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ABSTRACT
As context-sensing smartphones and context-based services gain
mainstream popularity, there is an increased interest in developing
techniques that can predict user’s future location. Location predic-
tion capabilities can be used in many scenarios such as preheating
home environment for the owner’s arrival or for preemptive allo-
cation of resources on cellular networks with expected heavy traf-
fic. In this paper we present a soft classifier fusion technique for
predicting a user’s future location. Instead of one complex model
for capturing user mobility patterns, we use multiple models, each
focusing only on one aspect of location prediction such as time-
location dependency or likelihood of location transitions, and fuse
predictions from each model by considering their prediction confi-
dences. Through the extensive evaluations on real-world data from
the Nokia Mobile Data Challenge dataset, we show that our fusion
approach outperforms the standard supervised classification algo-
rithms such as SVM or decision tree.

1. INTRODUCTION
In this paper, we present a fusion of machine learning algorithms

to model the movement of mobile device users. The fusion of ma-
chine learning algorithms are geared for predicting the user’s next
significant location based on the context of the user during the last
30 mins at his last significant location. We present an evaluation of
the predictive power of the fusion model and the individual models
on the Nokia Mobile Data Challenge (MDC) dataset [5].

Using probabilistic methods for modeling the movement patterns
of users has been attempted in previous work, such as [2], [1],
[4], [9]. [2], [13] and similarly [1] use a Markov model to pre-
dict a user’s mobility pattern.Ashbrook and Starner use a similar
method with n-th order Markov models to predict the next build-
ing a user would visit when observing the previous building visited
by the user . Liu and Maguire also employ a Makovian approach
to user location prediction [6]. These works are restricted to very
coarse grained location prediction and require relatively clean lo-
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cation data. The Predestination system by Krumm and Horvitz [4]
uses the Bayes rule for predicting future locations, and is based on
the observation that a partially traveled route is usually an efficient
path to the final destination. Ziebart et al. use a Makovian model
for destination prediction as well as shorter term predictions of the
route to be traveled [13]. This work uses smaller window of his-
toric data to perform prediction. Buthpitiya et al. use a n-gram
based model to detect anomalies in user behavior and predict the
location of a user after a time window has elapsed [3]. Their work
primarily focuses on anomaly detection rather than location predic-
tion. Patterson et al. uses a Bayesian model augmented with infor-
mation on the user’s mode of transport to predict the users future
location [9]. While this work provides a strong modeling approach,
its predictive capabilities are limited by the lack of temporal infor-
mation used in the model. Mayrhofer [7] build on existing work
to extend location prediction techniques for context prediction in
general. The work also develops a general architecture that uses a
neural gas approach. The predictive capabilities of the models in
existing work are limited as the models focus on location informa-
tion, and ignore most other forms of sensor and context information
(e.g., call-logs, accelerometer readings).

We use a collection of models, each to model a set of sensor and
context information best suited it, and focus on fusing their outputs
to provide accurate predictions of the user’s next location and are
able to outperform previous work in terms of predictive capability.

In this work, we make the following contributions toward the
problems of modeling users’ mobility patterns and predicting the
users’ future locations:

• We present a fusion of model for modeling human mobility.

• We show how this model is used for predicting the future sig-
nificant locations of a user given the user’s current context.

• We evaluate the fusion model’s location prediction capabili-
ties with extensive real-world data from the MDC dataset.

2. FEATURE EXTRACTION
In order to have a unified sensing framework, we consider all

mobile contextual information being collected from “sensors”. A
sensor can be a piece of physical hardware such as accelerometers
or gyroscopes. It can also be a “soft sensor” such as the value re-
turned by the OS about whether the phone is charging or the current
ringtone setting, etc. Before describing the training of the predic-
tion model, we first describe which features are used in our work,
what is the intuition of using them and how the features are ex-
tracted from both hardware sensors and soft sensors.

2.1 Phone Usage Features



Features Values
Call Log State incoming call, outgoing call, missed call,

incoming message, outgoing message
Ringtone Mode normal, ascending, ring once, beep, silent
Charging State charger not connected, charging, charging

completed, charging continued after brief
interruption

Table 1: The list of phone usage features used in this work.

Table 1 shows the phone usage features. The intuition of using
these features is that phone usage patterns might be correlated with
user’s mobility patterns. For example, a user may decide to go
home upon receiving a phone call from a family member, or to
drive to a restaurant after making phone calls to his/her friends. In
that case, there is a certain correlation between the call log state
and the next location of a user.

