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ABSTRACT

Location prediction has been an active research area for a
long time. The Task 2 of Nokia Mobile Data Challenge
(MDC) [6] provides plenty of data collected using mobile
phone and the transitions from one place to another. Given
a user currently at one place and the context associated
with this visit, we are interested in the relationship between
the current context and the next visit and the prediction of
the next place the user is going to. We focused on using
the transitions between places for each individual user, as
well as the time context, to do prediction. We also tried
to explore other context information such as call-logs and
accelerometer data in the current place. By combining the
location transition information and the context information,
we provide an ensemble learning approach to pick the ap-
propriate model for each user. Our experiments show that
our solution is effective in solving the next place prediction
task.

1. INTRODUCTION

The Task 2 of the Nokia MDC is to predict the next des-
tination of a user given the current context. The challenge
participants are free to estimate the context from all avail-
able data within certain time intervals corresponding to a
visit in a place. Sensor-based next place prediction has been
studied recently [4, 7]. However, we found it hard to ap-
ply the approaches in previous researches, because most of
them have the knowledge of the exact GPS point and the
road map. It is also hard to use the interaction among users
[10], as the location history for each user is anonymized.
Therefore, we are more interested in exploiting the location
transition history, as well as the context information, to pre-
dict the next location.

Many people tend to have some routine activities in their
life. For example, a working person may get up at home in
the morning, and then move to his/her office in the week-
days. For the user with such a regular timetable, it would
be reasonable to predict his/her next destination based on
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the time information, current place, etc. In order to capture
this transition information, we are motivated to use histor-
ical trajectory data to build transition probability matrices
among the places. Another interesting observation is that,
people can have different routines in different time periods.
For example, in the weekdays, working people may go to
office; but in the weekends, they may go for shopping. Such
routine difference motivates us to use the time as an impor-
tant factor in computing the location transition probabili-
ties. We have developed two location transition models to
encode such knowledge in predicting a user’s next destina-
tions. The first one is simply using the transition probability
computed from the (recent) history data to predict the next
more probable location. The second one further differen-
tiates the location transition probabilities at different time
periods, and thus improves the performance.

Other than the location transition patterns, there is also
some context information that can possibly useful in next
place prediction. In particular, we are interested in the fol-
lowing question: given the current place ID as a prior knowl-
edge, are the user activity data, say call-logs and accelerom-
eter strength, good indicators for the next place? We have
tried to answer this question by transforming the next place
problem as a supervised learning problem. Specifically, we
developed two models to solve the prediction problem. The
first model is a classification model, where we take the sen-
sor logs as input and use the next place ID as output. The
other model is a ranking model, where we try to rank each
pair of locations based on their transition counts. In this
ranking model, we take as input the sensor data for each
pair of location, as well as some feature denoting their tran-
sition. Then we rank different pairs of locations according
to their transition counts. The basic idea is to train a model
that can minimize the number of inversion in ranking. It
is worth noting that, such a ranking model can possibly be
more robust than a regression model because the transition
counts may vary a lot as regression output [10].

Effectively, the above mentioned location transition matrix
based models and the supervised learning models capture
the different type of information. We have managed to com-
bine them all through ensemble learning to get a better pre-
diction for each user.

Finally, we feature our solution as follows:

e We provide two location transition matrix based mod-



els, which are able to use each individual user’s loca-
tion transition history for next place prediction.

e We also provide two supervised learning models, which
are able to use the general context information from
all the users’ data together for next place prediction.

e We offer an ensemble learning solution to combine these
different models, in order to assign appropriate models
to each user in prediction.

e We have shown to achieve 55.3% accuracy in testing
with the real data in Task 2.

