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ABSTRACT
Context-aware systems use predictions about a user’s future state
(e.g., their next movements, actions, or needs) in order to seam-
lessly trigger the display of information or the execution of ser-
vices. Predictions, however, always have an associated uncertainty
that, when above a certain threshold, should prevent a system from
taking action due to the risk of “getting it wrong.” In this work,
we present a context-dependent “level of trust” estimator that is
able to determine whether a prediction should be trusted – and
thus used to trigger an action – or not. Our estimator relies on
ensemble learning to adapt across different users and application
scenarios. We demonstrate its performance in the context of a pop-
ular prediction problem – next-place estimation – and show how it
outperforms existing approaches. We also report on the results of
an online survey that investigated user attitudes towards predictor-
based automation in the context of mobile-phone-based personal
assistants. While users appreciated such assistants, they had sub-
stantially different tolerance thresholds with respect to prediction
errors depending on the use case. This further motivates the need
for a context-dependent level of trust estimator.

1. INTRODUCTION
Mobile Personal Assistants (MPAs) like Apple’s Siri, Google

Now or Windows’ Cortana promise to materialize Salber et al.’s
vision of “a system that anticipates the user’s intent and performs
the task for her” [38]. Knowing the current position of the user,
for instance, an MPA can provide her with answers to as-of-yet
unasked questions (“When is the next bus leaving for home from
this stop?”) or bring up reminders (“Leave now to catch your 2
p.m. flight!”).

Today, this new wave of “anticipatory computing” [31] or “pre-
dictive intelligence” [15], as it has been called in the press, still
largely focuses on proactively providing information. However, re-
cent research is already looking into using such predictions to exe-
cute actions, e.g., controlling a home heating system [40, 25] (i.e.,
turning the heating on or off) according to the expected presence
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of the user during the day. As MPAs move from simply displaying
information to actually executing actions on behalf of the user, the
cost of “getting it wrong” rises substantially. Being presented with
unnecessary or wrong information can annoy the user but causes
no further harm. Instead, a wrong operation of the heating system
might cause user discomfort (if the heaters are wrongly kept off) or
even have monetary costs (if the heaters are activated unnecessar-
ily).

We therefore argue that an MPA should execute actions on behalf
of the user only when it can predict her needs “trustful enough”.
However, quantifying the “level of trust” of the predictions of an
MPA is challenging and it depends both on the application scenario
and the user’s preferences and attitude.

In this paper, we focus on the specific scenario in which MPAs
trigger actions following predictions about the next place visited by
the user. We thereby use Kim et al.’s definition of a relevant place
as a location “where the user spends a substantial amount of time
and/or visits frequently” [21]. The next-place prediction problem
has been investigated extensively and a large number of next-place
predictors is available in the literature [43, 12, 39, 33, 44]. Signif-
icant less attention has instead been given to understanding how to
quantify and deal with the uncertainty inherent in next-place pre-
dictions.

Next-place predictors are often implemented using common clas-
sifiers – e.g., Support Vector Machine (SVM) or k-Nearest Neigh-
bor (k-NN) – or combinations thereof [12, 24, 6]. Given some in-
put data, classifiers provide as output the most likely class to which
the input belongs to, whereas each relevant place corresponds to
a class. Along with their estimate, classifiers also usually provide
a class membership probability [49, 50] for each prediction. This
probability – similar to Chow’s prediction reliability [10] – indi-
cates how probable it is that the current input actually belongs to
the predicted class, i.e., the probability that the current prediction
is actually correct. A straightforward strategy to determine whether
the prediction is trustful enough consists in setting a threshold and
trigger an action only if the class membership probability of the
prediction exceeds the threshold. This corresponds to interposing
a binary classifier between the next-place predictor and the actual
MPA, as illustrated schematically in Figure 1a. The MPA utilizes
the current prediction only if the output of the binary classifier in-
dicates that the current prediction is trustful enough.

Relying solely on the class membership probability to decide
whether to accept or reject a prediction might however be very
prone to errors. It has been shown in the literature that many clas-
sifiers provide inaccurate estimates of class membership probabili-
ties [49, 50, 36]. Techniques to improve these probabilities – e.g.,
classifiers’ calibration [49, 50, 36] – exist but they are often cum-
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bersome to execute and are classifier-specific. When an MPA relies
on a third-party mobility prediction engine, it typically does not
known which predictors are used or whether they are calibrated or
not. Lastly, using a single binary classifier might also be prone to
errors. It is indeed known in the literature that ensemble classifiers
– i.e., combination of classifiers that perform the same task – pro-
vide for better performance [46, 12, 16, 17]. In this paper, we rely
on a specific form on ensemble learning known as bucket of mod-
els [1, 14]. Thereby, the most suitable classifier for a given task is
selected among a set of candidates. More specifically, we provide
the following contributions.

• We describe the design and implementation of an ensemble
classifier – called LOTUS – that estimates the level of trust of
a next-place prediction. LOTUS takes the current prediction
and its class membership probability – along with the current
place – as input from a mobility prediction engine. It then
outputs a binary decision that indicates whether the current
mobility prediction is correct or not.

• We evaluate the performance of LOTUS and show that it can
achieve better performance than binary classifiers that rely
on class membership probability only. We ground our anal-
ysis on two large, publicly available data sets of human mo-
bility records: The Nokia data set [29] and the Device An-
alyzer data set [45]. To the best of our knowledge, this is
the first work that systematically analyzes the uncertainty of
next-place predictions on these two data sets.

• We conduct a questionnaire-based user study that (1) affirms
the general value users see in the concept of MPAs; (2) con-
firms our understanding that different usage scenarios will
require significantly different levels of trust for a next-place
predictor; and (3) reveals that the required level of trust de-
pends on the potential for negative consequences stemming
from an MPA’s actions.

The remainder of the paper is structured as follows. We first
review related work and outline the novelty of our approach. We
then present our novel level of trust estimator and discuss its per-
formance. Further, we describe our questionnaire study by high-
lighting the hypotheses we aim to verify, the study design, and the
obtained results. Although our questionnaire study is part of the
motivation of this work, we discuss it after presenting LOTUS for
the sake of clarity. Finally, we discuss the current limitations of our
approach and outline possible directions for future work.

2. RELATED WORK
Our work lies at the intersection of different research areas, in

particular: human mobility prediction, predictability and uncer-
tainty of human behavior, and calibration of machine learning clas-
sifiers.

