
A Trajectory Cleaning Framework for Trajectory Clustering

Agzam Idrissov
Department of Computing Science

University of Alberta, Canada
idrissov@ualberta.ca

Mario A. Nascimento
Department of Computing Science

University of Alberta, Canada
mario.nascimento@ualberta.ca

ABSTRACT
Trajectory clustering is the process of grouping similar tra-
jectories according to a similarity distance. Several methods
for trajectory clustering have been proposed. However, most
of these methods require initial data preprocessing which
are seldom explained. To that end, this paper proposes a
framework for cleaning trajectory data, which consists of
three steps: stop detection, missing segment interpolation
and inaccuracy removal. Using Nokia’s Mobile Data Chal-
lenge dataset as a sample application for our framework and
objective metric, we show that our data preprocessing ap-
proach improves the quality of trajectory clustering.

1. INTRODUCTION
Clustering is a process of organizing similar objects into
groups. Initially, most algorithms in this field were de-
signed for point data (e.g. DBSCAN [5] and OPTICS [3]).
However, recent proliferation of position tracking devices
has lead to enormous amounts of generated trajectory data,
which resulted in a new research direction called trajectory

data clustering. Depending on the task, given a set of trajec-
tories, one may want to find clusters of objects that followed
the same path or detect groups that moved together for given
period of time. For instance, this information can be useful
in urban planning when one may notice frequent routes that
were not covered by public transportation [7]. While there
are plenty of methods that are aimed towards clustering of
trajectories (such as [10], [6]), not many of them discuss the
data preprocessing step which is crucial for the final result.
The closest work to our framework is proposed in [1]. In par-
ticular, the authors use the same stop detection algorithm
that was used in our work. However, their work concentrates
more on semantic enrichment of trajectories with the help of
the users, whereas the emphasis of our work is on improving
the automatization of trajectory data preprocessing and on
the effects of data cleaning on the final clustering.
In this paper, we present a framework for cleaning trajectory
data that consists of three phases: stop detection, missing
segment interpolation, and inaccuracy removal. Using the

This material was prepared for the Mobile Data Challenge 2012 (by Nokia)
Workshop; June 18-19, 2012; Newcastle, UK. The copyright belongs to the
authors of this paper.

Nokia-MDC [9] dataset and an objective quality metric, we
evaluate our trajectory preprocessing framework by cluster-
ing both raw and the cleaned dataset and comparing the
results. Our results show that indeed, our proposed prepro-
cessing yields clusters of better quality.
This paper is structured as follows. Next, we briefly present
a discussion about clustering and distance functions in gen-
eral. Section 3 details each of the three steps that comprise
our proposed framework. Then, some preliminary results
are presented in Section 4 and some conclusions are offered
in Section 5.

2. PRELIMINARIES
2.1 Clustering Algorithms
According to [8], trajectory clustering methods are divided
into 3 main groups: model-based, distance based and visual-
aided. Model-based methods attempt to describe the whole
dataset by generating a suitable function of time (e.g. [6]).
Distance-based methods use specially designed distance func-
tions that are meant to show similarity between objects.
This allows breaking the whole trajectory clustering process
into two steps: 1) calculation of distances between trajecto-
ries according to the defined distance function and 2) actual
clustering using a known clustering algorithm. In our work
we will use this clustering approach to evaluate our findings.
Lastly, visual-aided methods rely on human expert’s judg-
ment, who will interactively change clustering settings to
achieve the desired clustering result. One such visual clus-
tering framework can be found in [2].
Our work is based on a well-known clustering algorithm,
DBSCAN [5], which is briefly described in the following.
DBSCAN is a clustering method that is based on the notion
of cluster density. Given two parameters that define clus-
ter density, minPts and Eps, clusters are formed by core
points and their neighbours. A core point is a point that
has a minimum number of points (minPts) within Eps dis-
tance. For each neighbour of a core point, the algorithm
tries to expand the current cluster based on the same core
point condition. That way, DBSCAN allows forming of clus-
ters with arbitrary shapes. We will use a modification of this
algorithm during the stop detection step and the algorithm
itself during actual trajectory clustering.