2. RELATED WORK

Typical location prediction problems assume that some sen-
sor observations such as WiF1i [5], GSM [9] are already known
at the time point of prediction. The task is then to use
these sensor signals, in an either geometrical [2] or machine
learning [1] way, to discover the location at the current mo-
ment (i.e. to predict the current location). However, the
Task 2 of the Nokia mobile data challenge is interested in
another type of location prediction problem, which aims to
predict the next location without knowing the future sensor
data (i.e. to predict the future location). This is essentially
more challenging than the previous problem setting, since
we do not have the observation in the future. We need to
greatly rely on the historical data more than ever to solve
this problem. Nevertheless, the previously proposed sequen-
tial learning models in current location prediction such Hid-
den Markov Model [5], Conditional Random Field [8], Par-
ticle Filter [1], cannot be simply applied anymore, because
they require the (sensor) observations to be known for the
time point of prediction. In our solution, we show to use
the time-sensitive location transition patterns learned from
historical data to predict future location, without requiring
the future location’s real-time observation data to be given
beforehand.

In future location prediction, sometimes pure historical lo-
cation data (and optionally the corresponding sensor data as
well) may not be sufficient. Therefore, previous research has
exploited some additional information to help the prediction
by providing more constraints on the possible locations to
go. For example, Krumm has shown to use the road map to
help predict where drivers turn in the road [4]. Monreale et
al. argue that if people use the movements of all objects in
a certain area to learn a classifier, the next location predic-
tion can be greatly improved [7]. However, such additional
information is not always available in our task. For exam-
ple, in our data, there is not road map since the exact GPS
location has been anonymized and there is no way for us to
uncover the true location for each user. Besides, because in
our data each user has their unique location set and we can-
not tell whether two users share the same location or not,
it is impossible for us to use the multiple users’ informa-
tion together like [7] for prediction. Given such challenges,
we chose to do the prediction in two ways. First, we focus
on doing prediction for each user independently, and only
consider their own location transition history. Second, we
manage to extract features that are general for the users, and
use them to train some unified supervised learning models
for prediction on all the users.
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Figure 1: The visiting log of user 189

3. INDIVIDUAL USER STUDY

We notice that in the given data set, the user information
can be hardly reused between different users because of the
anonymization preprocess. Therefore, it is difficult to ex-
ploit those collaborative filtering idea [10] to help the pre-
diction. In this task, we restrict ourselves on exhaustively
mining the individual information. We are motivated to an-
alyze the individual’s behavior. In this section, we report
several interesting findings on the individual user behaviors.

3.1 Most Users Have Regular Timetables

In order to better understand the user’s behaviors, for each
of the users, we retrieved the place record and visualize the
user’s visiting logs during the information collection period.
Figures 1, 2 and 3 give the visualization of visiting logs for
user 189, user 13, user 45 and user 110. In these figures,
the Y-axis represents the day, where day O corresponds to
the first day of the user’s training record; And the X-axis
is divided into 24 grids, which correspond to 24 hours of
a day. We use different colors to represent different places
and blank (white color) means no available visiting log. For
the convenience of presentation, only top 5 most frequently
visited places are visualized.

We find that for most of the users, like the user 189, they
have a relatively stable timetable. As we can see, user 189
stays at a place represented by light green (maybe the home)
in the evenings, and goes to the place represented by black
in the working hours. By our study, there are about 60 out
of 80 users can be classified as having a regular timetable.
For those users who have a regular timetable, their next
visits are highly predictable simply based on the historical
trajectory data.

3.2 Recent Data Is More Important

We also notice that during the data collection period, some
of the users may change their regular visited places due to
various reasons. For example, people may move to another
apartment, or get another job, etc. Take user 13 as an ex-
ample. As shown in Figure 2, this user seems to change the
living places since the place in the evening is different in the
last 100 days of the training record. Among those 60 regu-
lar users, there are about 20 users who changed their regular



350

e
o0 12345678 9101112131415161718192021222324 0

Figure 2: Users, such as user 13, may change their reg-
ular visited places

visited places during the data collection period.

Given that the users can change their regular visited places,
the information before changing the regular visited places
would become less useful in predicting the next visits. There-
fore, in our approach, we use only use the most recent data
for these 20 users who changed the regular visited places. In
Section 5.1, we study the impact of using different amount
of most recent data for training the transition matrix. We
also show that the experimental results justify our assump-
tion that recent data is more important for the users who
change their regular visited places.

