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ABSTRACT
Mobility data mining in the form of trajectory data mining
has been extensively investigated in recent years. Predic-
tive modeling and pattern discovery approaches have been
proposed to predict movements and locations, and to ex-
tract useful trajectory and location patterns. Nowadays,
mobility data consist of not only trajectory data. Mobility
data from smart phones include measurements such as call
duration/time, call type, digital media consumption, calen-
dar information, apps usage, social interactions, and mobile
browsing. These heterogeneous multivariate data allow one
to discover interesting and more complex behavioral pat-
terns and rules in terms of space and time.

In this paper, we investigate spatiotemporal rule mining
on heterogeneous multivariate mobility data. We propose
a systematic approach consisting of three main steps: data
fusion, frequent temporal multivariate-location extraction,
and rule generation. In particular, we explore the task of ex-
tracting multivariate spatiotemporal patterns corresponding
to the “where”, “when”, and “who” queries (and their combi-
nations) related to phone call variables collected from smart
phone users. Experimental results on the data from Nokia
Mobile Data Challenge is used to show the feasibility and
usefulness of our proposed approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
data mining ; I.5.3 [Pattern Recognition]: Pattern analy-
sis

General Terms
Design
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1. INTRODUCTION
Multivariate heterogeneous mobility data are becoming

prevalent and readily available with the increasing popular-
ity of GPS-enabled location-aware mobile devices and sen-
sors. These devices include smart phones and wearable mo-
bile devices that monitor a person’s physiological conditions
and vital readings during motions. To discover non-trivial
patterns and to make accurate prediction from such data are
new research directions in data mining, intelligent system,
and pervasive computing research communities. The indus-
try has also taken a serious interest in these research topics
with their game-changing potential in the highly competitive
mobile device market [4].

Existing state-of-the-art approaches such as frequent lo-
cation pattern mining, association rules extraction [1], and
trajectory clustering [3] (and reference therein), based only
on trajectory data, are not capable of extracting patterns
from heterogeneous multivariate mobility data. These data
consist of trajectory information and other measurements,
such as call duration/time, call type, digital media consump-
tion such as music/video, calendar information, apps us-
age, social interactions such as content sharing, and mobile
browsing. From knowledge discovered from these data, one
can understand a mobile device user more extensively. For
instance, the call duration/time and call type variables to-
gether with the trajectory data allow one to ask questions
such as “Do people like to send short messages or make voice
calls in parks during the evening?”, “Which are the places
people send more short messages than make voice calls in
the morning?” and “What are the characteristics of such
smartphone users?”.

In this paper, we investigate pattern mining on the hetero-
geneous multivariate mobility data. The main contribution
of the paper is a systematic rule extraction approach con-
sisting of three main steps: data fusion, frequent temporal
multivariate-location extraction, and rule generation. For
such a pattern mining task, the resulting rules relate mea-
surement variable(s) with locations and time, and the sup-
port and confidence of the rules are based on the number of
occurrences derived from the trajectory of the sampled pop-
ulation. We explore the particular task of extracting rules
corresponding to the “where”, “when”, and “who” questions
(and their combinations) related to phone call variables col-
lected from mobile phone users.

Recently, association rule mining has been used to dis-
cover interesting relation between locations from trajectory
databases [1]. For example, based on rules extracted using
association rule mining, one can discover what places peo-



ple like to go and the relationship between these locations.
In this paper, we generalize the spatial-temporal association
mining rules [1] such that the extracted rules take into con-
sideration other variables and data types available due to the
heterogeneous multidimensional nature of mobility data.

To demonstrate the feasibility and usefulness of our pro-
posed approach, we use the data collected from smart phones
for the Nokia Mobile Data Challenge (MDC) [4]. The MDC
data consists of smartphone data collected in the Lake Geneva
region from October 2009 to March 2011. The collected data
include behavioral information in the form of GPS location
data, phone usage, digital media consumption, application
events, and other data types that are available from a smart-
phone device. A total of 185 participants were involved, 38%
females and 62% males, and about two thirds of the partic-
ipants are of age ranging from 22 to 33. The data was col-
lected using the Nokia N95 smartphone and a client-server
architecture was used. The Open Challenge data subset
from the MDC data consisting of data from 38 users for
8154 user-days are used in this paper. More information
about the MDC data can be found in [4].