For the ringtone mode, transitions of ringtone mode may imply
changes of user’s location. For example, a user might switch the
ringtone mode from normal to silent before going to a meeting or a
class. For the charging state, most users only charge their phones
at certain locations (e.g., home or office). It is unlikely that a user
will charge the phone while commuting or shopping in a store.

2.2 Motion Feature
The intuition of using motion information for next location pre-

diction is that what a user does at time t may imply where he/she
is going at time t + 1. Motion features are extracted from the
accelerometer data through a two level clustering. First, we dis-
cretize the raw 3-axis accelerometer readings using XMeans clus-
tering [10]. The original three dimensional real value accelerome-
ter readings are converted to one of the V symbols. In our exper-
iment, we set V = 200. Thus, each 15 seconds (per 5 minutes)
accelerometer readings are then converted to a sequence of 15×30
symbols as the accelerometer is sampled at 30 Hz.

Since the typical visit’s duration is longer than 5 minutes, each
visit contains multiple motion labels sequences. Therefore, we con-
vert the data from time-domain to the frequency domain by count-
ing the normalized frequencies of each motion symbol type and use
the V -dimensional frequency vector to represent the motion char-
acteristics of a visit. Then we apply a second level clustering on
all V -dimensional frequency vectors in order to create at least N
high-level motion clusters using XMeans. In our work, we em-
pirically choose N to be 10. Now each visit is represented by a
label such as “M1”, “M2” or “M10”. Informally, this motion la-
bel describes user’s most significant motions during a visit, such as
whether he/she was “walking” or “driving”.

2.3 Time Feature
Intuitively, a user’s current location should correlate with time.

For example, a user is more likely to be home in the morning and
at work during the day. In our work, we analyzed the time-location
correlation in details in order to estimate how accurately we can
predict a user’s location based on the time information.

In order to analyze the time-location correlation, we first dis-
cretize time into the following 48 time segments: weekday/0, week-
day/1, . . . , weekday/23, weekend/0, . . . weekend/23. Each segment
is one hour long and starts with the time denoted in the index. For
example, weekday-1 describes the time segment between 01:00am
to 01:59am UTC of a weekday. Using this method we can analyze
users’ location pattern dependent on time and the day of the week.
To avoid over-fitting the model, we consider only weekday versus

weekend instead of considering each day of the week (Monday,
Tuesday, . . . , Sunday) separately.

By summing up the total duration (in hours) a user spent at a
certain location at a certain time we can identify user’s most sig-
nificant locations for a certain time segment. For example, when a
user visits location L1 starts at 10:40 and ends the 11:30, we count
20 minutes towards the label weekday/10 and 30 minutes towards
the label weekday/11. Table 2 shows an example of the total time
the user 20 from the MDC dataset spent at different time segments.
For example on weekdays from 10:00 to 10:59 the user spend in
total 53.7 hours at location L1, 32.5 hours at location L2, etc.

Time segment ti Location Lj

Day Time L1 L2 L10 L17 . . .
weekday 10 53.7 32.5 0.8 2.6

. . .weekday 11 71 22.4 1.4 2
weekday 12 79.6 15 2.5 2.5
. . . . . . . . . . . . . . . . . .

Table 2: The table shows for each time segment the sum of hours
the user 20 spent at a certain location.

We observed from the MDC data that for each user there is a
small set of locations that is significant to this user. E.g. for user
20 we observed that three locations L1, L2 and L17 cover almost
90% of the time of all the visits. Figure 1 shows the three most
significant places of user 20 from the MDC dataset. The sum of the
duration of these three places covers almost 90% of the time the
user spent at any places.

Figure 1 shows the duration distribution of the significant places
of user 20. The X axis represents the time of the day. The values
on the Y axis represent the percentage of time duration the user 20
spent at a certain location. From this figure we can observe that
on weekdays the user typically spends mornings and evenings at
location L1 and during the day the user is at location L2. Based
on this information we can infer that location L2 is a workplace
whereas location L1 is very likely to be the user’s home.

Figure 1: Distribution of three most significant locations for user 20
on a weekday and on the weekend.

For each time segment ti we computed the location distribution
pti(Lj) for each location Lj . For example for the user 20, the
value of pweekday/10(L1) is 56%. We used these probabilities to
compute the entropy value for each time segment:

eti = −
∑
j

pti(Lj) · log(pti(Lj)) (1)

The lower the entropy, the less the uncertainty in a user’s location
at a certain time. For each user we computed the entropy value for
each of 48 segments in order to build an entropy vector with 48
values:

E = [eweekday/0, eweekday/0, . . . , eweekend/23] (2)



We then use the entropy vectors from all 80 users Eu1 · · ·Eu80

and cluster them with k-means clustering, where k is empirically
set to 4. Thus, the centroids of the clustering is also a vector with a
length of 48. Figure 2 shows the centroids of 4 clusters. We gave
each cluster a label which intuitively describes the properties user’s
location entropy:

1. Party person: spends night hours at various locations;

2. Postman: during the day he spends time at various locations,
likely starts from places close to office in the morning then
moves around the city and then comes back to office;

3. Traveler: in general, more difficult to predict locations;

4. Family person: in general, more predictable (low entropy).

Figure 2: Entropy profiles of four different type of users.

