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ABSTRACT
Researchers studying daily life mobility patterns have re-
cently shown that humans are typically highly predictable
in their movements. However, no existing work has ex-
amined the boundaries of this predictability, where human
behaviour transitions temporarily from routine patterns to
highly unpredictable states. Yet, this is arguably one of
the most interesting and critical states, where users might
be most in need of context-aware mobile applications. To
address this shortcoming, we suggest a novel real-time esti-
mator that can calculate an individual’s instantaneous en-

tropy : a measure for their momentary predictability. Apply-
ing this to a rich dataset, we show that individuals display
high variance in their predictability over time. Furthermore,
we demonstrate that mobile application usage patterns are
correlated with instantaneous entropy, thus indicating that
people use applications differently in unfamiliar situations.

1. INTRODUCTION
Understanding human mobility patterns is a significant re-
search endeavour that has recently received considerable at-
tention [8, 15]. Developing the science to describe and pre-
dict how people move from one place to another during their
daily lives promises to address a wide range of societal chal-
lenges: from predicting the spread of infectious diseases, im-
proving urban planning, to devising effective emergency re-
sponse strategies [13]. Individuals are also set to benefit
from this area of research, as mobile devices will be able to
analyse their mobility pattern and offer context-aware assis-
tance and information.

A key finding in this area was demonstrated by Song et
al. [16]. Given the location traces of 50,000 mobile phone
users, the authors used the Shannon entropy rate of this
data to establish that the average predictability of a single
person’s current location (given their history of locations)
was at least 80%, and was 93% on average. This finding
is important because it gives us confidence that all people
are highly predictable and have strong habitual elements to
their daily lives.

However, very little is currently known about how this pre-
dictability varies with time. While the average predictabil-
ity over large datasets has been well studied, no existing
work has yet looked at the momentary, or instantaneous,
predictability of an individual at a particular moment in
time. Intuitively, it is expected that individuals transition
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through phases of relatively high predictability (e.g., during
a working day at the office or while attending regular foot-
ball practice on a Saturday afternoon), to sudden spikes in
unpredictability (e.g., on holidays or while on sick leave).

Yet, studying and characterising these momentary transi-
tions in predictability is important not only for understand-
ing human mobility patterns, but also for providing context-
aware services. Arguably, phases of high unpredictability
are the most critical times to the user, who will, by defini-
tion, be in unfamiliar places, or in familiar places at unusual
times. Novel experiences may often require extra levels of
assistance that can be provided by a mobile device [17], in
the areas of information, organisation and communication.

To address this shortcoming in existing research, this work
is the first to explicitly investigate transient periods of low
predictability in human mobility. In doing so, we make a
number of contributions:

• We design a novel entropy estimator, based on the well-
known Lempel-Ziv measure, called the real-time en-

tropy estimator that provides a principled method for
measuring the instantaneous predictability, or entropy,
of an individual. Unlike existing approaches, such as
plug-in estimators, context tree weighting methods and
fixed and increasing window Lempel-Ziv estimators [7],
our method uses only historical location traces and can
be calculated in real time on a mobile device.

• We apply our estimator to GPS traces from the Nokia
Lausanne dataset [12] and show, for the first time, that
individuals display high variance in their instantaneous
predictability. This confirms that human mobility pat-
terns are characterised by alternating periods of high
and low predictability.

• Exploiting the breadth of the Nokia dataset, we cor-
relate the instantaneous predictability of individuals
with their recorded mobile application usage. We demon-
strate that application use is heavily influenced by the
user’s current state of predictability, and we show that
it can be used to build new predictors that anticipate
application use.

Taken together, our contributions offer a new perspec-
tive on the complex relationship between mobility patterns
(measurable directly from a mobile phone) and broader user
behaviours. This improved understanding opens the way for
a new generation of mobile applications that can help the
user at times of greatest need, but leave them to get on with
their daily routine at other times.

In the remainder of this paper, we first introduce our new
entropy estimator in Section 2, then apply it to the Nokia



dataset in Section 3. Finally, we provide several novel ap-
plication sketches made possible by this work in Section 4
and conclude in Section 5.

