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ABSTRACT 

A total of 21 maps were produced that together form a type of 

atlas of the Nokia Mobile Data Challenge. Like in a traditional 

geographic atlas, we present a limited number of base map 

configurations, onto which various thematic elements are then 

overlaid. Two of those base maps are derived from MDC data, the 

third is placed in geographic space. Thematic overlays serve 

several purposes, including elaborating different elements from 

which the base map geometry had been derived, as well as linking 

other data to the base map. 
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1. INTRODUCTION 
Mobile telephony is among a group of emerging space-adjusting 

technologies: these change the nature and experience of 

geographic space and consequently lead to a rearranging of 

human activities [1, 3]. The loosening of formerly tight bonds 

between people, place and activity allows other, sometime hidden, 

activity spaces to flourish. Rather than indicating the “death of 

distance” and spatial uniformity, these activity spaces relate to 

geographic space in interesting and complex ways [2, 4].       

The purpose of this project is to explore the hidden spaces of 

human activity by producing proof-of-concept visualizations. 

These visualizations highlight a conceptualization of mobile 

phone users as simultaneously existing in different spaces. Our 

study elaborates on three of these: 

(1)  High-dimensional attribute space derived from mobile phone 

users’ questionnaire responses 

(2)  High-dimensional attribute space derived from mobile phone 

users’ time spent in different types of land cover 

(3) Geographic space as a canvas for time spent in different 

activity modes 

A total of 21 maps were produced that together form a type of 

atlas of the MDC project [5]. Like in a traditional geographic 

atlas, we present a limited number of base map configurations, 

onto which various thematic elements are then overlaid. Two of 

those base maps are derived from MDC data, the third is placed in 

geographic space. Thematic overlays serve several purposes, 

including elaborating different elements from which the base map 

geometry had been derived, as well as linking other data to the 

base map. 

2. DATA AND METHODS 

2.1 Data 
This project utilized five main data sets: 

• Questionnaire of MDC subjects 

• GPS- and WLAN-based coordinates of MDC-enrolled 

mobile phones 

• CORINE land cover data for Switzerland 

• Bing maps and OpenStreetMaps for reference backdrop 

2.1.1 Questionnaire of MDC Subjects 
The questionnaire data set contained information for 29 

participants. Since our approach is based on determining the 

similarity of subjects based on their responses, we tried to limit 

the number of incomplete responses entering the analysis. 

Questions 1, 3, 5, and 7 contained answers from nearly all the 

participants (e.g., only one of the 29 subjects did not answer the 

gender question), which is why we focused on those questions. 

Transformation of nominal data into a form suitable for similarity 

computation yielded 15 variables. In other words, we analyze the 

similarity of subjects in a 15-dimensional attribute space.  

2.1.2 GPS-Based and WLAN-Based Coordinates of 

MDC-enrolled Mobile Phones 
The provided gps.csv files of 38 participants contained a total of 

more than 1.52 million locational records. The WLAN-based 

wlan_loc.csv files contained a further 1.87 million records. 

The combined data set of almost 3.4 million records is the initial 

input to location-based analysis, allowing an intersection of 

participants with land cover data and analysis of aggregate activity 

patterns. All of those records included time stamps, which is the 

basis for delineating distinct journeys and for determining the 

time spent at particular locations. 

2.1.3 CORINE Land Cover Data for Switzerland 
One of the goals of the project was to demonstrate how one could 

represent similarity patterns among mobile phone users in terms 

of geographic space, but without compromising geographic 

privacy as such. To that end, we aimed to intersect user locations 

with the attributes of the geographic locations encountered. Due 

to ease of availability, we are demonstrating this here with a land 

cover data set. CORINE (Coordination of Information on the 



Environment) is an initiative of the European community that has 

resulted in a comprehensive land cover data set spanning much of 

the continent, at a resolution of up to 100 meters. Switzerland is 

not officially part of that program, but there is obvious interest in 

having Swiss land cover data available in a form aligned with 

European efforts. At this point, a land cover layer derived from a 

250 m resolution data set seems to be the best publically available 

approximation, in form of 13,542 polygons covering all of 

Switzerland at CORINE land cover level 2 (up to 15 land cover 

categories).  