In the following sections we will show how the location predic-
tion accuracy depends on the entropy profile of each user.

3. PREDICTION MODELS
We developed and evaluated several statistical models to predict

a user’s next location given his/her current contextual information.
Each model and their combinations are evaluated on the same test-
ing data generated from the toy data provided with dataset A in
the MDC’s dedicated task 2. The testing data set contains 3,375
records. We use all remaining data as the training data set. In our
experiments, we report prediction accuracy values on both training
and testing data.

3.1 Time-based Location Prediction
The first model used in our work is the time-based location pre-

diction model. This model uses only the time feature to predict
user’s next location. Specifically, we analyze the correlation be-
tween an end time of a visit and the location of the next visit. For
example, for a certain user we observe that when a visit ends at
5pm then his or her most likely next location will be home.

We use Maximum Likelihood Estimations (MLE) to derive the
probability P (lj |fendtime) where fendtime is the end time of the
current visit and lj is a possible location of the next visit.

In order to evaluate the performance of this model find an opti-
mal next location lt+1 for a given fendtime:

lt+1 = argmax
lj

P (lj |fendtime) (3)

Table 3 shows the training and testing accuracy for each entropy
profile/cluster. Each accuracy value corresponds to an average val-
ues for all user belonging to one cluster. As expected the prediction
accuracy depends on the entropy profile of the user. Obviously, pre-
dicting next locations for a traveler is more difficult than predicting
next location for a family person.

Entropy Profile timetrain timetest
1) Party person 49% 50%
2) Postman 49% 56%
3) Traveler 38% 43%
4) Family person 60% 63%
Average accuracy 48% 52%

Table 3: Accuracy of the time-based location prediction

3.2 Dynamic Bayesian Network

L

T D C E R

...L

T D C E R

time = t+1time = t
...

Figure 3: Graphical model of our Dynamic Bayesian Network. L
denotes the next user location. T,D,C,E,R represent the time of
day, day of week, call log state, charging state, and ringtone state,
respectively.

Since the trace of the user locations and the contextual features
are time sequences, it is natural to model the temporal dependen-
cies among them using a dynamic Bayesian network. A dynamic
Bayesian network (DBN) is a Bayesian network that represents se-
quences of variables. The DBN used in this work is shown in Fig-
ure 3. There are several assumptions implied in this model: First,
the next location depends on the current location and all the con-
textual features. Second, the next location is conditionally indepen-
dent of the previous locations given the current location. Finally, to
simplify the model, we further assume that the contextual features
are conditionally independent of each other given the next user lo-
cation. In this work, the dynamic Bayesian network is implemented
using the Bayesian network toolbox (BNT) [8]. The conditional
probability tables are trained using MLE and the inference is done
using the junction tree algorithm.

Since we can do inference on a single variable or a sequence
of variables using DBN, we evaluated the DBN using the feature
set described in Section 2 on two different tasks. The first task is
Next Location Prediction as specified in the dedicated task 2 of the
MDC [5]. In this task, since we only have the information of a
user’s current location and contextual features, the DBN reduces to
a static Bayesian network. The second task is Location Sequence
Prediction, where the system predicts a sequence of future loca-
tions given the sequence of contextual features while the locations
are unobserved. For the second task, for each user we use the first
90% of data for training and the rest 10% for testing. The results
are shown in Table 4. The accuracy of the second task is lower
than the first task because it is inherently a harder problem. From
the result we can see that using DBN for Next Location Predic-
tion outperforms the baseline results using only bigrams, because



DBN models both the temporal dependency between locations and
the relationship between a location and the contextual data of the
mobile phone user.

Entropy Profile Next Location
Prediction

Location Sequence
Prediction

1) Party person 45.7% 41.5%
2) Postman 46.4% 34.6%
3) Traveler 36.9% 27.4%
4) Family person 61.4% 55.0%
Average accuracy 46.9% 38.6%

Table 4: Accuracy of DBN-based location prediction.