A large number of approaches to solve human mobility predic-
tion problems have been proposed in the literature. For instance,
several authors have focused on the next-place prediction prob-
lem [39, 2, 5, 12, 33], which is also considered in this work as
an example. Other authors used social-ties to improve the predic-
tive power of predictors or to extract users’ behavior [11, 28]. Pre-
dicting household occupancy is related to the next-place prediction
task – whereas only two places (home or not home) are of rele-
vance. Several solutions to detect and predict household occupancy
exist [40, 25, 23]. Furthermore, predicting which applications on
users’ mobile device will be used next has also gained attention in
recent years [47, 12, 41, 48]. The techniques described above are

all complementary to our approach. They focus on predicting hu-
man activities in different application scenarios but do not consider
or incorporate information about predictions’ uncertainty. LOTUS
extends the capability of these predictors by determining how much
trust should be given to each prediction.

Some approaches focusing on predicting human behavior, ac-
tivities, or mobility also incorporate uncertainty information. For
instance, in his seminal work, Horvitz [19] proposed LookOut, a
system for scheduling and meeting management. Whenever the
user receives an e-mail, LookOut assists her with scheduling an
appointment suggested in the e-mail. LookOut assigns class mem-
bership probabilities of user intentions by leveraging a linear SVM
classifier. A simple, threshold-based binary classifier is then used
to decide whether an action should be executed or not. A similar
approach has been used by other authors too [40, 12, 41]. We com-
pare LOTUS to the threshold-based approaches used in previous
work and demonstrate that LOTUS can achieve better performance.

Besides the class membership probability, LOTUS uses the In-
stantaneous Entropy (IE) of a user as an additional indicator of
the level of trust of a prediction. IE has been proposed as a met-
ric to identify situations in users’ daily life that exhibit low pre-
dictability [32]. Thereby, McInerney et al. [32] have built upon
previous work on the predictability of human mobility [42, 20, 30,
11]. Whereas this previous work focused on determining how pre-
dictable a user is in general, McInerney et al.’s goal is to charac-
terize the predictability of a user at each time instant. We leverage
the information captured through the IE metric by including it as
one of the features in LOTUS. We further consider a level-of-trust
estimator that relies on IE only and compare its performance to that
of LOTUS and other classifiers.

Besides the work more closely related to the prediction of human
mobility and behavior in general, there is a large body of literature
dealing with the uncertainty of the output of a classifier in the ma-
chine learning domain. Many of the classifiers commonly used in
the literature indicate the class membership probabilities [49] of
each classification. However, some classifiers do not provide these
probabilities [37] and others estimate them poorly [7, 49, 13]. A
well-known classifier that does not provide class membership prob-
abilities “natively” is SVM. Platt has however presented a method –
called Platt Scaling – that allows a SVM classifier to compute such
probabilities [37]. Our approach is complementary to Platt Scal-
ing and similar techniques because LOTUS is agnostic to the spe-
cific algorithms used by the mobility prediction engine. Zadrozny
and Elkan further address the issue of poor class membership prob-
ability estimates provided by decision trees and Bayesian classi-
fiers [49]. The authors compare ten different techniques for esti-
mating class membership probabilities. The main outcome of the
authors’ study is that major changes to the probabilities given by a
standard decision tree and naïve Bayesian classier are required to
accurately capture class membership probabilities. They thus pro-
pose a method that uses isotonic regression to estimate class mem-
bership probabilities for a multi-class problem [50]. To do so, the
technique proposed by the authors transforms a multi-class classi-
fication problem into several binary classifications. This is done
instead of attempting to derive probability for each class directly.
The authors calibrate the class membership probabilities for each
binary classification problem separately and then assemble them to
obtain multi-class probabilities. In contrast to that, in our work we
do not require to break down the multi-class classification problem
of which place will be visited next. Our approach is agnostic to the
specific predictors used by the prediction engine and does not need
to know a priori the set of output classes.

Following the same line of Zadrozny and Elkan’s work, Niculescu-
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Mizil and Caruana examine ten supervised machine learning clas-
sifiers and their ability to estimate class membership probabili-
ties [36]. The authors show that neural networks and bagged trees
are already able to estimate these probabilities accurately without
any additional calibration. Classifiers such as SVM and random
trees, however, do require an additional calibration after which both
classifiers achieve better estimations of the class membership prob-
abilities. The authors perform calibration by utilizing the two meth-
ods Platt Scaling [37] and isotonic regression [50]. Their evalua-
tion shows that the former one requires less data for calibration
while the latter one achieves better calibration results if a substan-
tial amount of data is available. We consider these and other classi-
fier calibration approaches to be complementary to our work. Clas-
sifier calibration helps improving the reliability of the class mem-
bership probabilities of machine learning classifiers. We use these
probabilities as input to LOTUS, so their improvement is likely
to also improve LOTUS’s performance. In our current work, we
use class membership probabilities from uncalibrated classifiers,
as also done in previous work on mobility prediction. Investigating
LOTUS’s performance when calibrated class membership proba-
bilities are available is part of our future work.

3. LOTUS: ESTIMATING THE LEVEL OF
TRUST OF NEXT-PLACE PREDICTIONS
USING ENSEMBLE LEARNING

As outlined above, several existing classifiers provide class mem-
bership probabilities that quantify what we refer to as the level of
trust of a prediction. For instance, the implementation of the SVM
classifier in the widely used scikit-learn Python library provides,
for each classified sample, the corresponding class membership
probability.1 Authors working in the human mobility prediction
domain have also investigated ways to estimate how “predictable”
users are in general or at certain time instants [42, 20, 30, 32].

In this work, our goal is to design a level of trust estimator that
determines whether the current output of a next-place predictor
should be trusted (accepted) or not (rejected). We envision this
component to be able to improve the behavior of MPAs and we
place it between the mobility prediction engine and the MPA itself,
as exemplarily shown in Figure 1b. We focus on the next-place pre-
diction problem because it is one of the most commonly addressed
problems in studies of human mobility [2, 26, 33, 39]. Our ap-
proach, however, can easily be extended to address other human
mobility prediction problems.

Our approach, dubbed LOTUS, relies on ensemble learning. In
particular, we leverage the concept of a bucket of models, which
is a special form of ensemble learning [1, 14]. Ensemble learning
algorithms are known to have a better generalization ability than
single predictors [46]. We thus expect LOTUS to obtain better per-
formance than approaches used in previous work and that rely on
simple thresholding [19, 12].