2.2 Software 
The following are key software packages used in the course of this 

project: 

• Various pre-processing steps: Microsoft Office Excel 2007, 

Processing development environment (http://processing.org/) 

• Multidimensional scaling (MDS): IBM SPSS Statistics 

• Self-organizing map (SOM) preprocessing/postprocessing: 

SOM Analyst (http://code.google.com/p/somanalyst/)  

• SOM training: SOM_PAK (modified after 

http://www.cis.hut.fi/research/som_pak/) 

• Visualization: ESRI ArcGIS 

(http://www.esri.com/software/arcgis/) 

2.3 Analysis of User Questionnaires 
Projection of MDC subjects from the 15-dimensional space 

derived from the questionnaire data into a two-dimensional 

display space is meant to allow visual examination of patterns 

among subjects. This is the basis for the point geometry in maps 1 

– 7. In addition, elements of the 15-dimensional questionnaire 

data set are projected onto the land cover based layout of subjects 

in maps 14 – 16. In choosing among dimensionality reduction 

methods, multidimensional scaling (MDS) and self-organizing 

maps (SOM) are key candidates, both of which we experimented 

with. While MDS is very well suited to such a small data set, a 

large number of subjects are so similar to each other (e.g., males 

that work full-time for whom a private motor vehicle is the main 

means of transport) that they end up being extremely clustered in 

the display space. That is why we opted for SOM, which 

recognizes local variations among globally similar entities and 

thus spreads out the high-dimensional inputs a bit more. 

2.4 Preprocessing of Location Records  
The initial data set of GPS- and WLAN-based locations consists 

of almost 3.4 million records. As described in the MDC contest 

materials, some coordinates had been intentionally truncated, due 

to privacy concerns. This is problematic in terms of one of our 

approaches to delineating distinct journeys, namely to begin/end a 

journey when a user had not changed location in 30 or more 

minutes. With truncated coordinates, the user location remaining 

constant could either indicate that the user indeed did not move or 

that he/she moved within a radius of several hundred meters. Note 

that being able to distinguish among different journeys (along the 

time axis) is a crucial element of our ability to determine the time 

spent by a user at particular locations. Since we do not have a 

continuous record of users – due to GPS or WLAN functionality 

or the phone itself being switched off – we have to be careful 

about being able to determine either spatial stationarity (as 

described above) or temporal discontinuity (here defined as a gap 

of 10 minutes or more between sequential location records). Due 

to the importance of detecting spatial stationarity, we eliminated 

approximately 956,000 truncated records. With a view of 

intersecting locations with Swiss land cover data, a further 3,238 

records outside of the spatial footprint of the CORINE data were 

eliminated, resulting in the final set of 2,442,048 records. Using 

spatial stationarity and temporal discontinuity as defined above, 

the sequential set of locations for each of the 38 participants was 

then chunked into a total of 48,959 journeys. Within each thus 

delineated journey, the time stamps of sequential records were 

then compared to determine an estimate of the time spent at each 

location.  

2.5 Analysis of Land Cover 
CORINE-equivalent land cover data for all of Switzerland were 

obtained as a polygon layer from the Swiss Bundesamt für 

Statistik and intersected with the full set of 2.4 million location 

records. As a result, each location record becomes associated with 

a land use type. Together with the “time spent” attribute computed 

for each record, this makes it possible to derive user-level 

statistics on the time spent per land cover type. Out of the fifteen 

CORINE land cover level 2 categories, thirteen are actually 

encountered in the data set (as a land-locked country, the 

categories “marine wetlands” and “marine waters” is absent in 

Switzerland). Each user can thus be represented in a 13-

dimensional attribute space that expresses the proportion of time 

spent in each type of land cover. For exploratory visualization, 

users are then projected from that high-dimensional space into a 

two-dimensional display space, resulting in the second base map. 

2.6 Geographic Mapping of Activity Patterns 
The final set of visualizations relates an aggregate view of mobile 

phone users’ activities to geographic location. The driving idea 

here is that there may be distinct patterns in when and where 

certain activities are concentrated. A well-known critical 

application scenario for this type of approach is the need to 

distinguish between nighttime and daytime population 

concentrations for emergency management. Typical population 

census data tend to account only for the residential population by 

home address. That is a fine estimate for concentrations of 

nighttime population, but tells us very little about where people 

are concentrated during a typical workday. Meanwhile, other 

applications, such as in tourism planning, would benefit from 

more detailed information about geographic patterns at various 

times of the day, week, or year. Our proof-of-concept here 

attempts to highlight some examples with a focus on three distinct 

activity windows. For simplicity sake, we refer to these as home, 

work, and leisure: 

1. home: Mondays – Thursdays 3:00-4:00 

2. work (which is meant to include university studies): 

Mondays – Thursdays 11:00-12:00 

3. leisure: Saturdays & Sundays 11:00-12:00 

In the absence of actual activity-based attributes for the 2.4 

million location records, such narrowly defined time slices would 

seem reasonably conservative approximations of likely activity 

patterns.  