2.2 Distance Functions
Most distance functions used for trajectory data are adopted
from time series (data) mining domain. Dynamic Time
Warping (DTW) [4] distance is designed to evaluate simi-
larity between objects that have different speeds. Given two

Figure 1: Trajectories with and without stop

sequences of time series, all points of these sequences are
warped to each other so that the resulting distance would
be minimal. The major advantage of DTW over Euclidean
distance is its ability to take into account stretching and
compression of sequences. In this work, we used DTW as
our distance function during the clustering step to illustrate
our point that data preprocessing can improve clustering.
Nevertheless, other distance functions could be used for com-
parison too (e.g. LCSS [12]).

3. TRAJECTORY CLUSTERING FRAME-
WORK

3.1 Stop Detection
Our stop detection method is motivated by [11]. In that
work, the authors propose an algorithm called CB-SMOT
that finds stops - nearby places on the trajectory where ob-
ject spent a relatively large time without leaving those loca-
tions. In our work we will use that algorithm to find these
stops and remove them. We will also show that it is possible
to make users specify only one parameter for stop detection,
instead of two, as in the original paper.
The intuition behind removal of these stops is that many

distance functions are quite sensitive to them. As shown in
Figure 1, because DTW processes each point in a sequence,
the distance between trajectory A (without stops) and sim-
ilar trajectory B (with stops), would be larger compared to
distance between trajectory A and trajectory C (without
stops from trajectory B). This may lead to decreased accu-
racy of trajectory clustering.
CB-SMOT algorithm is based on the DBSCAN point clus-
tering algorithm. The difference between these two algo-
rithms is that instead of the minPts parameter that is used
in DBSCAN, CB-SMOT uses minT ime parameter to es-
timate cluster density with respect to how much time an
object spent at particular locations.
Stop clusters (groups of points on the trajectory) are also
formed based on core point condition. A point is consid-
ered a core point with respect to Eps and minT ime, if
minT ime ≤ Tlast − Tfirst, where Tlast (Tfirst) is the lat-
est (the earliest) timestamp in the Eps-neighborhood of the
core point. Lastly, for each core point the cluster is ex-
panded further by including all the density-reachable points
from the Eps-neighborhood.
One of the inconveniences of CB-SMOT is that a user should
specify two parameters minT ime and Eps based on the tra-
jectory data domain. The authors attempted to alleviate
the choice of one parameter, Eps, by using another param-
eter called area, which represents approximate proportion
of points that can form stops. While this allows the user to

Figure 2: Stop detected by estimated Eps parameter

choose a normalized value between 0 and 1 instead of ab-
solute value of Eps. The user, however, is still required to
enter this parameter based on his/her knowledge about the
data.
In our work, we tried to find a way to automate the se-
lection of both parameters. While the automatic choice of
minT ime is left for future work, we came to the observa-
tion that Eps parameter can be easily estimated by taking
the mean of all the distances between consecutive points of
a trajectory. Our preliminary experiments show that using
this mean is sufficient to detect all the major stops on a
trajectory. Results of the automatization of this step are
illustrated in Figure 2. After all the stops on a trajectory
are found, we remove them and fill in the created gap with
points generated at the next step: Missing Segment Inter-

polation, which is described next.

3.2 Missing Segment Interpolation
Sometimes a GPS receiver loses signal and cannot record
the object’s current position. As a consequence, some tra-
jectories contain gaps without sampling points as shown in
Figure 2. In our work, we have implemented a simple in-
terpolation technique that would emulate missing sampling
points to achieve further improvement of clustering results.
First, let us define a missing segment in the context of this
paper. A missing segment is part of a trajectory that, ac-
cording to a given GPS sampling rate and object’s movement
direction, should be there, but is missing.
An obvious way to fill this gap would be to simply link the
(temporarily) closest two points before and after the per-
ceived gap. This would likely lead to problems because it
effectively ignores the sampling rate and thus pieces of the
missed subtrajectory. As the DTW distance compares the
trajectories in a piece-wise fashion, this would impact the
quality of the distance measure. Therefore, a more informed
process is needed.
Let Pi and Pi+1 be consecutive points on a trajectory with
timestamps tPi

and tPi+1
, and let φ and ψ be the inter-

polation and trajectory breaking thresholds, respectively. If
the difference between tPi

and tPi+1
is larger than the in-

terpolation threshold φ, we use interpolation to “complete”
this missing segment. However, if this difference also ex-
ceeds the second threshold, trajectory breaking threshold ψ,
we will not interpolate this segment. Instead, we will break
down the trajectory into two separate trajectories. The mo-
tivation behind this is that for the clustering step we need
trajectories of some reasonable length that would take into
account only user’s actual movement and neglect stops.
In other words, given a trajectory history of a user, if there