In the remainder of this section, we describe the design of LO-
TUS and the novel score function that is uses to determine which
classifier to use for a specific user and application scenario.

3.1 LOTUS: Design and Implementation
LOTUS trains and evaluates a set of classifiers (bucket of mod-

els) and selects among them the most suitable one to be used for
a given user and application scenario. We configure LOTUS by
including the following six state-of-the-art machine learning pre-
dictors in the set of classifiers: Support Vector Machine (SVM) [8,

1http://scikit-learn.org/stable/modules/svm.html
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Figure 1: Sketch showing how a level of trust estimator is placed
between the mobility prediction engine and the MPA.

46], k-Nearest Neighbor (k-NN) [8, 46], Classification and Regres-
sion Trees (CART) [9, 46], Naive Bayes (NV) [46], Linear Regres-
sion (LR), and Gradient Boost (GB). We choose these approaches
because they are representative of different classification strategies.
Also, four of these six predictors – SVM, k-NN, CART, and NV –
are listed in the top-10 list of algorithms for data mining reported
by Wu et al. [46]. We rely on the implementations of these classi-
fiers available from the scikit-learn library.2

The input to the classifiers running within LOTUS is a set of Nf

features F = {f1, f2, . . . , fNf }. The first two features are the
current output of the mobility prediction engine. In particular, f1
is the prediction itself, which we indicate with x̂, while f2 is the
estimate of the corresponding class membership probability, which
we indicate as px̂. Please note that although the values of x̂ and px̂
change in principle at every time step ti, we omit the subscript i,
for simplicity. The next three features are: the current place of the
user (f_cur_place); information about the current day being a
weekday or a day of the weekend (f_weekday); and the number
of places already visited on the current day (f_places_today).
Recent studies have shown that using these three features (in com-
bination with different classifiers) provides for the highest average
performance in predicting the next place across a large number of
user [6]. Finally, the sixth feature is the IE value computed as spec-
ified by McInerney et al. [32]. The IE metric is computed over the
sequence of previously visited places (including the current one).

The output of LOTUS is a binary decision about whether the
current next-place prediction is correct or not. To determine which
classifier to use at runtime to make this decision, LOTUS first trains
the set of candidate classifiers mentioned above on a subset of the
input data. A further, non-overlapping subset of the input data is
then used to evaluate the performance of each classifier. Users (or
their MPA) can specify the minimum level of trust that predictions
must have to be used to trigger MPA’s actions. LOTUS selects,
among the set of candidates, the one that provides the best perfor-
mance given the users’ requirements.

The rationale behind this approach is that classifiers’ performance
might vary depending on the mobility patterns of the user and the
particular application scenario, i.e., how much tolerance the user
has for the MPA to either fail to perform an action or perform a
wrong one. The best performing classifier is hence the one that
maximizes the score function that we introduce in Section 3.2. This
score function tunes the precision achieved by the classifiers ac-
cording to the preferences of the user. In Section 6, we address the
problem of how to quantify users’ preferences in terms of level of
trust and depending on the application scenario.

Since the best performing classifier may change over time, a pe-
riodical repetition of the training and evaluation phase of the in-
dividual classifiers is necessary. In the context of this work, we
assume that LOTUS selects the best performing classifier after an

2http://scikit-learn.org/stable/
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initial training and evaluation phase and subsequently uses it at run-
time. Determining appropriate retraining intervals is part of future
work.

To train and evaluate the classifiers, LOTUS assumes informa-
tion about the current place of the user to be available – both during
training and at runtime. This information can be extracted apply-
ing standard algorithms to data that can be collected on common
mobile devices (e.g., Wi-Fi scans or GPS coordinates) [4, 21, 34].
Furthermore, the current place of the user is a feature often used by
next-place predictors as part of their input data [5, 39, 35, 33, 12].
We thus assume for simplicity that the mobility prediction engine
provides this information – as illustrated in Figure 1b – although it
can also be obtained by other components.3

3.2 LOTUS: Score Function
As explained above, LOTUS selects the best performing classi-

fier out of a set of candidates. These classifiers estimate whether
the current prediction is correct or not, i.e., they classify the input
as belonging to one of two classes, the correct and the incorrect
classes.

In the training phase, the classifiers take as input both the feature
set F and the ground-truth data (i.e., the current place). This way,
they can compute their internal parameters so as to optimize their
classification accuracy, which is defined as the ratio of the number
of correct classifications and the total number of classifications. In
the evaluation phase, the classifiers take as input only the feature set
F – which is computed over a different set of input data than the
one used for training. Ground-truth data is used in the evaluation
phase only to assess the actual performance of the classifiers.

We use three metrics to describe this performance. The first
metric is the precision of the classifier, indicated as PRE. It is
computed as the ratio of the number of correct predictions that are
also classified to be correct (i.e., the so-called true positives, TP),
and the total number of predictions that are classified to be correct,
which includes also the false positives (FP) [8]. Thus:

PRE =
TP

TP + FP
. (1)

The second metric, which is known as Negative Predictive Value
(NPV ), is the ratio of the number of correct predictions that are
classified to be incorrect (i.e., the so-called true negatives TN), and
the total number of predictions that are classified to be incorrect,
which also includes the false negatives (FN). Thus:

NPV =
TN

TN + FN
. (2)

At runtime, the values PRE and NPV , derived from our best
performing classifier and feature set, represent the calibrated class
membership probabilities for predictions that are classified as cor-
rect and incorrect, respectively.

The third metric, which we refer to as Positive Prediction Rate
(PPR), is the ratio between the number of predictions that are clas-
sified as correct, irrespective of whether the prediction is actually
correct or not, and the total number of predictions. The numerator
of this ratio is thus the sum of true positive (TP) and false posi-
tive (FP) classifications while the denominator is the total number
of classifications, i.e. the sum of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) classifications.
Thus:

PPR =
TP + FP

TP + TN + FP + FN
. (3)

3In this case, however, it must be ensured that both LOTUS and the
mobility prediction engine use the same set of relevant places.