3.3 Decision Tree, SVM and k-NN
The future location prediction problem can be framed as a clas-

sification problem, where for a given input of contextual data of the
current visit, we try to output the correct user’s next location. In our
experiment, the following features are used for training a super-
vised classification model: 1) motion feature from accelerometer
data, 2) place Id of current visit, 3) call log of the user, 4) charging
status of the phone, 5) ringtones, 6) day of the week of the current
visit, and 7) hour of current visit. The extraction of these features
is described in Section 2.

Three classifiers are trained and tested on the toy dataset: 1)
pruned decision tree (C4.5/J48), 2) one vs. one multiclass SVM
with a polynomial kernel. 3) k-NN where k is empirically set to 5.

All the experiments in this section are done by using the API
of WEKA [12] and its implementation of above classifiers. The
results are shown in Table 5.

Classifier Training Accuracy Testing Accuracy
J48 69.0% 47.3%
SVM 70.5% 47.1%
k-NN 54.1% 47.7%

Table 5: The performance of different classifiers on toy dataset.
Decision tree, SVM and k-NN algorithms have similar prediction
accuracies on the testing data set.

To better understand the correlation between the contextual fea-
ture and the next location, we calculate the information gain of each
feature with respect to the next location. Table 6 shows the infor-
mation gain of different features. Values are averaged among all
users.

Ranking Feature Information Gain
1 Current Location 1.12
2 The hour of current visit 0.92
3 Motion 0.60
4 Call log 0.33
5 Charing Status 0.19
6 The day of visit 0.14
7 Ringtone 0.13

Table 6: Information gain of different features with respect to next
location.

As we can see in Table 6, the user’s current location and time
is the most informative feature to predict the next location. This
suggests that people tend to stay at certain places at certain hours.

Motion is another significant feature. Yet it is not clear whether
motion implies the user’s current location which in turn implies his
next location, or his current motion directly determines his future
location.Comparing to the top three features, the charging status,
call log, day of visit and ringtone are less significant features, which
indicates that they are less relevant from user’s location transition
pattern.

3.4 Language Model-based Location Predic-
tion

Based on Markov assumption that a user’s next location depends
solely on his current location, we applied a bi-gram language model
for next location prediction. We consider each location as a “word”
in a language and use the default smoothing and backoff in SRI
language model toolkit [11] to train a bi-gram language model on
the training data set. The model can then be used for estimating
user’s next location li+1 given the current location li:

li+1 = argmax
lj

P (lj |li) (4)

Table 7 shows the training and testing accuracy achieved by us-
ing the language-model approach.

3.5 Soft Classifier Fusion
In our work, we fuse the prediction results of described super-

vised classification models to achieve higher location prediction
accuracy. Assuming we have n models. Each model i can esti-
mate Pi(lj |fi) where fi is a set of input features of this model
(e.g. time or current location) and lj represents a possible next lo-
cation. Our goal is to find the optimal next location for given in-
put features by fusing the probability values of different models:
lt+1 = argmaxlj

∑
i αiPi(lj |fi).

αi is a weight of a specific model. In our work, we exhaus-
tively generated a large amount of weight combinations in order
to find the best parameter set for the training data. Then we use
this parameter configuration to perform location prediction on both
training and test dataset.

The weight combination achieving highest training and testing
accuracy is αlm = 0.55, αtime = 0.45 and αother = 0 where
αlm is the weight of the language model-based approach, αtime

the weight of the time-based model and αother are the weights of
all other models. Table 7 shows the prediction accuracy of 61% for
both training and testing data when the mentioned weight combi-
nation is applied.

Entropy Profile lmtrain lmtest fusetrain fusetest
1) Party person 64% 60% 70% 73%
2) Postman 50% 43% 56% 52%
3) Traveler 53% 50% 62% 64%
4) Family person 55% 47% 64% 61%
Average accuracy 55% 51% 61% 61%

Table 7: Training and testing accuracy achieved by using only
a language model (lmtrain and lmtest) and by fusing the lan-
guage model with time-based model for next location prediction
(fusetrain and fusetest).

4. SUMMARY
In this paper, we discussed different approaches to attack the

MDC’s dedicated task 2. After experimenting with different pre-
diction algorithms such as Decision Tree, k-NN, SVM and DBN,



we present a soft classifier fusion technique used for predicting
user’s future location. Instead of using one complex model for
capturing user’s mobility patterns, we use multiple models, each
focusing only on a certain aspect of location prediction such as
time-location dependency or likelihood of location transitions. Our
approach fuses location predictions of the individual models while
considering the prediction confidence of each model. Through the
extensive evaluations on real-world data from the MDC dataset, we
show that our fusion approach outperforms the standard supervised
classification algorithms.
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