is no GPS signal for ψ amount of time (ψ is set to 3 min-
utes) between two consecutive points, we will separate the
given trajectory into two subtrajectories. We note that this
trajectory partitioning is performed at the very beginning
of the trajectory preprocessing even before stop detection.
Suppose there is such a missing segment on a trajectory and
our goal is to fill in this missing segment with generated and
evenly distributed points. We performed an interpolation
based on the previous k and next k points of both endpoints
of the missing segment.
Let P be the list of points on a trajectory, where Pa and
Pb are the endpoints of the missing segment. Given the dis-
tance between Pa and Pb, we can estimate the number of
subsegments N , that is necessary for even distribution of
points across the whole missing segment:

N =















2kDist(Pa, Pb)
a−1
∑

j=a−k

Dist(Pj , Pj+1) +
b+k−1
∑

j=b

Dist(Pj , Pj+1)















where Dist(Pa, Pb) is the Euclidean distance between Pa

and Pb.
Then, the distance between two consecutive generated points
Pi and Pi+1 (where a < i < b) to fill in a missing segment
is defined as:

Dist(Pi, Pi+1) =
Dist(Pa, Pb)

N

In essence, we take the average distance between k consecu-
tive previous (next) points of both endpoints of the missing
segment.
Next, we create N−1 points starting from Pa towards Pb ac-
cording to calculated distance Dist(Pi, Pi+1). After all nec-
essary points are generated, we add a timestamp for each
point based on the number of generated segments and on
the time difference between two endpoints of the missing
segment. This is done for clustering algorithms that con-
sider dimension for their grouping criterion.
Note that this interpolation algorithm will also fill in missing
segments that are resulted after stop removal.

3.3 Inaccuracy removal
In this work, the inaccuracy removal step is based on erro-
neous points that exist in many datasets, including Nokia
MDC dataset. For unknown reasons, coordinates of such
points in those datasets have low accuracy. For instance, we
encountered gatherings of points that have exactly the same
coordinates, but separated in time. Even though each of
these points have their own timestamp, such a low accuracy
would surely affect one’s distance function. In addition, the
stop detection algorithm that we used is unable to detect
such gatherings if minT ime parameter threshold is satis-
fied. Therefore, we have identified sets of points that had
the same coordinates and removed them.
Second, some trajectories had points with null speed that
were randomly changing their location with time. We as-
sumed that this is due to GPS receiver inaccuracy (some-
times GPS location can be identified incorrectly when an
object does not move) and eliminated these points too.
Lastly, after breaking down the raw dataset into separate

trajectories, some trajectories needed to be disqualified from
participation to the clustering step, because these trajecto-
ries would not add any meaningful knowledge to the final

Figure 3: A trajectory before and after preprocess-

ing

clustering. Thus, we eliminated trajectories that did not
meet our threshold on the minimum number of points per
trajectory (in our experiments we set this threshold to 10
points).

4. EXPERIMENTAL EVALUATION
To evaluate our framework, we implemented our proposal
in Java programming language. First, we extracted subtra-
jectories from Nokia MDC Dataset by dividing each user’s
trajectory history as discussed in Section 3.2. Then, those
subtrajectories were preprocessed according to our frame-
work, which resulted in two datasets: initial raw dataset
and a new, cleaned dataset. An example of applying such
cleaning is illustrated in Figure 3.
In the next step, for both datasets we computed similarity
matrices according to pairwise DTW distance between the
trajectories. Then, both similarity matrices were given as an
input to DBSCAN density-based clustering algorithm. Fi-
nally, we compared clusters resulted from raw dataset and
clusters obtained from already cleaned trajectory data.
Since we do not have a “ground truth”, it is not trivial to
show how one clustering is better or more accurate than
another. To our knowledge there is no widely recognized
framework that would compare one clustering to another
and accurately evaluate produced clusters. We evaluated
the obtained clusters using the quality measure used in [10],
which is called QMeasure. In essence, QMeasure attempts
to minimize the sum of squared pairwise distances between
elements that belong to one cluster (Total SSE), while penal-
izing for incorrectly identified noise points (Noise Penalty):