A false positive classification occurs when LOTUS classifies a
prediction of the mobility prediction engine to be correct when it
is actually incorrect. Thus, the metric PPR expresses the total
number of instances for which LOTUS states that a prediction of
the mobility prediction engine is correct. Since we assume that an
MPA may execute an action when LOTUS estimates a prediction
to be correct, PPR actually represents the upper bound for the
total number of instances in which such an action is executed by
the MPA, regardless of whether executing this action is correct or
not. Without a level of trust estimator the MPA would assume all
predictions to be correct, and thus potentially execute autonomous
actions whenever the mobility prediction engine says so. This is
equivalent to the case in which a dummy classifier that estimates all
predictions to be correct is used, resulting in PPR = 1 (100%).

As we saw in our survey, described in Section 6, certain use cases
(e.g., file prefetching) might see a user preferring to have the MPA
perform actions whenever possible, regardless of whether the ac-
tion is actually correct or not (PPR = 1). For other use cases
(e.g., home automation), users may instead prefer to have the MPA
perform an action only when the level of trust in the prediction is
very high (highest achievable PRE).

To capture differences in the level of trust requirements given
by application scenarios, LOTUS chooses the classifier to use at
runtime according to the score function that combines the two per-
formance metrics PPR and PRE. We indicate this score function
with the symbol SFw and define it as:

SFw = PRE + tan(w × 45)× PPR, (4)

where tan represents the trigonometric function tangent and the
weight w is a value between 0 and 1 that captures the preferences
of the user. LOTUS selects the classifier with the highest value of
SFw to be the classifier to use at runtime.

The rationale behind the definition of LOTUS’s score function is
the following. When the weight w is set to 0, the value of SFw is
equal to PRE. Thus, the classifier that provides the highest pre-
cision (i.e., the highest true positive ratio) is chosen and used at
runtime. This implies that the number of false positives “seen” by
the MPA is decreased with respect to the case in which LOTUS is
not used. Since a false positive classification triggers the unnec-
essary execution of an action, the total number of these actions is
reduced. This clearly comes “at the cost” of an overall lower num-
ber of actions executed by the MPA (lower PPR). The weight w
should thus be set to 0 when the user prefers the MPA to execute
autonomous actions only when it is very confident that the action
is really necessary (i.e., that the prediction of the mobility predic-
tion engine is correct). On the other hand, the weight w should
be set to 1 when the user prefers the MPA to execute autonomous
actions irrespective of how much trust is given to a particular mo-
bility prediction. While in principle any value between 0 and 1 can
be chosen for w, we consider in the following and in our evaluation
values of w equal to 0, 1/6, 2/6, 3/6, 4/6, 5/6, and 1. This cor-
responds to a 7-point Likert scale used in our questionnaire, which
is described in Section 6. We exploit the data collected through our
questionnaire to derive realistic values for w.

We illustrate this point for a specific example, reported in Fig-
ure 2. The figure shows the case in which LOTUS is used to clas-
sify the predictions of a mobility predicting engine that achieves
a prediction accuracy of 40%. The x-axis reports the value of
PPR obtained by LOTUS’s classifiers while the y-axis reports
the corresponding precision PRE. The point Q (PPR = 40%,
PRE = 100%) indicates the performance that would be achieved
by a perfect classifier. This classifier would indeed identify all the
correct predictions output by the mobility prediction engine, which
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Figure 2: An illustrative example of how the score function allows
LOTUS to select the best performing classifier. The example refers
to a situation in which the mobility prediction engine achieves a
precision of 40% and the user-defined weight w is set to 0.5 (3/6).

are 40% of the total, and thus have a PPR of 40% (where FP=0)
and a PRE value of 100%. The point P (PPR = 100%, PRE =
40%) in the figure reports the performance that the dummy classi-
fier would achieve, which also corresponds to the case in which
LOTUS is not used. Indeed, if 40% of the mobility predictions
are correct and the classifier estimates all predictions to be correct
(PPR = 100%), then its precision is necessarily equal to 40%.

For a given value of PPR, the corresponding point on the curve
labeled as “Upper boundary” in Figure 2 indicates the highest pre-
cision achievable by any classifier. Moving beyond the upper bound-
ary requires improvements of the mobility prediction engine’s per-
formance. The colored region in Figure 2 is the region in which
the performance of the classifier chosen by LOTUS should lie. We
define a “Lower boundary” as the boundary that is achieved by a
random classifier.

Let us assume in this example that w is equal to 3/6, i.e., the
solid line labeled with w = 3/6 represents the “Decision bound-
ary”. Thus, the entire colored region above the decision boundary
can be used to search for a suitable classifier. A suitable classi-
fier is in this case any classifier that can improve (+X%) upon the
40% precision of the dummy classifier. The costs for this improve-
ment in terms of the reduced PPR, i.e., number of the executed
actions, must be lower than X

tan(3/6×45)
. In this case the term

tan(3/6×45), which is equal to 0.4142, describes the slope of the
decision boundary. In other words, for an improvement of PRE
of 0.41% the user is willing to give up no more than 1% of the ex-
ecuted actions (PPR). The value 45 describes the degree of the
angle (slope = 1) between the decision boundary for w = 0 and
w = 1. The rationale behind setting w = 1 to the angle of 45 de-
gree is that no classifier can reach the area above the upper bound-
ary. Therefore, we define the decision boundary for w = 1 as the
line that connects the points P and Q. As we observe, our function
SFw then divides this area into seven parts (equal angles). In fu-
ture, we plan to develop a non-linear function that reflects users’
preferences more accurately than a linear function by conducting
further studies.

Figure 2 exemplarily shows the performance of three fictive clas-
sifiers – indicated as A, B, and C. Since w is equal to 0.5, the clas-
sifier B cannot be chosen, because its achieved SFw value is lower
than that of the dummy classifier. Both A and C are above the deci-
sion boundary and are preferred over the dummy classifier. In this
example, we observe that the classifier A is further from the deci-
sion boundary than classifier C (dA > dC ). This is reflected in a
higher value of the function SF3/6. Therefore, the best solution for
the given user’s preferences is classifier A.

4. EVALUATION SETUP
We now describe experimental setup we choose for demonstrat-

ing the performance of LOTUS. The corresponding evaluation re-
sults are then presented in the next section.