2. INSTANTANEOUS PREDICTABILITY
To formalise predictability in daily life mobility, we deal
with a random process X = {X0, X1, . . . , XN} which is a
sequence of random variables {Xn} indicating the location
of an individual at time n. All locations are assumed to
belong to alphabet A, the set of possible locations this indi-
vidual could be in.

The definition of Shannon entropy given by the equation
H = −

∑

i p(xi) log2
p(xi), where p(xi) is the probability

of xi = Xn, represents the independent entropy at time
step n. However, we want to take account of the fact that
we expect conditional dependencies between time steps, i.e.,
that knowing a history of locations tells us something about
the future locations of a user. To this end, the rate of new
information arriving at each step in a time series, the entropy
rate, is a fundamental measure of predictability [10].

Assuming that X is stationary and ergodic (i.e., that ev-
ery subsequence of X of equal size has the same probabil-
ity distribution independent of its position, and that these
statistics can be discovered from a single, sufficiently long
sample of X), the entropy rate exists and is given by:

H(X) = lim
N→∞

H (XN |XN−1, . . . , X2, X1) (1)

This is an expression of the conditional entropy, which is
calculated from the conditional and joint probabilities of the
latest observed value xN and those of the observed history
(x1, x2, . . . , xN−1):

H (XN |XN−1, . . . , X1) =
∑

x1,...xN∈AN

p (x1, . . . , xN) log
2

p (x1, . . . , xN )

p(x1, . . . , xN−1)
(2)

In practice, the conditional entropy is hard to compute for
shorter time series (of lengths in the order 103, as we deal
with here) because for any non-trivial history size, the spe-
cific combinations required to calculate p(x1, . . . , xN) rarely
occur in the data. The solution is to use an estimator.

There are many estimators for the entropy rate, but we
will focus on the class of Lempel-Ziv (or LZ ) estimators,
since they are known to rapidly converge to the true entropy
rate and do not assume anything a priori about the statistics
of the time series [7, 10].

The increasing window LZ entropy estimator, ĤN , is de-
fined as follows:

ĤN :=

(

1

N

N
∑

i=2

Λi

log
2
(i)

)−1

, (3)

where Λi is defined as the length of the shortest substring
starting at position i that did not previously occur in the
sequence (x1, . . . , xi−1). The increasing window LZ estimate
rapidly converges to the true entropy rate of the underlying
process.

The estimator given by Equation 3 allows the assignment
of a single entropy rate to each individual, characterising
their overall mobility habits. If the user has ĤN = 0, then
their behaviour is completely regular and therefore fully pre-
dictable. At the other extreme, another user with an entropy

rate as high as log2 | A | would be moving completely ran-
domly between elements in A. There is strong evidence that
all people fall along a spectrum of entropy much closer to
the lower extreme than the higher one [16]. However, this
measure does not tell us when any individual is behaving
unpredictably, limiting our analysis.

Given that there are several existing algorithms for pre-
dicting people’s future locations [2, 15], one solution is to use
the rate of prediction failure as an indicator of entropy rate.
For example, Eagle and Pentland used principle component
analysis to anticipate the afternoon locations of people given
their morning locations [6]. They found that prediction fail-
ures increased on Friday nights and weekends in comparison
with normal weekdays.

The problem with using predictors to measure regularity
is the bias associated with the specific prediction approach.
For example, many methods use only information about re-
cent locations, ignoring longer term correlations. Repeated
patterns over larger time scales, such as visiting the gym ev-
ery Monday evening, regardless of the day’s activities, would
be erroneously considered unpredictable.

Alternatively, metrics with no predictive component have
been used to measure regularity. Song et al. considered an
individual to be behaving regularly if their location matched
their most visited location for that time of week [16]. Chon
et al. more generally considered the top n locations rather
than just the most visited location, and varied the time
granularity [5]. Both these approaches capture basic long
term correlations, but are susceptible to underestimating
predictability even under mild transformations. For exam-
ple, if a user were to shift her normal routine back an hour
because of a doctor’s appointment in the morning, the rest
of the day could be classified as highly irregular, simply be-
cause she is not at her most visited places at the expected
times.

