device, while the original Cell-ID remains intact in
the core network. From time to time (patent [3] suggests
once a day), all dynamic Cell-IDs are permuted among the
network cells. This process is achieved by an unspecified,
time-dependent, invertible function that maps static Cell-
IDs to the dynamic ones and vice versa. Such mapping
function can be arbitrarily complicated, or it may even rep-
resent a simple random permutation. Thus, we assume that
the mapping function can not be discovered by simply ob-
serving the changes of dynamic Cell-IDs over time.

Dataset. We use part of the NRC-Lausanne dataset,
which consists of information about 38 out of 168 users
who participated in the Lausanne Data Collection Cam-
paign [11]. It contains a timestamped sequence of CGIs
per user with one record per every cell change during the
campaign period (referred to as cell trace). Also, there is a
timestamped GPS log for each user (we call it a GPS trace).
The dataset covers a large part of Switzerland, including
major cities and the countryside (see Figure 1).

Assumptions. We make three key assumptions regard-
ing the principles of Dynamic Cell-ID and crowdsensing.
A1) The dynamic Cell-ID renumbering occurs only once
a day and for all cells in the network at the same time. A2)
GPS receivers serve as the only tool for reporting geograph-
ical positions of the user. A3) Mobile phones only report
the Cell-ID of the currently attached cell.

3. DATA-DRIVEN MOBILITY MODEL
The NRC-Lausanne dataset gives away the coverage ca-

pabilities of the user pool for one year in an area. How-
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Figure 1: Places visited by the users in the dataset.

ever, the traces of 38 users cannot cover the whole mobile
network (which typically consists of thousand of cells), so
several-times more users are necessary in a study of this
kind. Straightforward sampling from the traces would lead
to the reuse of particular user’s movement, which we con-
sider harmful. Therefore, we try to infer a general coverage
capabilities of the population. We build a model that cap-
tures general features of users’ movement within the network
to generate a high number of synthetic, yet realistic traces.

We aim to model user mobility patterns in terms of the
number of unique cells visited during one day, starting from
midnight. A common denominator of users’ daily mobility
is their presence at some places, such as home, work, the
cinema, etc. for a substantial amount of time. Each of these
places (which are not many in one day) is covered by a cell
or a set of cells. A key observation here is that the transi-
tions between places account for most of the total number
of unique cells visited by a user during a day. Thus, the goal
of our mobility model is to capture F1) the total number
and ordering of places as they are visited by a user during
a day, F2) the start time of all user’s transitions between
places in the day, and F3) the duration of transitions and
their length, measured in the number of unique cells visited
during the transition. Our model differs from the large body
of similar work (see [12] for a survey) in that it incorporates
all of the features F1–F3 concurrently, thus it describes the
users’ daily patterns (F1), captures fine-grained temporal
characteristics of human movement during one day (F2),
and quantifies daily user-cell associations (F3).

Important places for a user are recognized from mobile
data mainly by clustering methods [13, 14]. Clustering is vi-
tal because a place is typically covered by overlapping cells,
and the user’s mobile phone connects to them even when
the user is not moving (so called cell jitter). We use time-
based clustering to recognize a user’s places, because the
GPS trace covers only 32% of all cells in the cell trace which
precludes spatio-temporal clustering. In this work we define
a place as a set of neighboring cells in which the user cumu-
latively spends more than 60 minutes anytime during a day.
A transition between places is the act of leaving a place and
visiting another, or the same place subsequently at least 4
minutes later. Without going into details (for the limited
space), the algorithm finds all places and transitions while
also detecting and removing cell jitter.

We process the data by dividing the cell trace of each user
into day-long sequences, each starting at midnight. Then,
we remove days where the mobile phone was off and week-
ends. Because the daily routine of users and their mobility
significantly differ between weekdays and weekends, these
must be handled separately. Mainly due to space limita-
tion in this paper we restrict the dataset to weekdays only,
however, the weekends can be modeled in a similar manner.