4.1 Data Sets
We run our evaluation on two large, publicly available data sets

to which we refer as the Nokia data set and the Device Analyzer
data set. The Nokia data set has been collected during the Nokia
Lausanne Data Collection Campaign (LDCC) [22]. Part of this data
set was made available to the public in 2012 in the context of the
Nokia Mobile Data Challenge (MDC) [29]. The entire data set was
released to the public in 2013 and is now managed by the IDIAP
Research Institute (http://www.idiap.ch/). The Nokia data set
contains data collected from the mobile phones of 141 users for a
period of about 18 months. The collected data includes, for in-
stance, GPS traces, records of Wi-Fi scans, Bluetooth scans, phone
calls, and user demographics including age and gender. The most
commonly visited places for each user are also available. Accord-
ing to the documentation accompanying the data set, these were
determined using an approach similar to [34], and were validated
by the users themselves.

The Device Analyzer data set [45] has been first made publicly
available in the context of the UbiComp/ISWC 2014 Programming
Competition (http://goo.gl/6w3GwY). The publicly available
version of the data set contains sensor data from over 17,000 users
across the world. We have used a tool available along with the data
set to select a subset of 790 users for whom at least 10 month of
sensor data is available. We then applied a heuristic for extracting
users’ relevant places similar to the one used by Bao et al. [3].
Finally, we consider 268 users with at least 100 relevant places
visits and at least 10 unique places recorded.

To run our evaluation, we split the data of each user in four sub-
sets of equal size. We call these subsets T1, T2, T3, and T4. We use
T1 to train the mobility predictor. We then use the trained predictor
to compute NP predictions using T2 and T3 as input. The output
of the mobility predictor is then given as input to LOTUS. Further-
more, it uses data from T2 (T3) and the corresponding output of the
mobility predictor to train (evaluate) its set of classifiers. Finally,
we use data from T4 to evaluate the performance of the level of
trust estimators considered in this work.

4.2 Mobility Predictor
We evaluate LOTUS’s ability to discriminate correct and incor-

rect estimates in the context of the next-place prediction problem, i.e.,
the problem of predicting the next place that will be visited by a
user. For evaluation purposes, we assume the mobility prediction
engine uses SVM as the mobility predictor that computes next-
place predictions. We assume this predictor uses three input fea-
tures: (1) the current place of the user (f_cur_place), (2) in-
formation about the current day being a weekday or a day of the
weekend (f_weekday), and (3) the number of places already vis-
ited on the current day (f_places_today). We use SVM in
combination with this set of features because recent studies have
shown that this configuration provides for the highest average per-
formance across a large number of user [6].

4.3 LOTUS’s competitors
We compare LOTUS to five other techniques to estimate the level

of trust of mobility predictions. These are: (1) majority vote (0-R);
(2) thresholding over the class membership probabilities (TTH );
(3) thresholding over the IE metric (IETH ); (4) a dummy estimator
that assumes all mobility predictions to be correct; and (5) a modi-
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fication of LOTUS to which we refer to as the Best Accuracy (BA)
estimator and that is described below.

The majority vote (0-R) estimator observes the accuracy achieved
by the mobility prediction engine at runtime. If the accuracy is
> 50%, then the 0-R estimator assumes the mobility predictor is
always correct and always classifies the prediction of mobility pre-
dictor as correct (and vice versa if the accuracy is ≤ 50%). The
TTH approach estimates the output of the mobility predictor to be
correct if the class membership probability corresponding to the
current prediction, indicated as px̂, is higher than a pre-specified
threshold TH [19, 40, 12, 41]. The IETH approach is similar to
TTH , but applies a thresholding over the computed value of IE [32]
instead of over px̂. For both TTH and IETH we experiment with
different thresholds: 20%, 40%, 60%, and 80%. The dummy esti-
mator simply assumes that all mobility predictions are correct. This
corresponds to the case in which no LoT estimator is used. Lastly,
BA is a modification of LOTUS in which the best performing clas-
sifier is selected as the one that achieves the highest classification
accuracy.

5. EVALUATION RESULTS
We discuss now the performance achieved by LOTUS and the

other level of trust estimators introduced in the previous section.
First, we show that LOTUS can adapt to different users’ mobility
patterns and available input data by choosing different classifiers to
operate at runtime. Second, we compare classification accuracy of
all estimators. Third, we evaluate for how many users in both data
sets each of the estimators achieve a better performance than the
dummy classifier.

5.1 Classifiers chosen by LOTUS
LOTUS is capable of selecting a classifier depending on the spe-

cific mobility pattern of a user as well as depending on the appli-
cation scenario. We show exemplary that this is actually the case
for the Nokia data set. To this end, we compute the percentage
of cases in which each of the classifiers included in LOTUS’s set
of classifiers has been selected as the best one. The computation
is performed for all users and weights w. We inspect the results
(omitted due to space constraints) and observe that in about half of
the cases either k-NN or LR is chosen (26% and 25%, respectively).
In 17% of the cases CART is selected. In the remaining cases the
choice is almost equally split among NV (12%), GB (11%), and
SVM (10%). This data shows that none of the six considered clas-
sifiers can be considered to clearly be the “best” one for all users
and weights. This supports our design choice of making LOTUS
dynamically select the best classifier out of a set of candidates.

5.2 Classification Accuracy
Figure 3 shows the classification accuracy achieved by the con-

sidered level of trust estimators. Results are reported for both the
Nokia data set (a) and the Device analyzer data set (b). The boxes
cover the 25th and 75th and the whiskers the 5th and 95th per-
centiles. The markers within the boxes correspond to median val-
ues. We report the results for the weights w: 1/6, 2/6, 3/6, and
4/6. This corresponds to the weights identified as relevant in our
questionnaire-based study (cf. Section 6).

As expected, we observe that LOTUS achieves higher accuracy
than other approaches. Thus, LOTUS is more effective than its
competitors in identifying which predictions are correct and which
are not. For instance, for the Nokia data set the highest median ac-
curacy is achieved by LOTUS with w = 2/6 and BA (67% and
69%, respectively). The next best median accuracy (excluding LO-
TUS) is achieved by the 0− R estimator (59%). Similarly, for the
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Figure 3: Classification accuracy achieved by the considered LoT
estimators.

Device Analyzer data set the highest median accuracy is achieved
by LOTUS with w = 3/6 and BA (75% and 78%, respectively).
The next best median accuracy (excluding LOTUS) is achieved by
the T60 and 0 − R estimators (64%). LOTUS’s superior perfor-
mance is due to the fact that it relies on ensemble learning.