2. METHODOLOGY
Our systematic approach consists of three main steps:

data fusion, frequent temporal multivariate-location extrac-
tion, and rule generation. In Section 2.1, we describe the
first two steps. In Section 2.2, we describe and discuss the
multivariate rule mining algorithm in detail.

2.1 Data Fusion and Processing
Data fusion and processing procedure is vital for the qual-

ity of the rules extracted from the heterogeneous mobil-
ity data due to their complex and multidimensional nature.
There are two approaches that one can follow to extract fre-
quent multivariate-locations, namely (A1) identify the fre-
quent locations based on spatial stay points, and analyze the
variable data records that match the frequent locations, and
(A2) identify the frequent locations on spatial stay points
that match the variable data records . Intuitively, a stay
point is a point or a region that an individual remains at
the location for more than 4t amount of time and within a
specific region. As an alternative, we define a stay point be-
ing a spatiotemporal point that has a very low speed. First,
we define the sets of frequent univariate-locations extracted
using Approach A1 and A2 as follows.

Definition 1. [Frequent Univariate-Locations] Let
g : S → R be a mapping such that S is a set of stay points
and R is the set of all possible 2-D regions. g(S) is the set
of frequent locations. Let C be a set of data records for a
variable and h : C → S be a one-to-one function such that
h(C) matches each data record in C to a stay point in S.

• The frequent univariate-location set from Approach A1
is the subset of 2-D regions from g(S) that has more
than γ number of data records match to each 2-D region
in g(S).

• The frequent univariate-location set, g ◦ h(C), is ob-
tained from Approach A2.

An example of a univariate-location set is a “Call-Location”
set such that C is the set of call records with each call record
containing information about call duration, call type (voice

call or short messages) and a unique timestamp. Each record
in C matches a stay point in S.

One notes that the approach one would use depends on
the objective of the pattern mining objective. Approach A1
is applicable if one wants to discover patterns from variables
at frequent spatial locations. Approach A2 is applicable if
one wants to discover patterns for a variable of interest (e.g.,
call) with space and time as additional variables. Frequent
locations computed via Approach A1 are independent of the
variable of interest while those computed via Approach A2
are dependent on that variable. In this paper, we use Ap-
proach A2 as our application focuses on the spatiotemporal
nature of the variable patterns and participant personal in-
formation.

One practical consideration is the matching of data records
to spatial points in the mobility data. One important aspect
of mobility data is that all measurements have unique times-
tamps. Hence, the obvious matching approach is to match
a data record (e.g. call record) to a stay point that has the
smallest time difference with it. This matching approach
(h : C → T ) is used by Approach A2 .

One can easily extend Definition 1 to multiple variables
as follows for Approach A2.

Definition 2. [Frequent Multivariate-Locations] Let
g : S → R be a mapping such that S is a set of stay
points and R is the set of all possible 2-D regions. g(S)
is the set of frequent locations. Let C1, . . . , Cj be the j
sets of data records for j variables and h : Ci → S be
a one-to-one function such that h(Ci) matches each data
record in Ci, 1 ≤ i ≤ j, to a stay point in S. The frequent
multivariate-locations set,

∩1≤i≤jg ◦ h(Ci)),

is obtained from Approach A2.

If more than one frequent univariate location intersects
at a particular spatial region, the number of stay points de-
scribing this spatial region depends on the number of stay
points for the frequent univariate locations that intersect
at this spatial region. Note that each frequent multivariate-
location may have different variables. For example, frequent
location Ai may have “short message calls” and “camera ap-
plication” while frequent location has “voice calls”, “camera
application”, and “web browsing application”.

To ensure the usefulness of the temporal aspect of the
multivariate spatiotemporal pattern discovered, we use a
coarse temporal granularity. We divide a day into six non-
intersecting time intervals as follows: (i) early morning,
4am-8.am; (ii) mid-morning, 8am-12pm; (iii) early after-
noon, 12pm-4pm; (iv) late afternoon: 4pm-8pm; (v) evening:
8pm-12am; (vi) midnight: 12am-4am.

Definition 3. [Frequent Temporal Multivariate-
Locations] A frequent temporal multivariate-location is a
frequent multivariate-location that has more than α stay points
within a time interval.