Algorithm 1 Generation of a Transition

Input: pt̃i,j for all i, j ∈ L and t̃ ∈ {1, . . . , T},
fnew, fsame, fold, gnew(δ), gsame(δ), gold(δ)

Output: TS = {(Oi, Di, ti, δi, li)}Ni=1

t̃← 1, D0 ← 1
while t̃ < T do

if no transition (prob. 1−
∑

j∈L p
t̃
Di−1,j

) then

t̃← t̃+ 1
else

Oi ← Di−1,

Di ← d ∈ L with prob. pt̃Oi,d

ti ← uniformly sampled from interval t̃
δi ← sampled from f∗ (∗ ... transition class)
li ← sampled from g∗(δi) (∗ ... transition class)
t̃← nearest time period after ti + δi

end if
end while

Finally, we consider all of the day-long weekday sequences
to be independent, even when belonging to the same user.
Handling the data in such way is viable because the mobility
model is to describe only a period of one day and so weekday
correlations need not be reflected.

To extract mobility patterns from the data, we process
each day-sequence and find all places in the transitions for
that particular day. We enumerate places in each day-sequence
according to the time of the first visit with numbers L =
{1, 2, . . . }. Then, we describe all N transitions during one
day in a transition sequence TS = {(Oi, Di, ti, δi, li)}Ni=1,
where Oi, Di ∈ L are the origin and destination places of
the i-th transition, ti, δi ∈ [0, 1] ∈ R represent the time (by
a fraction of the day) of the transition start and its duration,
and li ∈ N is the length of the transition expressed in the
number of unique cells visited during the transition. The
TS is empty for a user who spends the entire day at one
place and makes no transitions.

We express the model features F1 and F2 by mining the
transition probabilities between the places, depending on
the time of the day. We simplify the structure of time by
quantizing the day into T = 288 5-minute equidistant time
slots t̃ ∈ {1, . . . , T}. So, for example t̃ = 2 represents a time

period from 12:05 a.m. to 12:10 a.m. Then, pt̃i,j denotes
the probability that a transition between places i, j ∈ L
starts during the time period t̃. The duration of a transition
(model feature F3) is estimated from the data with proba-
bility density functions fnew, fsame, fold. These describe dif-
ferent transition classes, depending on the relationship be-
tween the origin Oi and destination Di places during the
day: A transition is classified as new if it ends at a new,
previously not visited place, same if it starts and ends at
the same place, and old if it is between places already vis-
ited. Finally, we found that the transition lengths (number
of unique cells) follow a Normal distribution with the mean
and standard deviation parameters linearly dependent on
the duration of the transition and its class. We denote these
distributions by gnew(δ), gsame(δ), and gold(δ). Parameters

pt̃i,j , f∗, and g∗ constitute our model. The generation of a
new, synthetic transition sequence from the above parame-
ters works according to Algorithm 1.

In the rest of this section we show by comparing the fea-
tures F1—F3 that the synthetic traces from the model corre-

Figure 2: (Left) The example of the 20 most fre-
quent daily patterns. (Right) Heavy-tail distribu-
tion of different daily patterns.

Figure 3: Probability of transitions during a day.

Figure 4: Distribution of the total unique cells,
places, and transitions during a day.

spond to the NRC-Lausanne dataset. Users’ daily patterns,
the model feature F1, represent the number and ordering of
different places visited by a user during a day. For exam-
ple, a typical daily pattern for the majority of users would be
1—2—1, where 1 could represent“Home”and 2 could stand
for “Work”. Figure 2 (Left) compares the most frequent pat-
terns in the dataset with the synthetic traces generated from
the model, showing a high correspondence in the frequency.
Figure 2 (Right) shows that the distribution of users’ daily
patterns is heavy-tailed, i.e., a small number of patterns oc-
cur often while numerous patterns are rare. As depicted, the
model faithfully captures this daily pattern distribution.

The fine-grained temporal characteristics of human move-
ment during one day, the model feature F2, are depicted
in Figure 3. It shows that in the morning users commute
to new, previously not visited places (pnew), during the day
they tend to leave the place and return to the same place
later (psame), and in the afternoon they return to previously
visited places (pold).

Daily user-cell associations, the model feature F3, are de-
picted in Figure 4 (Left). Clearly, the model well quanti-
fies the total number of cells visited during a day. This is
achieved by following the distributions of total number of the
places visited during a day (Figure 4 (Middle)) and the total
number of transitions between the places (Figure 4 (Right)).