3.3 Some Users Have Irregular Timetables

It is worth noting that there are around 20 users having
relatively irregular timetables. As shown in Figure 3, most
of these users either have very limited logs to identify the
patterns or do not keep a regular timetable. The first case
corresponds to the cold start problem, that is, the user has
very few records such that we cannot build effective models
to predict the next visit. The second case is for those users,
like taxi drivers, who are always moving around and the
destination is not determined. These users are generally
hard to deal with in prediction. We follow the intuitive
solution and suggest the most frequently visited places as
their destinations.

4. MODELS
4.1 Transition Matrix Models

As most users have regular timetables, we propose to for-
mulate the location transition probability to help predict
the next location. In this section, we first introduce the
transition matrix, and then show several extensions of the
transition matrix.

4.1.1 Simple Transition Matrix Model

The transition matrix is built purely based on the visiting
logs on the whole training data set. We count 1 for the
matrix entry (7, ) if there is a transition from the place i to
the place j. The transition matrix captures the probability
of the transition from current place i to the destination j.

Given the user to be at place %, in order to predict the next
visit, we retrieve the i-th row of the transition matrix and
obtain the next place by finding the column with maximum
(probability) value in the row.

4.1.2 Enhanced Transition Matrix Model using Time

as a Prior

One problem for the previous simple transition matrix model
is that, it does not consider the mobile users’ behavior dif-
ference in different time periods. We find in the data that,
in the weekdays, most people have regular timetable in the
weekdays; but in the weekends, people tend to have more
choices to visit different locations. Therefore, we are moti-
vated to separate the data from weekdays and weekends in
constructing the transition matrix. For a next place predic-
tion on weekdays, we use the transitions obtained on week-
days. For weekends, we only use the transition matrix dur-
ing weekends.

In addition to weekday/weekend, we also find it useful to
study the behavior different in different time periods in a
day. Specifically, we further divide a day into several time
spans and use the data accordingly to build the transition
matrices. Our experimental results show that by dividing
the day into three time spans, i.e. 0:00-8:00, 8:00-16:00 and
16:00-24:00, we can further improve the performance. The
reason for choosing such time spans is that, by dividing a
day into such three time spans, we can consider the time
before going to work, the working hours and the time after
work separately. Because most people do not change their
residence place and working place, given such a time interval
as the prior, the search space for next visit can be greatly
reduced. This leads to a better performance.

4.2 Supervised Learning Models

While being efficient and capable to make good next place
predictions, the transition matrix based models have obvi-
ous drawbacks. First, they take only the visit logs as input
and can hardly use the rich context information. Second, it
cannot make reasonable predictions for the cold start users.
Therefore, we further exploit the use of context features.

4.2.1 Context Features

We extract a set of useful features, which are associated to
a place and can be applied to our classification model and
ranking model.

e Time features. We compute the mean and variance
of stay durations at a place.

e Accelerometer features. We use the mean and vari-
ance of the accelerometer strength in a minute as fea-
tures.

e Application features. We count the frequency of
each application status, such as “close”, “started”, “view”
and “foreground”.

e Bluetooth and WLAN features. The statistics
including mean, variance, minimum and maximum of
the signal strength are used.



00 1234567 89101112131415161718192021222324

Figure 3:

e Call-log features. We used the features including ra-
tio between incoming and outgoing and ratio of missing
calls.

e System features. We count the frequency of the
phone status, such as “charging” and “silence”.

The above features are extracted and associated with a place
ID. We used these features in both our classification model
and ranking model.

4.2.2  Classification Model

The next place prediction can be viewed as a classification
problem. The input is the context features for current lo-
cation, and the output is the next location ID. Due to the
anonymization process, one user’s records cannot help to
predict another’s next visit. Therefore, we train a support
vector machine (SVM) for each user. One challenge to di-
rectly use such a classification model is that, there can be
too many labels, which make the classification difficult. In
order to address this challenge, we leverage our observation
that some places are visited for quite few times and they
are less likely to be visited again. Therefore, we propose to
group all these rarely visited places as a dummy place to
reduce the number of classes for prediction.