QMeasure = TotalSSE +NoisePenalty =

=

|C|
∑

i=1

(
1

2|Ci|
∑

x∈Ci

∑

y∈Ci
dtwDist(x, y)2

)+

+
1

2|F |
∑

w∈F

∑

z∈F
dtwDist(w, z)2

where C is a set of clusters Ci, F is a set that contains noise
trajectories and dtwDist(x, y) is the DTW distance between
trajectories x and y. Note that smaller QMeasure values im-
ply more accurate clustering [10].
We compared raw and cleaned datasets for several users to
see whether our trajectory cleaning framework actually im-
proves clustering. As shown in Figure 4, clusterings resulted
from cleaned dataset consistently had much smaller values
for QMeasure. Noteworthy, the cleaned clusterings had flat-
ter QMeasure curves, which suggests that the preprocessed

Figure 4: QMeasure for users # 2, # 10, # 26 and # 82

dataset is less sensitive to the choice of parameters for clus-
tering algorithm.
Even though preliminary, our results indicate that, with re-
spect to an objective quality measure, clusters obtained after
our proposed cleaning process are of higher quality.

5. CONCLUSIONS AND FUTURE WORK
In this work we defined a trajectory cleaning framework for
means of trajectory clustering. The chosen clustering qual-
ity measure shows that preliminarly processed dataset has
a potential of generating more accurate clusters.
In future, we would like to develop more accurate and ef-
ficient methods of trajectory cleaning for each of the men-
tioned steps.
For stop detection, we will be working on the full autom-
atization of this process. Current algorithm still relies on
a user, who needs to specify parameters based on data, in
particular minT ime parameter. Determining this parame-
ter based on given trajectory data would fully automate the
process of trajectory preprocessing, because a user would
not need to know any infomation about the dataset.
In terms of missing segment interpolation, we will seek for al-
ternative, more sophisticated interpolation techniques. One
of the objectives will be to produce ”smoother” segments
that take into account shapes of the previous and next seg-
ments.
One way to extend our current inaccuracy removal step
would be to investigate the effects of outlier detection and

removal. There are cases when certain points on a trajectory
do not match with the general behaviour of the trajectory.
For instance, one such point can be detected at location that
is impossible to reach from the previous location in the given
period of time. We believe, that it would be interesting to
see how already existing outlier detection methods will com-
plement our framework.
Finally, we would like to perform more thorough experi-
ments that would compare the clusterings of raw and cleaned

datasets.

6. ACKNOWLEDGEMENTS
Research partially supported by NSERC’s DIVA Strategic
Network.

7. REFERENCES
[1] L. O. Alvares, G. Oliveira, C. A. Heuser, and

V. Bogorny. A framework for trajectory data
preprocessing for data mining. In Int. Conf. on

Software Engineering and Knowledge Engineering,
pages 698 – 702, 2009.

[2] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni,
D. Pedreschi, and F. Giannotti. Interactive visual
clustering of large collections of trajectories. In Visual

Analytics Science and Technology, pages 3 –10, 2009.

[3] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. Optics: ordering points to identify the
clustering structure. In Proceedings of SIGMOD Int.

Conf. on Management of Data, pages 49 – 60, 1999.

[4] D. J. Berndt and J. Clifford. Using Dynamic Time
Warping to Find Patterns in Time Series. In
Proceedings of KDD-94: AAAI Workshop on

Knowledge Discovery in Databases, pages 359 – 370,
1994.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Second

International Conference on KDD, pages 226–231,
1996.

[6] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proceedings of the

fifth ACM SIGKDD Int. Conf. on Knowledge

discovery and data mining, pages 63 – 72, 1999.

[7] F. Giannotti and D. Pedreschi, editors. Mobility, Data

Mining and Privacy - Geographic Knowledge

Discovery. 2008.

[8] S. Kisilevich, F. Mansmann, M. Nanni, and
S. Rinzivillo. Spatio-temporal clustering. In Data

Mining and Knowledge Discovery Handbook. 2010.

[9] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom,
O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle, and
M. Miettinen. The mobile data challenge: Big data for
mobile computing research. In Mobile Data Challenge

by Nokia Workshop, in conjunction with Int. Conf. on

Pervasive Computing, 2012.

[10] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory
clustering: a partition-and-group framework. In
Proceedings of the ACM SIGMOD Int. Conf. on

Management of Data, pages 593–604, 2007.

[11] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O.
Alvares. A clustering-based approach for discovering
interesting places in trajectories. In Proceedings of the

ACM symposium on Applied computing, pages
863–868, 2008.

[12] M. Vlachos, G. Kollios, and D. Gunopulos.
Discovering similar multidimensional trajectories. In
Proceedings of the Int. Conf. on Data Engineering,
pages 673 –684, 2002.