To overcome these limitations, we use the entropy rate
as a principled way to quantify departures from routine.
Reconsidering the entropy estimator given by Equation 3,
we introduce a modified version called the real-time entropy

estimator. To allow a per time slot view of the entropy
rate, we relate the instantaneous entropy at time i to the
value of Λi. Specifically, the instantaneous entropy tells us
what the overall entropy rate would be if the entire pro-
cess X exhibited the predictability it currently has (i.e.,
∀j : 1 ≤ j ≤ N,Λj = Λi). This concept is compatible with
the assumption that X is stationary because it is measur-
ing the properties of individual steps in the process, which
together make up the stationary statistics.

The standard LZ estimator uses information about future
points in the series to determine the present value of Λi.
Therefore, it does not work in real time and has limited ap-
plicability in ubiquitous systems that provide in-the-moment
assistance. To address this limitation, rather than search-
ing forwards for the shortest substring that does not occur
in the history, the real-time estimator searches backwards,
truncating the search history by one step each time.

At time i, the real-time LZ estimator for the instantaneous
entropy is defined as:

H̃i :=
log

2
(i)

Γi

, (4)

where Γi is defined as the length of the shortest substring
ending at position i that did not previously occur in se-



quence (x1, . . . , xi−Γi). This estimate is defined such that
all instantaneous entropy values can be combined to repro-
duce an estimator for the entire series (obtaining the original
sliding window estimate, albeit with the Γi measure rather
than Λi):

ĤN =
N

∑N

i=2
H̃−1

i

(5)

It can be shown trivially that the reverse of a time series
has the same entropy rate as the original. Therefore, Γi →
Λi as i → ∞ and the real time estimate also converges to the
true entropy of the underlying process given by Equation 2.

In the next section we apply this estimate to real daily life
location data to understand more about the unpredictability
of mobility.

3. REAL-LIFE DATA ANALYSIS
To examine how the instantaneous predictability of individ-
uals varies over time, we applied our estimator to the Nokia
Lausanne dataset. This includes GPS locations, call logs
and application usage for 38 people for a year recorded by
their mobile phones [12]. The data consists of series of time-
stamped events (e.g., GPS readings with latitude and lon-
gitude coordinates, user usage of mobile applications, and
directed message and call logs). As with any discrete es-
timator, it was necessary to pre-process the data first, in
order to convert it to a form suitable for our estimator. We
detail this in the following, before going on to describe the
results from applying the real time entropy estimator to the
processed data.

3.1 Pre-Processing
First, we derived the alphabet of locations, A, from the se-
quence of latitude and longitude GPS readings, which is a
process of converting continuous variables to discrete labels.
For location data, this is known as the problem of finding
significant locations, and there are several approaches [1, 9].
We selected the online clustering method proposed by Kang
et al. [9], because it is computationally feasible for running
continuously and in real time on a resource-limited mobile
phone. It takes into account the duration of visits to a lo-
cation, the frequency of visits, and the minimum distance
between locations.

Given the set A, we then assigned each location in the
GPS trace to a distinct element in A, using a Euclidean dis-
tance threshold of 1 km.1 We added a special element Ω ∈ A
for readings that were not near any significant locations. In
the entropy estimation, Ω is a special location that is always
treated as a new location. Finally, we transformed the data
into hourly windows, selecting randomly from the set of sig-
nificant locations visited during the window, in proportion
to the total duration at each location (e.g., if the user is at
work for 45 mins of the window and at a cafe the remaining
15 mins, the location for that hour will be selected as work
or as cafe with probability 3

4
and 1

4
, respectively).

3.2 Instantaneous Predictability Results
In the following, we first apply our new entropy estimator
to the entire dataset, in order to compare it to the standard

1The significant location extraction method we used ensured
that locations were sufficiently far apart to do this unam-
biguously.
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Figure 1: Probability distribution of instantaneous
entropy over all hours for all users.