4.2.3 Ranking Model

The next place prediction can also be seen as a ranking prob-
lem. In the classification model, we take the information at
current place as input and the next place as output. Ef-
fectively, we miss the links between the current place and
the next potential visit. In order to use such links, we can
take every possible location as a potential next place to visit
for a user, then we construct a set of location pairs with the
current place and each of these possible locations. Each pair
of such location denotes a possible transition, and our goal
is to rank these pairs and find the one ranked highest as
the most probable transition for prediction. In training, the
input data is a rank list. Each position in the list is a pair of
locations, and it has a feature vector composed of both loca-
tions’ context features and their location transition features.
Some typical location transition features include:
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Irregular users

e Frequency of next place being visited.

e Frequency of visits in current time interval.

Start time of next place, given the end time of current
place.

e Frequency of next place being visited, given the end
time of current place.

e Frequency of next place being visited, given the current
place.

The rank list is ordered by considering the transition counts
of each location. Then, we adopt the idea in [3] to imple-
ment the ranking model. In testing, given a current place,
we can still get the context feature for current place and the
transtion features w.r.t. each possible next location. How-
ever, we do not have the real-time context features for these
possible next locations. We propose to re-use the context
features for these possible next locations from their training
data. Though it may not be perfect, we empirically show in
the experiments the effectiveness of using such features to
deliver a ranking model. Finally, with the complete feature
vector for each location pair, we predict the rank and find
the most probable transition from the current place.

4.3 Ensemble Learning

To solve the next place prediction problem, we have pro-
posed four models, which use different information in dif-
ferent ways. A reasonable choice to combine these different
models is ensemble learning. In this task, we adopt an em-
barrassingly simple, yet effective ensemble learning solution.
Specifically, as different users tend to have different behavior
patterns, we may not expect a single model can outperform
the others on all users. Therefore, we propose to use the
most suitable model (out of the four proposed models) for
each user individually. We empirically show in the exper-
iments that, the best model chosen in the validation data
also works well on the test data. This ensures us to use such
a simple ensemble learning solution to guaranttee the best
performance from a bunch of base models. We will discuss
more on ensemble learning in the experiment section.



Table 1: Consensus of prediction accuracy on validation set and testing set

User 001 003 008 014 015 020 021 022 025
Methods transSimple 0.1538 0.2857 | 0.3684 | 0.3214 | 0.3667 | 0.4500 | 0.3913 | 0.7059 | 0.2308
on transTime 0.3077 || 0.3571 | 0.5263 | 0.3929 | 0.0667 | 0.7110 | 0.4348 | 0.5882 | 0.4782
Validation | Classification || 0.3462 | 0.2755 | 0.4210 | 0.3571 | 0.4194 | 0.6667 | 0.4310 | 0.5790 | 0.4118
Set Ranking 0.3249 0.3073 | 0.4198 | 0.4053 | 0.3995 | 0.6833 | 0.4326 | 0.5638 | 0.5384
Methods transSimple 0.2258 0.4000 | 0.4623 | 0.3077 | 0.5333 | 0.4737 | 0.3478 | 0.7632 | 0.1539
on transTime 0.5161 | 0.5333 | 0.4959 | 0.2308 | 0.5333 | 0.6316 | 0.2609 | 0.5790 | 0.2500
Testing Classification || 0.5484 | 0.4667 | 0.4737 | 0.2508 | 0.5667 | 0.6153 [ 0.3044 | 0.5020 | 0.3077
Set Ranking 0.5042 0.4789 | 0.4901 | 0.3211 | 0.5121 | 0.6229 | 0.3321 | 0.5598 | 0.3597
Table 2: Percentage of Heuristic Data in Use. We Table 3: Models and Their Descriptions
obtain best prediction accuracy when using 70%
data. Model Description
transSimple || The Naive transition matrix model
5 AL o 7 transTime Transition matrix with time as a prior
ercentage (%): || 30 || 50 [ 70" [ 90 | 100 Classification || Classification model. Here, we adopt SVM
Accuracy (%): || 46.23 [ 48.68 [ 51.21 | 49.73 | 49.55 Ranking Ranking model implemented with learning
to rank algorithm