4. SIMULATING USER-CELL ASSOCIATION
We model a mobile network with c cells as a Voronoi

tessellation [15] of a unit square simulation area where a
spatial Poisson process of constant intensity represents the



Figure 5: Impact of dynamic Cell-ID renumbering
time on cell discovery in a network with 5,000 cells.

cells’ positions1. Connectivity between cells (and thus pos-
sible handovers) is captured by the Delaunay triangulation
DT = (V,E) [15], the dual of Voronoi tessellation: if cells
u, v ∈ V are neighbors, there exists an edge (u, v) ∈ E.
Let pu,v,k = {u = c0, c1, c2, ..., ck−1, ck = v} denote a sim-
ple path (without cycles) between nodes u, v ∈ V of length
k ∈ N (i.e., having k edges and k − 1 unique nodes in the

path excluding u and v). And, let S ∈ N|V |×|V | be an all-
pairs shortest path matrix for the DT graph with unit edge-
weights, computed by the Floyd-Warshall algorithm.

We simulate the movement of a set of users U = {1, . . . , n}
in the network as a discrete-time pseudo-random walk on
the DT graph, according to the transition sequences TSu =
{Oi, Di, ti, δi, li}Ni=1. These are sampled independently from
the mobility model for each user u ∈ U . As the users traverse
the graph, the number of distinct nodes visited corresponds
to the number of cells they have been associated with. The
simulation consists of three steps, explained below by the
example of a single user.

First, the user’s place labels are mapped to DT nodes by
a randomly selected one-to-one function m : L → v, where
L = {O1} ∪ {Di|i = 1, . . . , N} and v ⊂ V . The function
m is found with respect to the lengths of the paths between
places in a user’s TS, such that ∀i∃pu,v,k : u = m(Oi)∧ v =
m(Di)∧k = max(Su,v; li+1). The selection of a path length
k guarantees triangle inequality of path lengths.

Second, a randomly selected path piu,v,k, such that u =
m(Oi), v = m(Di) and k = li + 1, is considered to be
a sequence of nodes (cells) the user visits between places
Oi and Di during the i-th transition. However, finding a
simple, k-length path pu,v,k is known to be NP-hard (can
be reduced to the Hamiltonian Cycle problem), and even
probabilistic algorithms [16] are too slow on large graphs.
Therefore, we simplify this task and look for a path p̃iu,v,k =
{u, . . . , w, . . . , v} with a maximal number of unique nodes
and the desired length, i.e., w ∈ argmin

x∈V
(pu,x,Su,x ∩px,v,Sx,v)

1To obtain a more realistic network, we can use a non-
homogeneous Poisson process in which higher density of cells
corresponds to the cities, or even apply any relevant back-
ground knowledge, such as population density or transporta-
tion networks (roads, railways) in the studied region.

and Su,w + Sw,v = k. Using the matrix S to find a node w
is fast, although it can result in a non-simple path.

Third, we express the user-cell association during the i-th
transition (Oi, Di, ti, δi, li) as a sequence Ai = {(τj , vj)}li+1

j=0 ,
where τj denotes the time of the change of association to the
j-th cell vj . Assuming that the speed of the user is constant
on the path between Oi and Di, then the user-cell associa-
tion in time changes proportionally to the distance between
the nodes in the path. Further, we assume that a user-cell
association change happens on the boundary between cells.
Since the shortest distance between nuclei of two adjacent
Voronoi cells to their common boundary is equal (by defini-
tion of the Voronoi tessellation), the cell-association changes
when the user is in the middle of the Delaunay triangulation
edge between the cells’ nuclei. Thus, the elements of the se-

quence Ai are as follows: τ0 = ti, τj = ti + δi(
∑j−1

l=1
dl+dj/2∑n

l=1
dl

),

and vj = cj , where dl is the length of the edge (cl−1, cl) in
terms of Euclidean distance.

The number of unique cells a user u visits by the time T is
the cardinality of the set Uu = {v ∈ V |∃i, j, Ai

u = {(τj , vj)} :
τj ≤ T ∧v = vj}. A higher number of users in the simulation
at one time is handled independently, so the total number of
cells visited by n users is | ∪n

u=1 Uu|.

5. RESULTS
Assume we have a mobile network that consists of c cells,

and there are n users involved in crowdsensing. How long
does it take them to visit x% of all cells in the network?
We simulated the movement of users in a network for all
combinations of network sizes c = {1,000, 2,000, . . . , 5,000}
cells and number of users n = {0.25c, 0.5c, . . . , 5c}.