LZ estimator (Section 3.2.1). Then, we examine how instan-
taneous predictability is distributed (Section 3.2.2), varies
over time (Section 3.2.3), and how it correlates with mobile
application usage (Section 3.2.4). Finally, we discuss two ex-
amples taken from an individual’s daily life (Section 3.2.5).

3.2.1 Aggregate Entropy
For comparison purposes, we applied both the standard in-
creasing window estimator given in Equation 3 and our real-
time variant to the entire location traces of all 38 users to
find the overall entropy rate for each person. The increas-
ing window estimate was used for a large-scale study pre-
viously done by Song et al. under similar conditions with
hourly locations [16]. It gives an overall estimate of a per-
son’s predictability from their location traces. In contrast,
the real-time variant gives a breakdown of predictability per
time step, enabling richer analyses.

The increasing window estimate using Equation 3 was 0.71
(±0.11 with 95% confidence), which is close to the frequency
peak in entropy of 0.8 found by Song et al. [16], who used the
same method on their data. The similarity in rates between
the two datasets confirms that the Nokia users were typical
of, though slightly more predictable than, users from the
larger scale study.

Our real-time estimator gave an overall average entropy of
0.84 (±0.13 with 95% confidence).2 This shift upwards, rel-
ative to the standard increasing estimator, can be explained
by the fact that searching backwards to find the value of
Γi at every time step i reduces the history size by a small
margin, whereas searching forwards does not (however, the
latter of course has access to privileged information about
future states). A smaller history results in a slightly higher
probability of treating a previously observed sequence as
novel. Hence, by Equation 4, there is an overestimation of
entropy with respect to the standard estimator. However, as
N → ∞, both measures rapidly converge to the true entropy
rate [7, 10].

3.2.2 Distribution of Predictability
For the rest of the analysis we focus on the instantaneous
(hourly) outputs of our real-time estimator to uncover the
behaviour of the users. Figure 1 shows the probability distri-
bution of the instantaneous predictability, as given by Equa-
tion 4, for all hours and all users in the dataset. The scatter

2Note that this is not simply the average instantaneous en-
tropy, but rather the aggregate value obtained using Equa-
tion 5 (as discussed in Section 2).



plot of observed data points appears to follow a Lévy distri-
bution [14], which has the form:

f(x|γ, δ) =

√

γ

2π

(

e
−γ

2(x−δ)

(x− δ)
3
2

)

(6)

To verify how closely the data follows this distribution,
we ran an iterative procedure by Koutrouvelis [11]. The
method estimates the 4 parameters of any alpha-stable dis-
tribution, a family that includes the Lévy, Gaussian and
Cauchy distributions (but has no general closed expression
for the probability density)[14]. We found the parameters3

to be α = 0.51, β = 0.95, γ = 0.91 and δ = 0.19, which pro-
duces the curve shown in Figure 1. This supports the idea
that the data follows a Lévy distribution, which is defined
as having α = 0.5 and β = 1. The curve would be more
positively skewed (fitting the data points slightly better) if
the entropy values were not truncated, since Equation 4 has
the range 0 ≤ H̃i ≤ log

2
(N), where N is the length of the

entire user history.
We see that most of the time, the users are following their

normal habits with a mode of entropy at 1.0 bit, but there
is also a heavy tail of unpredictability. Heavy tailed dis-
tributions are found in many behaviours, including animal
foraging displacements and aggregated human mobility [3,
4].

Since this is an aggregate distribution over all users, it
is possible that the distribution for each individual follows
a different form. We verified that the same distribution is
present in the individual distributions too, albeit with vary-
ing probability masses near the peak and in the tail.

It is not surprising to observe the Lévy distribution in this
context, however, it is interesting that no distance metric
is involved in finding this distribution, since the entropy is
derived from a sequence of significant locations that could
all, in theory, be geographically close together. We break
this distribution down according to time of week in the next
section.

3.2.3 Time of Week Predictability
Plotting a heat map of the average instantaneous entropies
according to local time of the week over all users yields Fig-
ure 2. This figure demonstrates the idea that there exist
periods of high and low predictability that can last several
hours. It also shows that trends about daily life can be un-
covered with this type of analysis.