Through a combination of kernel density estimation and map 

algebra, the study then proceeds to work out explicit differences 

among the relative intensity with which a particular geographic 

location is used for the three activity types. Throughout, a fine-

grained notion of density is employed that relates time spent to 



area size. Specifically, we measure intensity in seconds per square 

kilometer. 

3. MAPS 
The twenty-one maps presented here are not meant to be a 

comprehensive collection of visual artifacts that could be 

generated from the types of data that were made available for the 

MDC Open Challenge. Instead, we chose to implement certain 

sequences of conceptual, computational, and semiotic 

transformations that highlight the power of visualization, within 

the limits of available resources. We hope to demonstrate that raw 

data on mobile phone users and their location can be the source of 

novel intersections between notions of location-based computing, 

high-dimensional attribute space, and geographic space. Despite 

being designed as a series of proofs-of-concept, we deliberately 

chose computational techniques that will readily scale to 

realistically sized data sets. For example, the SOM neural network 

model can be applied to hundreds of thousands of mobile phone 

users (as compared to the examples involving 29 and 38 users, 

respectively). Meanwhile, the density-based analyses shown here 

is not only capable of effectively aggregating millions of 

locational records in space and time, but would also serve to 

effectively shield the privacy of users, especially – and to some 

degree only – if one was dealing with truly large data sets. 

Below we give additional explanations for how each of the maps 

in this atlas was generated. Where appropriate, we also discuss 

possible interpretations of observed patterns. Given the limited 

amount of data available in the contest, such interpretation is 

meant to suggest ways of using these kinds of maps rather than 

suggesting generalizable insights about mobile phone users. 

Map 1: Base Map of Study Participants Based On 

Questionnaire. 
This is the first of two base map layouts of mobile phone users. 

The 15-dimensional vectors representing subject responses to 

questionnaire questions 1, 3, 5, and 7 were used to train a self-

organizing neural network of 900 neurons. Following training, 

every input vector is placed at the location of their best-matching 

(i.e., most similar) neurons in the SOM. Subject IDs are used as 

labels. As a result of neural network training, topological 

structures existing in the high-dimensional input space tend to be 

preserved in the two-dimensional display space. Neighboring 

labels thus indicate that the respective subjects gave similar 

answers in the questionnaire.  

Subjects 082 and 160 provided identical answers to questions 1, 

3, 5, and 7 and thus are in the same location in the 15-dimensional 

input space and have the same best-matching neuron. A small 

random offset was used to separate their geometry. 

Maps 2 through 7 project various thematic contents onto this base 

map. All overlays are derived from one or more input variables.  

Map 2: Gender and Age of Study Participants. 
The gender portion illustrates that two thirds of study participants 

were male. Subject 179 did not answer the gender question. 

Subjects 089 and 127 are the oldest participants answering the 

questionnaire. Matching age must be one of the reasons for them 

being pulled towards each other in the map, despite difference in 

gender. 

Map 3: Status of Study Participants. 
Derived from answers to questionnaire question 5, map 3 shows 

that most participants work fulltime. Notice how Subjects 063, 

169, 179 are neighbors despite appearing in different categories. 

That points to them having similarities in other respects, which 

later maps demonstrate to be a mix of age and transport mode (see 

Map 6). 

Map 4: Private Vehicle Ownership versus Public 

Transport Use. Distinction between Bus, Metro, 

and Train Use. 
Different modes of transport are highlighted in the panels of Map 

4. Note how use of a private motor vehicle versus use of public 

transport almost forms a binary distinction, with the only overlaps 

occurring in subjects 060, 083, and 185. Since different modes of 

transport were fed to this model as separate dimensions, it is 

perhaps surprising that public transport forms a contiguous 

region. Which factors bind public transport users in this manner? 