S. EXPERIMENTS

In order to test our methods, we constructed the testing
set by splitting out the latest 10% of each user’s training
data and retaining those with trusted transitions, which we
believed simulated the test data set held by the MDC orga-
nizer. And we also constructed the validation set by retriev-
ing another latest 10% of each user’s training data. The rest
80% of the data are used as the new training data set. In
the followings sections, we adjust the essential parameters
for our models based on the prediction accuracy on the val-
idation set. And we report the performance of the models
based on the prediction accuracy on the testing set.

5.1 Using Different Amount of Training Data

For Transition Matrix

As mentioned in Section 5.1, since the transition matrix
model is very sensitive to the data quality, we study the im-
pact of using different amount of most recent training data
to build the model for those 20 users who changed their
regular visited places. The overall prediction accuracies are
shown in Table 2. We find that, on one hand, when only
very few recent data are used in training, the performance
is not very good due to the lack of information. On the other
hand, when the entire training data set is used in training,
the noise mentioned in can make it hard to make proper
predictions. Based on the experimental results, we finally
use the most recent 70% of the training data for our further
experiments and submissions. This is also consistent with
our investigation on each individual user’s data. For exam-
ple, as shown in Figure 1 and Figure 2, which visualize the
location history of two typical users with regular timetables,
we find that using the most recent 70% of the training data
is also a reasonable choice for these types of users.

5.2 Ensemble

5.2.1 Consensus of Prediction Accuracy on Valida-
tion Set and Testing Set

Table 4: Overall accuracy of single models and the
ensemble. The ensemble of single models outper-
forms single models.

Models [ Accuracy (%)
transSimple 41.9
transTime 51.2
Classification 49.6
Ranking 52.7
Ensemblex 55.3

Before we ensemble the proposed models to give the final
predictions on testing set, we would like to verify that our
validation set and testing set have consensus on the predic-
tion accuracy for each user, so that we can choose a proper
model for each user based on the prediction results on vali-
dation set. Table 1 lists the prediction accuracy of the four
of our prime models on both validation set and the testing
set. Notice that in most cases, the model which did the best
on the validation set also achieves the best performance on
the testing set. This gives us the reason to believe that such
a simple ensemble learning solution is likely to work well.

5.2.2  Result of Ensemble

By selecting the best model for each user according to the
prediction on the validation set, most users are assigned the
most suitable model. As shown in Table 3, the overall pre-
diction accuracy after ensemble is improved over each single
model. On our test data set, the best overall prediction
accuracy can reach 55.3%.

6. TOOLS AND COMPUTATION

In Task 2, we have encountered little problem in compu-
tation. Although the training dataset occupies 48GB disk
space, the data that our models rely on are small. We choose
F# and Python as our data processing languages. We use



Python first and all our visualization is done using Python’s
matlibplot! package. But later, we have to coordinate the
programming with that in our Task 1 [11], which uses F#
extensively for the feature extraction. Under F#’s strictness
and expressive power in types, we write programs with few
bugs.

7. CONCLUSION

Next place (or future location) prediction is an important
task. It is different from the traditional location predic-
tion problem, which aims to predict the current location
with (sensor) observation input. This makes the previously
proposed sequential model such as Bayesian filtering and
Conditional Random Fields not applicable to this task. To
address this issue, we chose to build two time-sensitive loca-
tion transition models, by formulating how likely a user will
move from one place to another place at different time peri-
ods. Besides, in Task 2, as each user’s data are anonymized,
it is difficult for us to further exploit the correlation among
the users by just looking at their location data. Therefore,
we compromise our way of using multiple user’s data by
extracting the general context features. These general fea-
tures, independent of users, are further consumed by two
supervised learning models, in order to formulate the dif-
ferent ways of modeling. Finally, given these individually
learned models, we adopt some ensemble learning model to
further assign each user with the suitable model. Overall,
we show to achieve 55.3% accuracy for our best model in
the test data.
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