From Figure 3 we can further observe that for both the Nokia
data set and the Device Analyzer data set LOTUS’s median accu-
racy decreases as the weight w increases. This decrease in per-
formance is due to the fact that a higher weight w makes LOTUS
classify more predictions as correct. In other words, LOTUS will
risk to classify more predictions as correct (even if they are incor-
rect) to avoid the risk of erroneously classifying correct predictions
as incorrect. This in turn corresponds to a situation in which a user
is more willing to accept the MPA to trigger actions unnecessarily
than to accept the MPA not to trigger an action when it is supposed
to do so.

Lastly, Figure 3 also shows that the classifiers tend to perform
better over the Device Analyzer data set rather than the Nokia data
set. We believe this is mainly due to the fact that the average num-
ber of relevant places for users in the Nokia data set is substantially
higher than for users in the Device Analyzer data set. This implies
that classifiers operating on the Device Analyzer data set must deal
with a substantially lower number of output classes.

5.3 Benefits from Using Level of Trust Esti-
mators

In this work, we assume that an MPA triggers an action only if
a level of trust estimator classifies the current next-place prediction
as correct. The ratio of these positive classifications over the total
number of classifications performed by an estimator is given by
PPR. The level of trust of each positive classification is given by
the precision PRE of the classifier. Furthermore, the level of trust
of each negative classification is given by the negative predictive
value NPV of the classifier. If no level of trust estimator is used
– or, equivalently, the dummy estimator is used – PPR is equal
to 100% and PRE corresponds to the accuracy of the mobility
predictor.
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(a) Nokia data set.

(b) Device Analyzer data set.

Figure 4: Fraction of users for whom a level of trust estimator
achieves a better performance than the dummy classifier in terms
of the achieved score and with respect to weight w.

Figure 4 shows the gain achievable from using LOTUS or any
other estimator with respect to the case in which the dummy estima-
tor is used. Each curve in Figure 4 corresponds to the performance
of an estimator. The performance of each estimator is computed
as the value of SFw defined in Equation 4. Each point on a curve
represents the percentage of users for whom the corresponding es-
timator provides, for the weight indicated on the x-axis, a higher
value of SFw than a dummy classifier.

From Figure 4 we can observe that LOTUS outperforms, for both
the Nokia data set and the Device Analyzer data set, any other esti-
mator for all weights but w = 1. This is because, as expected, LO-
TUS maximizes the value of SFw for the highest number of users.
As already mentioned on previous occasions, the case w = 1 cor-
responds to a situation in which users prefer MPAs to execute all
potentially useful autonomous actions irrespectively of whether or
not the mobility prediction is correct. Thus, in this case there is in
any case no need to use any level of trust estimator.

Each curve in Figure 5 shows the percentage of users for whom
the corresponding classifier achieves the highest value of SFw among
all considered estimators. For instance, for w = 2/6 LOTUS
achieves the highest value of SFw for 57% and 76% of users for the
Nokia and Device Analyzer data set, respectively. As the weight w
increases, the percentage of users for whom using the dummy clas-
sifier represents the best option also increases.

6. QUESTIONNAIRE-BASED USER STUDY
The motivation of our work is based on four hypotheses that we

formulate as follows:

• H1 (Utility): Users see utility in having MPAs take autonomous
actions on their behalf.

(a) Nokia data set.

(b) Device Analyzer data set.

Figure 5: Comparison of the different estimators in terms of the
achieved score. For each estimator the figure shows the fraction of
users for those the corresponding estimator achieves the best score
with respect to weight w.

• H2 (Context-dependence): A user-acceptable error rate for
an MPA depends on the underlying use case scenario.

• H3 (Confidence): Users want MPAs to estimate the level of
trust of their predictions when taking autonomous actions.

• H4 (Adequacy): The level of trust needed depends on the
potential negative consequences from autonomous actions.

Although some of these hypotheses might be obvious, we pro-
vide first quantitative evidence by conducting a questionnaire-based
user study with 188 participants from 18 countries across six con-
tinents. To explore H2 and H4, we selected three representative
scenarios in our study: home automation, providing traffic updates,
and prefetching mobile application data. These three scenarios not
only span a broad spectrum of use cases but also feature very dif-
ferent risks, i.e., the negative consequences from the unnecessary
execution of tasks are very different in each scenario. Participants
received short explanations similar to the sections below, describ-
ing the three scenarios.

Home Automation.
In the context of home automation, the MPA on a user’s mo-

bile device predicts that the user will return home soon. Using this
prediction, the MPA remotely switches on the heating so that the
user returns to a warm home. Similarly, the MPA automatically
switches off the heating when it detects that the user is about to
leave the house soon. Incorrect predictions may lead to a waste of
energy – and hence money – if the heating system is turned on too
early (or off too late), or a loss of comfort when it is turned on too
late (or off too early).

7



Table 1: Demographic groups and their statistics.

Label Description Total Fraction
u_total Number of participants 188 100%
u_res_c Number of residence countries 18 100%
u_origin_c Number of origin countries 40 100%

g_female Female 38 20%
g_male Male 148 79%

p_student Student 50 27%
p_phd_student Research assistant or PhD student 83 44%
p_postdoc Postdoctoral researcher 17 9%
p_faculty Faculty member 19 10%
p_employee Employee 16 9%
p_other Other 2 1%

a_22 Below 22 years old 2 1.1%
a_22_27 Between 22 and 27 years old 70 37.2%
a_28_33 Between 28 and 33 years old 71 37.8%
a_34_38 Between 34 and 38 years old 24 12.8%
a_39_44 Between 39 and 44 years old 8 4.3%
a_45_50 Between 45 and 50 years old 2 1.1%
a_50 Above 50 years old 5 2.7%

Providing Traffic Updates.
In order to provide traffic updates, the MPA on a user’s mobile

device predicts that the user will soon go to another place. The
MPA automatically verifies current traffic conditions en-route to
this new place and alerts the user when it is time to leave. Incorrect
predictions may lead to unnecessary notifications for wrongly pre-
dicted trips (which might annoy the user) or a lack of alerting the
user to leave, in case the MPA misses a trip (which may result in
the user being late).

Prefetching Mobile Application Data.
Given Wi-Fi connectivity at the current place, the MPA will start

prefetching data for those applications that the user will most likely
use at the next predicted place, or while en-route. Incorrect pre-
dictions in this scenario may lead to the prefetching of unneeded
data (which may lower battery life), or to the lack of availability of
needed data (or additional costs from using cellular data instead).