We can see that train users (red point symbol) and metro users 

(blue point symbol) form almost exclusive sets, with only subject 

077 using both modes. What binds them is the use of buses (green 

point symbol) by 86% of public transport users.  

Map 5: All Transport Modes Combined. 
One can see here that half of the participants tend to use a single 

mode of transport and only two participants use four different 

modes. Among single-mode subjects, car users (cars here standing 

for any kind of motor vehicle, including motorcycles, scooters, 

etc.) are the only ones occurring with great frequency. Only 15% 

of bus riders do so exclusively, while the other bus riders also 

utilize additional modes of transport. 

Map 6: Participants According to Questionnaire 

Similarity. Overlay of Participants’ Age, Status, 

and Transport Modes. 
In looking for explanation for the patterns observed so far one 

could flip back and forth between different maps. For example, 

one could ask which factors might relate to users’ exclusive use of 

private motor vehicles and flip between Map 5 and the earlier 

maps in the atlas. Alternatively, one could layer a larger number 

of variables on top of the base map. In this manner, Map 6 

combines age, status, and transport modes. We can now see that 

those using only private motor vehicles as modes of transport tend 

to fall into the higher age group and are working. The only 

exclusive car users not working are one younger student and the 

person that had not given her/his gender. Note also that students 

tend to be in the younger age categories, not surprisingly. 

Map 7: Participants According to Questionnaire 

Similarity. Overlay of Age, Gender, and Transport 

Modes. 
Observations made here include that only one of the females uses 

a private motor vehicle exclusively and she is part of the oldest 

age category. All except one of the train users are female, the only 

exception being a younger male that indicated four different 

modes of transport. Meanwhile, all except one of the bike riding 

MDC subjects are male. 

One important note to add is that the kind of visual set operations 

seemingly performed when making these interpretations (1) may 

be unfeasible for realistically sized data sets of thousands of users 

and (2) could/should instead be implemented using computational 

means. The real power of visualization in dealing with these 

questionnaire-type data does not lie in answering questions of a 

numerical type, but in providing means to engage and catalyze 

analysts’ creative potential for generating such questions. 



Map 8: Participants According to Similarity in the 

Relative Time Spent Per Land Cover Type.  
Again using the self-organizing map (SOM) method, 38 users are 

here laid out according to similarity in the relative time spent per 

land cover type. For most users, one land cover type is dominant, 

with urban fabric being the most common dominant type, 

followed by industrial, commercial, and transport units. Two 

pairs of users’ are dominated by time spent near pastures and 

arable land, respectively, which explains those two pairs being 

represented on the map (068/185, 060/172). 

A somewhat even mix of land cover types is quite uncommon, 

with subjects 082, 083, 169, and 179 as notable exceptions. We 

will revisit this issue later. 

One major advantage of the SOM method over other 

dimensionality reduction methods is its efficient use of the low-

dimensional space, such that finer distinction among input vectors 

can be worked out. Notice, for example, how one can make out 

finer nuances among the many users for whom urban fabric was 

the dominant land cover type. Meanwhile, the high-dimensional 

distance separating outliers from the main body of users in the 13-

dimensional space can be dramatically compressed in the eventual 

map. That makes for an efficient use of display space, but one has 

to be careful about judging relative distances in that space. For 

example, subjects 109 and 117 seem to be extreme outliers. The 

name of the dominant land cover type for subject 109, artificial 

non-agricultural vegetated areas, is a bit opaque; urban parks are 

the prime example for this cover type. Subject 109 is pulled 

towards subject 068 because of a very similar proportion of urban 

fabric, while the complete lack of commonalities in other land 

cover categories avoids the kind of pushback that 109 would have 

received elsewhere on the map.  

In terms of topological relationships in the high-dimensional 

space, subject 117 likely belongs with the other subjects in the 

upper-right corner of this map, due to significant, but not 

dominant, proportion of urban fabric, mixed with some 

industrial, commercial, and transport units and forests. Oddly 

though, this is the only subject for which our land cover overlay 

determined a significant portion of inland waters. According to 

the map, subject 117 spent two-thirds of time in the inland waters 

category. That seems to deserve further scrutiny. It turns out that 

the subject did indeed spend a fair amount of time on and near 

Lake Geneva. For example, the subject seems to have used the 

ferry system along eastern Lake Geneva, which would not have 

been explicitly captured by the questionnaire. More importantly, 

the subject seems to use public transport a fair bit (see also Map 

3-7). As compared to the A9 motorway, which runs a bit inland 

from the Lake and would be an obvious choice for a private motor 

vehicle, public transport between Montreux and Lausanne follows 

the lakeshore very closely. Inspection of the subject’s 118,676 

location records shows that he (his gender being known) traveled 

extremely closely to the lakeshore, with the extremely close 

proximity between highway 9 (not the A9) and train tracks 

making it difficult to discern whether buses or trains were used. 