In particular, we can clearly see trends that match our
intuitions about daily life. Weekends have the most intense
levels of unpredictability, mostly in the afternoon. Weekdays
show medium levels during normal working hours 8am to
5pm, and slightly higher levels in the evenings when users
might go out to see friends.

3.2.4 Mobile Phone Application Usage
To expand our view of behaviour when the user moves into
and out of habitual location patterns, also consider user be-
haviour with mobile applications, finding the probability of
application use conditioned by the current instantaneous en-
tropy. Figure 3 shows these probabilities aggregated over all
users that have used the application at least once. This
shows clearly that the probability of using almost all cat-

3Using the parameterisation given by Samorodnitsky [14].
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egories of application increases with the instantaneous en-
tropy of the user. The first feature we notice about these
probabilities is that web, map and search use show the great-
est increase over normal use (with respect to other applica-
tions) in periods of highest entropy. For instance, a user
in the highest state of unpredictability is approximately ten
times as likely to use mapping applications than a user with
a low instantaneous entropy. This supports the view that
high entropy periods represent new experiences for the user,
who will demand assistance about local information during
these times. In contrast, clock usage appears to show a lower
correlation with instantaneous entropy.

To put these results in context, we conclude this section
with two snapshots of a single user’s daily life, illustrating
both a typical and a more unusual day.

3.2.5 Typical Day vs. Unpredictable Day Examples
Figure 4(a) shows a typical weekday for an individual work-
ing in Fribourg and living near Givisiez in Switzerland (the
exact home location is obscured for privacy reasons). As
on most working day mornings, this individual leaves her
home, indicated by the bed symbol on the map, to arrive at
work at around 7:45 (marked A on the map). At lunch-time,



(a) A typical day.

(b) An atypical day.

Figure 4: Location histories of a user during two
days (“warmer” colours indicate higher entropy).

around 11:45, she leaves her work for a brief lunch (marked
B). Finally, she finishes work at 17:40 and takes a different,
but usual route back to her home (marked C). Throughout
this day, the instantaneous entropy is low, indicated by the
green colour, rising slightly on the way home, as her exact
time of return is less predictable than her usual 7:45 arrival
at work.

A much less typical day of the same individual is given in
Figure 4(b), showing considerably more variance in instan-
taneous predictability. Interestingly, this variance is due not
only to visiting new locations, but also to visiting familiar
locations at unusual times.

Starting on a Thursday evening, she returns home from
work at 18:00, a usual time (marked D). The next morning,
she again arrives at work at 7:45 (marked E), and her in-
stantaneous entropy remains relatively low throughout her
lunch-break, which lasts from 12:00 to 13:00 (marked F).
However, it begins to rise in the early evening, as she leaves
work at an unusually early time of around 16:45 (marked
G). Although she still remains in familiar locations at this
point, moving around the city centre of Fribourg for some
time, her predictability is low due to the unfamiliar time.
Following this, she departs on an unusual route (marked H),
which takes her outside the city and eventually to a golf
course in nearby Courtepin (not shown on the map).

To give further illustration over longer periods, we have
created two video animations of the location history of this
user on a map covering a period of three months, where
the colour of the path indicates her instantaneous entropy.

The first video shows all locations visited by the individ-
ual, while the second shows a more detailed view of the
user’s typically visited locations (we omit the map layer
of the second video for privacy reasons). These can be
found at http://research.nokia.com/mdc/. The videos
suggest that low predictability patterns can be detected by
our method both regionally and locally, demonstrating the
generalisability of our measure.

4. PRACTICAL APPLICATIONS OF INSTAN-
TANEOUS ENTROPY

Now that we have a quantified way to talk about the ex-
tent to which users are currently departing from routine,
we briefly examine the consequences for ubiquitous mobile
applications (Section 4.1) and finish with a demonstration
of the real world applicability of the new estimator (Sec-
tion 4.2).