6.1 Methodology
The questionnaire is divided into four parts: Part 1 asks for de-

mographic data (e.g., age, gender, country of origin, country of res-
idence); Part 2 collects information about the participant’s mobile
device usage behavior (e.g., how often they use a specific feature
on their mobile device); Part 3 focuses on if and when a participant
would like to have an autonomously acting MPA (H1 and H2); and
Part 4 focuses on issues involving the uncertainty of an MPA’s de-
cisions (H3 and H4). An anonymized version of our questionnaire
is available at https://goo.gl/1c8UHM. After testing several it-
erations of the questionnaire design with volunteers not involved in
the design process, we distributed the questionnaire both by word-
of-mouth through our personal network, as well as by posting links
to it on social media and mailing lists.

6.2 Results
We received a total of 188 completed replies to our question-

naire. Table 1 summarizes the demographics. Due to our recruit-
ment channels, the large majority of our participants are male (79%)
and are members of the academic community (90%). More than
half are heavy phone users who use their mobile device almost ev-
ery hour (see Figure 6). We also asked participants how often they
currently use an MPA, e.g., Google Now, and how satisfied they are
with it. The results reported in Figure 6 and Figure 7a indicate that
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Figure 6: Mobile device usage statistics indicated by the partici-
pants of the study.

(a) Users’ satisfaction in
using MPAs.

(b) Users’ willingness of
living without an MPA.

Figure 7: Satisfaction in using an MPA and willingness of living
without it.

the majority of participants never use an MPA, and those who have
done so are largely not satisfied with them.

6.2.1 Perceived Value of Autonomous Actions
While most participants were happy to live without an MPA (see

Figure 7b), participants generally found the concept of an MPA to
be helpful (see Figure 8), confirming our hypothesis “H1: Util-
ity”. Only 7% indicated that having an MPA that autonomously
executes tasks on their behalf would not help them at all. For the
three scenarios, the perceived value of an MPA was even higher
(see Figure 8), in particular for the scenario of prefetching data.

To investigate hypothesis “H2: Context-dependence”, we asked
participants to indicate what percentage of MPA errors they would
tolerate when it is autonomously executing a specific task before
they stopped using the MPA. Figure 9 reveals that for the home
automation scenario, almost two-thirds of participants would only
accept an error rate of less than 10%. In the case of traffic updates,
it was 50% of participants. For data prefetching, participants were
willing to accept substantially more errors than for the other two
application scenarios. This seems to confirm H2.

6.2.2 Trustworthiness
To verify hypotheses “H3: Confidence” and “H4: Adequacy”,

we asked participants to assume that for each of the three applica-
tion scenarios, there were two MPAs on the market: MPA1 does not
use any kind of level of trust estimation and hence autonomously
executes tasks whenever it predicts a change of place. MPA2 in-
stead uses a level of trust estimator and only executes a task if the
level of trust in its prediction is very high. Participants were asked
to indicate their preference between these two MPAs on a 7-point
Likert scale.

In different scenarios, participants preferred different MPAs (see
Figure 11). In the case of home automation, and to a lesser ex-
tent for traffic updates, MPA2 was preferred. For the prefetching
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Figure 8: The users’ perceived value of having support from an
MPA for different application scenarios.

Figure 9: Percentage of acceptable errors according to users’ opin-
ion for the different application scenarios.

scenario, participants preferred MPA1. This seems to confirm H4.
Almost 60% of participants found the idea of an MPA that can es-
timate the level of trust of its predictions valuable or very valuable
(see Figure 10), confirming H3.

6.3 Discussion
Over 90% of our study participants were owners of either an

Android, Apple, or Microsoft smartphone. While most of these will
most likely run a recent OS-version that comes with an MPA (e.g.,
Google Now or Microsoft Cortana), almost 70% of all participants
did not use an MPA at all. Almost 45% of participants indicated
that they were willing to live without an MPA. However, 93% of
our participants saw the benefit in having an MPA that acts on their
behalf. Clearly, there is much room for improvement when it comes
to “anticipatory computing” in today’s MPAs.

Figure 9 and Figure 11 reveal that the acceptable error rate for
incorrectly executed tasks on a user’s behalf depends on the under-
lying scenario. In our data, we also saw a high variability between
users, with some being more risk averse than others across all three
scenarios. It is hence important to have an MPA that is able to
adapt to the required level of trust of a scenario, as well as a user’s
individual comfort level.

The design of LOTUS incorporates the parameter w for control-
ling the accept/reject rate of mobility predictions. Our questionnaire-
based study provides us with the possibility to derive realistic val-
ues for the weight w for the three application scenarios considered
in this work. In the following discussion, we primarily focus on
LOTUS since it outperforms other Level of Trust (LoT) estimators.

6.3.1 Home Automation
The results of the study revealed that almost half of participants

indicated their preference between MPA1 (1) and MPA2 (7) with
a value 6 or higher on a 7-point Likert scale. This corresponds
to the weight w = 1/6. Nearly two-thirds of participants indi-
cated their preference with (5) or higher, which corresponds to the
weight w = 2/6. By selecting w = 2/6 82% and 91% of the users
will benefit from any of the considered estimators for the Nokia
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Figure 10: The users’ perceived value of having an MPA that is
capable of estimating the level of trust of a prediction.

Figure 11: Users’ preferences for a particular behavior of an MPA
for the three considered application scenarios.

and Device Analyzer data sets, respectively (see Figure 5). Com-
pared to the dummy classifier, which executes all actions, 78% and
91% of the users benefit from LOTUS for the Nokia and Device
Analyzer data sets, respectively (see Figure 4). Comparing to other
approaches, LOTUS (considering SF2/6 only) provides for 59%
and 78% of the users the best solution for the Nokia and Device
Analyzer data sets, respectively (see Figure 5). We conclude that
LOTUS outperforms other level of trust estimators for the majority
of users in the home automation scenario. Compared to the dummy
estimator, the majority of the users in both data sets benefit from at
least one level of trust estimator.