A frequent temporal univariate-location is just a simple case
of frequent temporal multivariate-location with a single vari-
able; A frequent multivariate-location is a special case of
a frequent temporal multivariate-location with no tempo-
ral constraint. Note that the time interval is application-
specific. For example, it can be seasonal (e.g. Spring, Sum-
mer), weekly, monthly, or special occasions (e.g. Thanksgiv-
ing Day, Christmas Day).



2.2 Multivariate Spatiotemporal Rule Pattern
Extraction

Algorithm 1 shows the pseudocode to extract multivariate
spatiotemporal rule from trajectory data and data records
from multiple variables, vi, 1 ≤ i ≤ p for a group of in-
dividuals. Line 1-7 show the data processing and fusion
that merge trajectory data with the data records for the
p multiple variables, and match all the data records with
some stay points for all individuals in the mobility dataset.
First, stay points are extracted (StayPoint in Line 2). The
stay point timestamps and variable record time stamps are
merged and sorted (MergeTime in Line 4). The sorted
timestamps are used to match each data record with the clos-
est stay point timestamp (NearestTemporalNeighbor in
Line 5). Next, we perform a density-based clustering (DB-
SCAN [2] in Line 9) to extract frequent locations p times
on the stay points with matched data records for the p vari-
ables separately. One notes that we take the intersection
(Intersection in Line 11) of the cluster outputs from the
p density-based clustering procedure performed (see Defini-
tion 2) as the final frequent multivariate-locations output,
CL, and their corresponding variable set, F .

For rule extraction, we decide whether two frequent tem-
poral multivariate-locations Ai and Aj are associated or cor-
related by using the Jaccard similarity coefficient

J(Ai, Aj) =
|Ii ∩ Ij |
|Ii ∪ Ij |

on the set of individuals Ii and Ij that visited the two loca-
tions Ai and Aj , respectively, as the support measure. For
confidence, we use

Conf(Ai → AJ) =
|Ii ∩ Ij |
|Ii|

.

From both the support and confidence measures, one ob-
serves the emphasis on the number of individuals to be
present in both temporal multivariate-location sets in a rule.

For MVGenerateRules in Algorithm 1, one can gener-
ate more complex multivariate rules of the form: (vi, vi+1, ...vi+r

at Location Ai)→ (vj , vj+1, ...vi+s at Location Aj). A sim-
ple example is as follows. “Short Message Call and Camera
Application at Ai implies Facebook Application at Aj”.

More complex rules are extracted by considering the tem-
poral aspect at the spatial location or include additional
constraints to generate useful rules.

3. EXPERIMENTAL RESULTS
We combine the GPS (time, longitude, latitude), wire-

less access point (time, longitude, latitude), and call log
(call time, description: voice mail or short message, dura-
tion) data collected from the mobile devices, together with
participant survey data (gender, age range, job category,
communication mean, etc.) to obtain call patterns and rules
with respect to location and period of the day. From the
participant survey data and call log data, one can analyze
the characteristics of the callers at each location and their
tendency for voice calls or short messages. The parameters
for DBSCAN are set as follows: minimum points = 100 and
maximum distance between points = 0.00005 for all our ex-
periments.

Figure 1 shows the association between pairs of frequent
call-locations extracted using Algorithm 1 with Approach

Input: T : the set of trajectory for m individuals;
Vi, 1 ≤ i ≤ p; the sets of data records for the p
variables for m individuals; DBSCAN
parameters: MinPts, γ; minimum support,
confidence: smin, cmin.

Output: R1: multivariate rules for P .
Procedure MSTR(T , V , MinPts, γ, smin, cmin)
1: for i = 1 to m do
2: SP = StayPoint(T (i, :));
3: for j = 1 to p do
4: MT = MergeTime(SP, Vj(i, :));

5: V j
location(i, :, 1 : 2) =

NearestTemporalNeighbor(MT );
6: end for
7: end for
8: for k = 1 to p do
9: CLk =

DBSCAN(V k
location(1 : m, :, 1 : 2),Minpts, γ);

10: end for
11: [CL,F ] = Intersection(CL1, CL2, · · · , CLp);
12: % Rule Pattern Type 1:
13: % Time-independent rules
14: for j = 1 to |CL| do
15: CL′ = CL− {CL(j)};
16: F ′ = F − {F (j)};
17: R1 =

MVGenerateRules(CL(j), CL′, F ′, smin, cmin);
18: end for

Algorithm 1: Multivariate rule extraction from data
records, Vi, 1 ≤ i ≤ p, for variables vi, 1 ≤ i ≤ p.