The critical issue is that this close proximity to the lake requires a 

higher-resolution land cover data set than we were able to obtan. 

At a land cover polygon granularity equivalent to 250 m 

resolution, many of the subject’s near-shore locations end up 

intersecting with the inland waters category. Again, this is an 

issue that could be easily addressed with higher resolution land 

cover data, which should be available in the near future publically 

or are likely already existing in non-public formats. Another 

implication is that all of the land cover assignments would suffer 

from this resolution restriction, implying that we should be talking 

about users spending time near instead of in particular land cover 

types. 

Map 9: Participants According to Similarity in the 

Relative Time Spent Per Land Cover Type. 

Symbols Scaled According to Total Time Spent by 

Participant While in Location Capture Mode. 
Fine-grained mobile phone locations determined via GPS or 

WLAN tend to not be captured continuously since users can make 

the choice to switch such functionality on/off, depending on 

specific application needs (e.g., navigation apps versus others) 

and battery status. We would expect that different users have 

different use patterns when it comes to GPS and WLAN and that 

these will be reflected in the land cover patterns encountered 

during the generation of location records. In Map 9, the pie charts 

of Map 8 are scaled to reflect the total time spent by each user in 

location capture mode.  

The most obvious lesson is that different users did in fact spend 

quite different amounts of time in a location-recording mode, with 

user 141 (bottom right) as an extreme example. The next apparent 

patterns is that users with a single dominant land cover tend to 

have recorded locations for longer periods of time. Meanwhile, 

the few users with highly varied and mixed proportions of 

different land cover types (users 082, 083, 169, and 179) tended 

to spend overall little time in location capture mode. Why is that? 

Why would users with longer location capture periods tend to 

encounter more monotone environments? One reasonable 

explanation may be that the latter users simply kept their phones 

in location capture mode for longer periods. Note in conjunction 

that users that predominantly captured locations within the urban 

fabric tended to spend longer times in location capture mode. In 

explaining that, we would speculate that day-to-day GPS 

navigation and use of WLAN access points tend to be more 

associated with activities within the urban fabric. Those activities 

should also occur with relatively even proportion across the 

different days of the week. Meanwhile, users only operating 

occasionally in location capture mode may switch on such 

functionality more deliberately, perhaps in association with 

activities that they are only engaged in on certain days of the 

week. This more nuanced view of the use of location capture 

modes over time is explored in Maps 12 and 13. 

Map 10: Illustration of Land Cover Based Neural 

Network Model. 
Maps 1 through 9 were based on projections of 29/38 users onto 

two-dimensional models of the 15/13-dimensional input spaces. 

Arguably, data sets of a few dozen entities are extremely small. It 

is important to point out that the computational technique 

employed for dimensionality reduction – the SOM method – is 

applicable to far larger number of input vectors, up to several 

million. The models themselves could (1) be trained with a far 

larger number of input vectors (up to several million) and (2) the 

trained model could be used to project data that were not part of 

the training data set (i.e., a more typical neural network 

application).  

To illustrate what the model itself looks like, Map 10 includes a 

visualization of the relative weights associated with each of the 

900 neurons of the land cover based user presence data set. This is 

the model onto which users are projected, as seen in Maps 8 and 



9. Where finer nuances exist in the data, such as among users with 

urban fabric as the dominant land cover, the neural model 

preserves and elaborates on such nuances. Meanwhile, outliers 

(e.g., subjects 109 and 117) are separated from their neighbors by 

a rapidly changing series of neurons, which traditional 

multivariate methods would pick up as cluster boundaries. 

Map 11: Land Cover Types According to 

Similarity in How Relative Time Spent Was 

Distributed Across 38 Participants.  
Contemporary visualization is all about allowing analysts to gain 

multiple perspectives on data, through a series of computational 

and semiotic transformations. Map 11 takes this idea a bit further. 