6.3.2 Traffic Updates
For the traffic updates scenario, almost 45% of participants indi-

cated their preference with a value 5 or higher on a 7-point Likert
scale. At the same time, 60% of them indicated it with a value 4 or
higher on a 7-point Likert scale, which corresponds to the weight
w = 3/6. We focus our discussion on the results for w = 3/6
only because the results for w = 2/6 are the same as for the home
automation scenario. With respect to the dummy classifier, 50%
(Nokia) and 77% (Device Analyzer) of users benefit from any other
level of trust estimator for the weight w = 3/6. Among those indi-
viduals, 44% (Nokia) and 75% (Device Analyzer) of them benefit,
in particular, from LOTUS. Comparing to other estimators, LOTUS
(again considering SF3/6 only) provides for 35% (Nokia) and 60%
(Device Analyzer) of users the best solution. Given these observa-
tions, we conclude that the majority of users still benefit from at
least one estimator in the context of the traffic updates scenario.

6.3.3 Data Prefetching
Lastly, we consider the data prefetching scenario. The results

of the questionnaire-based study revealed that 55% of participants
indicated their preference with a value 3 or higher on a 7-point
Likert scale, which corresponds to the weight w = 4/6. With
respect to the dummy classifier, only 17% and 48% of users benefit
from any of the estimators leveraged in this work for the weight
w = 4/6 for the Nokia and Device Analyzer data sets, respectively.
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Comparing to other estimators, LOTUS (again considering SF4/6

only) provides for 15% (Nokia) and 41% (Device Analyzer) of the
users the best solution. Given these observations, we conclude that
the majority of the users will experience best results in terms of the
value of SFw if all actions are executed. However, LOTUS is still
able to identify users who benefit from using it in comparison to
the dummy classifier.

7. LIMITATIONS AND FUTURE WORK
In the previous sections we have described our level of trust es-

timator and demonstrated that it is more effective than other ap-
proaches previously used in the literature. We now highlight some
limitations of this work and outline potential directions for future
work.

Comparison LOTUS to More Sophisticated Competitors: LO-
TUS and the other approaches considered in this study differ in
terms of their complexity and technique used to estimate the level
of trust. Our results show that LOTUS can outperform its competi-
tors. This is mainly because LOTUS relies on ensemble learning
and it can thus outperform single predictors [46]. In our future
work, we plan to investigate how LOTUS would perform against
more sophisticated competitors. In particular, we plan to design
a novel ensemble classifier controlled by an additional rejection
classifier trained on (and with runtime access to) the same data as
LOTUS. The precision/recall of each of these classifiers would be
picked as per domain requirements (similar to picking the weight
w). We plan to compare LOTUS with this baseline via perceived
user satisfaction in a real deployment (to model the cost of re-
jection), or at least with respect to raw accuracy/precision/recall
performance results. Furthermore, additional data sets – such as
KDD’98, which is known to be one of the largest, publicly avail-
able data sets containing real-world misclassification costs [18] –
can be used to further strengthen our evaluation.

Mobility Prediction Engine as a Black Box: Some of the existing
mobility predictors, in particular probabilistic classifiers, provide
a possibility to set a class membership probability threshold. This
threshold allows the classifier to decide to which class a given pre-
diction should be assigned based on the computed class member-
ship probability [27]. Different settings make the inference more
prone to false positives or false negatives. In this work, we con-
sider the mobility prediction engine to be an independent “black-
box” component that cannot be modified. Therefore, we compare a
set of level of trust estimators under the assumption that they do not
have an influence on the parameters and the output of the mobility
prediction engine. Removing this assumption, e.g., evaluating the
possibility to set the probability threshold of probabilistic classi-
fiers, is a potential direction for our future work.

Considering calibrated Class Membership Probabilities: The
level of trust estimators utilized in this work use class membership
probabilities provided by the mobility prediction engine. Although
these probabilities are known to be inaccurate [7, 49, 13], calibra-
tion techniques exist that allow these class membership probabili-
ties to be transformed to represent the true probability of the class.
However, not all machine learning classifiers and human mobility
predictors support calibration. Several techniques have been pro-
posed to address this shortcoming [49, 50, 37, 36]. Evaluate how
LOTUS and its competitors perform with calibrated when class
membership probabilities is part of future work.

Subjective Perceived Value of MPAs: The goal of the questionnaire-
based study presented in Section 6 was to verify the validity of a
set of assumptions we rely on in this work. For instance, that dif-
ferent usage scenarios will require significantly different certainty
levels for a next-place predictor and that the required level of trust

depends on the potential for negative consequences stemming from
an MPA’s actions. Although these assumptions seem to partly be
intuitive and expectable, our study results provide first quantitative
evidence that these assumptions do hold. Furthermore, we obtain
quantitative indications on how to set the weight w in different ap-
plication scenarios. A drawback of our study is that most of the
participants have a limited experience with the use of MPAs and
the three considered application scenarios. The study results thus
reflect subjective opinions of the participants and we consider them
a first step towards understanding how practical application sce-
narios that rely on mobility predictions can benefit from level of
trust estimators. Our next step is to implement an MPA that reflects
the application scenarios considered in this work and to test it in a
real deployment. This field study will allow us to capture individ-
uals’ perceived value of using these MPAs in daily life. It further
will allow us to quantify the potential costs and benefits for each
application scenario caused by an incorrect and correct mobility
prediction, respectively.

8. SUMMARY AND CONCLUSIONS
To have users trust an MPA to take actions on their behalf, we

need to be able to better control the required confidence of an MPA
in its predictions. As we have seen from an online survey involving
188 participants, users have different requirements with respect to
the prediction quality of an MPA, depending on different use cases.

In this work, we analyzed whether and to what extent real-world
application scenarios benefit from level of trust estimations. In
terms of the scenarios, we included (1) home automation, (2) traffic
updates, and (3) data prefetching. We designed, implemented, and
evaluated LOTUS – an ensemble learning based algorithm for de-
tecting uncertain and probably incorrect mobility predictions. We
compared LOTUS to a set of other level of trust estimators on three
application scenarios and two large data sets in the context of the
next-place prediction task. We showed that LOTUS clearly outper-
forms its competitors such as thresholding or majority vote. For
instance, if individuals’ trust requirements are located exactly be-
tween the two extrema MPA1 and MPA2, then no more than 18% of
these individuals will benefit from the best performing competitor
estimator. In contrast to that, with LOTUS, at least 43% of indi-
viduals benefit. In general, we observe that the higher the accuracy
requirements on mobility predictions and thus correctly executed
actions are, the more individuals benefit from at least one of the
level of trust estimators considered in this work. In particular, for
the Nokia data set 82%, 50%, and 17% of the users benefit from
at least one of the estimators considered in this work in the con-
text of the home automation, traffic updates, and data prefetching
scenarios, respectively.
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