4.1 Novel Mobile Application Sketches
A wide range of popular existing mobile applications could
be enhanced through the use of instantaneous entropy, as it
offers an insight into broader user behaviours. An example
of these types of applications are digital assistants on mo-
bile platforms that provide artificial intelligence assistance
to users: currently, there is Siri for the Apple iPhone, Ask

Ziggy on the Nokia Lumia and Evi for Android platforms.
These systems all perform natural language processing and
service aggregation to give summarised information to users.
We believe the next step is to proactively offer assistance,
such as looking up directions, travel information, recommen-
dations of high-quality local businesses, and streamlining
message sending to contacts. The instantaneous entropy
could be an important feature in deciding what level of ac-
tive assistance to give. In cases of low mobility predictabil-
ity, the user is likely to need these services more, as was
highlighted in our results. The rest of the time, there may
be no need to interrupt the user.

Another example is the set of mobile applications that
send vouchers directly to users’ mobile phones, timed pre-
cisely to help local businesses drive footfall during off-peak
times, or simply to gain additional customers. The two
biggest online voucher websites in the world, Groupon and
LivingSocial, have both developed mobile services along these
lines, named Now and Instant, respectively. The instanta-
neous entropy could allow the advertiser to select potential
customers who are currently not in deep routine, and whose
patterns are therefore easier to change, given an appropriate
discount incentive for the user.

To put these sketches in context, we next consider instan-
taneous predictability as a feature in anticipating applica-
tion use on mobile phones.

4.2 Predicting Map Application Use
We finish with a practical application of our proposed mea-
sure. Given the correlation found in Section 3.2.4 between
the current instantaneous predictability of the user and their
probability of using the map application, we consider the
usefulness of the former as a feature in predicting the lat-
ter. Specifically, the task is to perform binary classification
on the current time slot, indicating whether or not the user
will use the map application at that time. This classifica-
tion could be used for mobile user interface decisions, for



example to decide whether to display an easier shortcut to
the map application. It could also be used to proactively
pre-cache a map of the user’s current location, increasing
apparent speed and responsiveness of the application from
the user’s perspective.

On the Nokia dataset, we test the intuition that a user
in unfamiliar conditions (i.e., outside their normal location
habits, as indicated by a high instantaneous entropy) is
much more likely to seek out geographical information about
the environment from their mobile phone. We model map
use very simply, comparing the current instantaneous en-
tropy H̃i (given by Equation 4) against a threshold param-
eter T to decide the class label Ci at time i:

Ci =

{

1 if H̃i > T
0 otherwise

(7)

The T parameter can be varied to produce the receiver op-
erating characteristic (ROC) curve shown in Figure 5. The
rate of false positives (i.e., falsely predicted map use) ag-
gregated over all users are plotted against the rate of false
negatives (i.e., correctly predicted map use). For compari-
son, we also show a baseline curve of a classifier that uses
only the current time to classify map use (substituting hour

of the day for H̃i).
The results show an improvement over the baseline when

using instantaneous entropy as the feature. The area under
the curve was 0.69, compared with 0.63 for the baseline4.
The class balanced accuracy (taking into account the im-
balance in class sizes) was 63%, compared with 54% for the
baseline.

It is clear that the performance of the instantaneous en-
tropy classifier is not uniform over the samples. The ROC
curve has a steep gradient initially, and indicates that about
45% of map uses can be correctly anticipated with a false
positive rate of only 10%. Performance flattens out after
that. The interpretation is that 45% of map uses in the
Nokia dataset are strongly connected to periods when the
user is outside their normal habits (i.e., periods of high en-
tropy), but the remaining 55% have a very limited connec-
tion to their location habits. Perhaps the user is planning
further ahead in the latter cases, creating a disconnect be-
tween location behaviour and application use. It is a subject
of future work to find the right features to complement the
informativeness of location habits in predicting application
use.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new metric for measuring
an individual’s momentary predictability: the instantaneous
entropy. We demonstrated that this measure gives a deeper
understanding about the state of mind of the user at any
given time, and strongly influences the way they interact
with their mobile devices. In future work, we plan to use
this measure to build intelligent context-aware applications
to offer effective in-the-moment user assistance.
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