It is based on transposing the very same data used to generate 

Maps 8-10. If users can be analyzed in terms of the relative 

amount of time spent in different land cover types, then one 

should be able to compare land cover types in terms of the relative 

time spent in them by the different users. In other words, we are 

transposing a data set consisting of 38 objects in a 13-dimensional 

space into one consisting of 13 objects in a 38-dimensional space. 

We then project from that space into a 2-D display space, leading 

to the geometric distribution of land cover types shown in Map 

11.  

This map is included in the MDC atlas for two reasons: (1) it 

shows the total time spent by users in each land cover type (the 

resolution-related issues notwithstanding) and (2) it illustrates 

how one might embed the analysis of individual movement 

behavior within much broader investigations of geographic 

phenomena. For example, one could address rather complex 

questions surrounding cyclical activity patterns (e.g., seasonally 

varying uses of city parks) or long-term changes in activity 

patterns (e.g., skateboarding or parkour as changing the roles 

played by different urban environments). Such studies would of 

course require much larger data sets. 

Map 12: Time Spent in Location Capture Mode 

Relative to Total Time Passed Between First and 

Last Location Capture of Each Participant. 
Much of the earlier discussion regarding map 9 would be moot if 

some users simply operated their devices for an overall much 

shorter period than other users. Smaller amounts of time spent in 

location recording mode would thus be simply a function of total 

mobile phone use. Map 12 rejects that idea. The total time spent 

in location recording mode is here seen in proportion to the length 

of time between the first and last time stamped location. Users 

with a dominant proportion of time spent in the urban fabric (see 

Map 9) did indeed tend to spend a large proportion of their time 

in a location recording mode (typically in the 20%-40% range). 

Meanwhile subjects with a more even mix of land cover types 

(users 082, 083, 169, and 179) tended to spend much smaller 

proportion of time in that mode (2%-7%). 

Map 13: Relative Time Spent in Location Capture 

Mode on Different Days of the Week.  
In the discussion of Map 9 we speculated that the differences in 

the relative dominance of certain land cover types might be 

reflected in differences in how location capture was distributed 

across days of the week. Map 13 confirms that. Users that spent 

most of their time in the urban fabric (see Map 9) seem to have 

locations recorded quite evenly across the range of weekdays. The 

percentage of time during which locations were recorded on a 

weekend day (Sat and Sun) is also roughly in accordance with the 

expected value (2/7 = 28.6%). Compare that to user 083, who 

recorded almost half of her locations on weekend days, or user 

082, with disproportionately large location capture on 

Wednesdays and Thursdays. 

Map 14: Participants' Transport Modes Indicated 

in Questionnaire Overlaid on Geometry Derived 

from Relative Time Spent Per Land Cover Type.  
A crucial idea behind the base map notion – whether in its 

traditional geographic context or for high-dimensional 

information spaces – is that one can map onto the base geometry 

other data that were generated independently from the base map. 

Maps 14 through 16 demonstrate this with an overlay of user 

questionnaire data onto the land cover based user geometry. 

Patterns observed in this map would point to possible 

relationships between how subjects characterized themselves in 

the questionnaire and their on-the-ground activity patterns. Even 

more than for the exploration of base map variables (where the set 

of variables is fixed and known), this kind of complex overlay is 

best done within an interactive environment, where different 

overlays can be performed in a highly exploratory manner. Maps 

14 through 16 are simply meant to demonstrate some of the 

potential of that approach, including the ability to generate 

meaningful narratives from data through visualization. 

Map 15: Gender and Transport Mode (Bus And 

Metro) Overlaid on Land Cover Based Map of 

Participants. 
The two panels in Map 15 exemplify the search for meaningful 

patterns one might perform, such as: 

• “Do females and males separate into meaningful groups on 

the basis of land cover types they spent time in?” 

Probably not, given the lack of visible organization. 

• “Does use of buses indicated in the questionnaire relate to 

land cover types?” 

We wouldn’t expect to, since regular use of buses was 

claimed by 86% of public transport users and those users 

should reflect a diversity of land cover types. Bus users are 

indeed quite widely distributed across land cover types, with 

the only noticeable pattern being formed by group of male 

bus riders along the bottom-left edge of the map. 