Figure 1: Relationships among frequent call-
variables-locations in a particular region.

A2 for data processing (see Section 2.1) on a small region
to highlight some observations and to provide easier visual-
ization of our results. There are twenty-one frequent call-
variables-locations. If Approach A1 is used, there are eigh-



teen frequent call-variable-locations. Interesting, most of the
frequent multivariate-locations extracted using Approach A1
do not correspond to any frequent multivariate-location in
Approach A2.

There exists a relationship (i.e., edges) between two fre-
quent call-locations if there exists at least one participant
who coexists in both the frequent call-locations. The strength
(support) of the relationship is represented by the edge thick-
ness depending on the number of participants who coexist in
both the frequent call-variable-locations. For the node size,
it depends on the number of participants in the frequent call-
variable-location. While one could use the number of stay
points to determine the node size, we decided otherwise as
we already specified a minimum number of stay points (i.e.,
100) for frequent locations discovered using DBSCAN.

Next, we present some detailed analysis results and discov-
ered patterns for the frequent call-variable-locations graph.

E1. Frequent temporal multivariate location extraction.

We demonstrate and analyze one of the extracted fre-
quent temporal multivariate location in detail. In par-
ticular, we look at the most frequent temporal mul-
tivariate location (Node 1) in Figure 1. The mean
location for this frequent location is (46.51, 6.56) with
10,246 call records (both voice calls and short mes-
sages) and twenty-seven of the thirty-eight participants
(over 70%) visited the location. Coincidentally, it is
the biggest node in Figure 1.

Analyzing the “Questionaire” data set, we know that
out of the twenty-seven participants, we have six males
and sixteen females. The rest (five) did not provide
personal survey information. At least nineteen of the
twenty-seven were in age group of twenty-two to forty-
four. Thirteen worked full time while three worked
part-time. Five were students and one was a house-
wife. Figure 2 showing the multivariate nature of the
location with a detailed demographic, call type, and
temporal analysis of those who visited the location.
The number of calls (without considering call type)
trend across different temporal periods for different de-
mographic groups is identical, i.e., they peaked in the
afternoon and drop to the minimum during midnight.
Here, there is one interesting observation. Student
group seems to make more voice calls than sending
short messages after 8am. This is different from the
working people, male and female groups. A database
that contains patterns/knowledge shown in Figure 2
for all frequent call-variables-locations will be able to
answer the queries discussed in Section 1.

E2. Relationship and rules between a pair of frequent tem-
poral multivariate locations.

The relationship between the twenty one locations are
shown in Figure 1. One can perform an analysis of
each node Li, i = 1, . . . , 21 similar to the one shown in
Figure 2. In Figure 1, one notes that a single dot fre-
quent location consists of only one individual for the
frequent location. There are fifteen out of the twenty-
one frequent locations. All fifteen individuals were fe-
male students. There was no call after midnight for
five locations. In other words, either the individual
never went to the location after midnight or that lo-
cation was not accessible after midnight. Also, the

Figure 2: Temporal multivariate call patterns for a
frequent location.

fifteen frequent locations are “owned” by nine individ-
uals. For example, L17 and L18 are owned by the same
individual. Moreover, one notes that frequent location
L16 has no edge and hence L16 standalone without any
relationship with other frequent locations.

An interesting observation is that all fifteen individuals
from L8 (located in the EPFL campus) were also at L1.
They made up more than 55% of those at L1. In fact,
this also means 100% confidence for the if-then rule “If
a participant made a call at L8, then he/she also made
a call at L1” during the data collection period.

4. FUTURE WORK AND CONCLUSIONS
In this paper, we investigate and propose a systematic ap-

proach for multivariate spatiotemporal rule mining on het-
erogeneous multivariate mobility data. Future work include
(i) investigation on individual and group behavior mining
approaches that utilize mobility data, and (iii) investigation
on more complex data fusion approaches that utilizes all the
data types available from the mobility data to enable com-
plex rule extraction.
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