Figure 5 shows that collecting network Cell-IDs takes a
shorter time when more users are involved. However, users’
mobility during a day significantly affects the duration of the
network scan: in the morning and afternoon users commute
and travel more, resulting in a shorter scan time. On the
contrary, it takes longer to scan the network during the night
and while the users are at work, as their mobility is low.
This may be a clue for when operators should renumber the
dynamic Cell-IDs to strike at the heart of third-party Cell-
ID databases the most.

We focus in detail on the case where dynamic Cell-IDs
are renumbered at midnight: Figure 6 shows a relationship
between the ratio of cells observed during a day and the
number of users in a network with c = 5,000 cells. We
can see that at least n = 1.25c = 6,250 users are needed
to observe at least 99% of all cells by the end of the day.
Additionally, there is a significant difference between the
times to visit all cells as the number of users increases from
n = 1.25c to n = 3.5c. Because of a low number of users who
travel during the early morning, about n = 3.5c users are
needed to visit 99% of the cells by 7 a.m. Markedly, having
more than 3.5c users yields only minor improvements.

6. DISCUSSION
The assumptions we made in Section 2 stem from follow-

ing reasons. Naturally, renumbering all cells at the same
time (assumption A1) causes the highest havoc because it
affects each user of a Cell-ID database provider — each user
would obtain a false position. The renumbering period of
one day is suggested in [3], but we admit that a shorter
interval or a different renumbering scheme could be even-



Figure 6: Ratio of cells observed during the day.

tually possible. We leave this for future experimentation.
The assumption A2 of having only GPS coordinates from
the user’s mobile phone represents the simplest positioning
solution. Although other positioning techniques or phone-
sensed data may be available (such as WiFi beacons, signal
strength, etc.), we assume this easiest and most accurate
method. Finally, assumption A3 of reporting only the cur-
rently attached cell comes from the fact that the knowledge
of neighboring Cell-IDs would not immediately bring any ad-
vantage. However, it may be used in some future extensions
to deliver the approximate position of a cell.

Our approach to the simulation is not limited by the model
we used. Any model that quantifies user-cell association
during a day can be applied. Nevertheless, to the best of
our knowledge, there is no such model publicly available.

The model presented in this study may seem limited by
the lack of any spatial relation to a real geographic back-
ground. However, because it captures user’s movement in
a mobile network in terms of cell transitions without condi-
tioning on the real-world cell tower locations, the model is
area-independent. As such, it is not limited to the area cov-
ered by the dataset and can be be applied to any arbitrary
cellular network topology — either a real one or an artificial
one. Nevertheless, the parameters of the model may change
with different network technology or with a larger and more
representative user-pool.

7. CONCLUSION
In this work we investigated the limits of crowdsensing in

discovering the mapping of mobile network Cell-IDs to ge-
ographic locations. Based on the NRC-Lausanne dataset,
we build a model which describes user-cell association in
a mobile network over a day. Using the model we gener-
ated thousands of artificial yet realistic traces of user move-
ment applied by a large-scale simulation to a mobile network
topology. The results show that crowdsensing is quite a pow-
erful tool. For example with only 25% more users than cells
sufficing to map 99% cells of a mobile network to geographic
locations over a day.

Crowdsensing as a fight-back method against the Dynamic
Cell-ID method poses several issues. First, it is questionable
whether any third-party can persuade a user-pool of at least
three-times the number of cells in the network to partici-
pate in crowdsensing. Consider the Czech Republic with
10.5 million inhabitants living in approx. 78,000 km2 ∼=
30,500 sq mi. Each of the three biggest mobile operators
has about c = 14,000 cells in the network [17], so about
n = 3c = 42,000 users are needed to visit 99% of the cells
by 8 a.m. Let us assume the sensing software is built on the

Android platform, and the smartphone penetration (50%)
and Android share on the smartphone market (48%) are
similar to the U.S. [18]. Then a calculation (10,500,000 ×
1/3× 0.5× 0.48 = 840,000) shows that every twentieth user
of an Android smartphone (per each operator) should par-
ticipate in crowdsensing, making it seem viable.

Other issues are related to the localization business models
and Dynamic Cell-ID implementation details. Is the hours-
long period of bad localization performance acceptable for
the users? Apparently, having the network scanned within
one hour anytime during a day is possible, but with an un-
realistic number of users. And finally, what if the dynamic
Cell-ID renumbering interval will be shorter, let us say on
the order of hours? The near future may enlighten us on
these concerns.
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