• “Does use of the metro indicated in the questionnaire relate 

to land cover types?” 

The answer seems to be yes! Of the seven metro users, five 

male bus riders form a contiguous group of metro riders.  

Map 16: Gender, Bike Use, and Relative Time 

Spent Per Land Cover Type Overlaid on Land 

Cover Based Map of Participants. 
When thematic overlays onto a base map are performed, one will 

often want to relate questions regarding the thematic layers back 

to base attributes. For example, in Map 16 one observes that bike 

riders are placed within a band of males from the bottom left 

towards the mid-right edge. The absence of bike riders anywhere 

else in the map is likewise noticeable. Adding a land cover layer 

(containing the variables from which the base geometry was 

created) helps to see that all but one of the bike riders spent the 

majority of recorded time in the urban fabric. The only exception 



is user 109, a male who spent most of his recorded time in or near 

parks (per the artificial non-agricultural vegetated areas 

category). 

Map 17: Relative Time Spent in Location Capture 

Mode During Typical Work Hours as Compared 

to Home. 
The final set of maps (17-21) are derived from the density of 

location records within certain time windows, with density 

expressed as seconds spent per square kilometer. Subtraction of 

density surfaces from each other allows elaborating the specific 

geographic areas in which certain activities are concentrated. In 

Map 17, work time density is subtracted from the density at a time 

when most users were presumed to be at home. Overlaid on a 

standard geographic base, EPFL and central Lausanne clearly 

emerge as centers of workday activity, while Prilly serves as more 

of a residential area (for users in this study). 

Map 18: Relative Time Spent in Location Capture 

Mode During Typical Work Hours as Compared 

to Leisure Time. 
Direct comparison between work and leisure time density yields a 

very similar patterns to Map 17, with workday concentrations 

around EPFL and central Lausanne. However, leisure time 

concentrations extend further outward than workday 

concentrations or residential concentrations (see Map 17). 

Map 19: Regional Overview of Relative Time 

Spent in Location Capture Mode During Typical 

Work Hours as Compared to Leisure Time. 
The regional view presented here further explores the pattern 

suggested in Map 18 regarding leisure time extending 

geographically further than work time activities. Map 19 confirms 

that users covered much larger and varied areas during the 

weekend day time window than during the same time Mondays 

through Thursdays. Notice, for example, the bands of green 

tracing various roads as well as a wide sprinkling of green clusters 

in outlying areas. 

Map 20: Relative Time Spent in Location Capture 

Mode During Typical Work Hours, Home, and 

Leisure Time. Focus on Lausanne Region. 
The final two maps illustrate how one could combine the relative 

density within three activity windows (home, leisure, work) in a 

single visualization through a trivariate color composite. 

Yellowish tones indicate a dominance of work time concentration, 

while cyan points towards mostly home and magenta towards 

mostly leisure time activities. Regions near EPFL and central 

Lausanne expectedly are depicted in yellow tones. However, we 

notice a more nuanced depiction, with the region immediately 

north of EPFL leaning towards a greenish tint, indicating that this 

area has plays a secondary role as residential location. Central 

Lausanne, especially towards the southern half of its work-

dominated region, has more of an orange tilt, which points to 

leisure activities being part of the mix. Meanwhile, the intense 

blue shading of Prilly indicates an even mix of home and leisure 

time activity and implies that none of the subjects spent much 

work time in that area. 

Map 21: Relative Time Spent In Location Capture 

Mode During Typical Work Hours, Home, and 

Leisure Time. Focus On Geneva Region. 
The concentration of MDC subjects in the Lausanne area made it 

possible to generate a nuanced aggregate picture of temporally 

sliced activities, as indicated by a range of color tones. In contrast, 

the Geneva region is depicted in pure tones of cyan, magenta, and 

yellow. A single cluster each of home and work time activity 

further points to the likely reason: that only one user was active in 

Geneva. That user works in central Geneva and resides in a 

suburb. However, when it comes to privacy concerns, it is 

important to realize that the generation of density landscapes 

eliminates any information that could personally identify a 

particular person. The map merely indicates that some MDC user 

likely works and lives in certain neighborhoods, but information 

about who that user specifically is becomes lost during density 

computation. Notice in this map also the leisure time cluster 

bordering Lake Geneva and the faint magenta glow along 

motorway A1, leading to a temporal cluster at the airport. 
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