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ABSTRACT
Encounters between devices can be very useful for message
routing in mobile networks where there is no fixed infrastruc-
ture. In this context, understanding user mobile behaviour
is essential to design effective and efficient network proto-
cols. This paper presents a generic methodology to model
and find periodic encounter patterns. Using this methodol-
ogy and the Nokia-MDC datasets, we are able to find strong
weekly and daily periodic behaviours that last up to a few
months. The experimental results show that combining pe-
riodic behaviour from different network types, e.g., Blue-
tooth, GSM, and WLAN networks, is capable of providing
communications to a large-scale network. Furthermore, we
also investigate whether the network formed by periodic en-
counters has a small-world structure.
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1. INTRODUCTION
Current wireless services mostly depend on network in-

frastructure. In many scenarios, ad-hoc networks can pro-
vide new opportunities for communication by removing the
need for network infrastructure. However, communications
in such networks could be unreliable because there may not
be a complete path between the source and the destina-
tion(s) from time to time. Therefore, we seek to explore
useful characteristics and to discover new techniques to al-
low communication in ad-hoc networks.
Mobile devices are carried by people and/or animals. They

typically do not move randomly and often exhibit periodi-
cally repeated movements. For example, people often use
the same route daily to commute to/from work. As a result,
each mobile node may encounter a set of other nodes peri-
odically, for instance at approximately the same time every
weekday. Such periodic encounters can be used to establish
communication routes in mobile networks.
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Thus, in this paper we propose a methodology to find
periodic behaviour within the Nokia-MDC datasets [7] and
examine connectivity among mobile nodes with periodic be-
haviour. Nonetheless, our methodology is applicable to other
mobile traces as well. In summary, this paper has three main
contributions: 1) we observe strong weekly and daily peri-
odic behaviour within the datasets; 2) we evaluate the per-
sistence of detected periodic behaviour; 3) we also discuss
why, unlike other networks formed by periodic encounters,
the one yielded by the NOKIA-MDC datasets does not lead
to a small-world.

The remainder of this paper is structured as follows. A
brief introduction about the datasets and their preparation
is discussed in Section 2. In Section 3, we present detection
techniques and experimental results. Section 4 presents dis-
coveries regarding the small-world structure. Finally, con-
clusions are presented in Section 5.

2. DATASETS AND PREPARATION
The Nokia-MDC datasets include mobility datasets for

different network types. The three types of datasets are
Bluetooth, GSM and WLAN. Bluetooth traces track direct
encounters between mobile nodes. Both GSM and WLAN
traces record associations between mobile nodes and either
access points or cellular towers. Even though access points
and cellular towers are stationary, they can link mobile nodes.
that never directly encounter. Therefore, we also include
stationary devices as nodes in the network where associa-
tions are considered to be encounters as well.

In the Nokia-MDC datasets, encounters are grouped by
user, where each encounter has a corresponding timestamp.
From that, we need to define the duration of each encounter.
In Figure 1, mobile node A encounters nodes B and C at
timestamp Ti. At the next timestamp, A only meets node C.
We assume that A stops seeing B right before Ti+1. There-
fore, the encounter for node pair {A,B} starting at Ti has a
duration of Ti+1−Ti time units. Similarly, the encounter for
node pair {A,C} starting at Ti has a duration of Ti+2 − Ti

time units. Using this approach, there are two complete
encounters, {A, B} and {A, C}, starting at Ti.
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Figure 1: Encounter history of mobile node A

Given a granularity, e.g., 1 hour or 1 day, a mobile trace
can be broken into consecutive disjoint intervals. Then we



create an encounter series for every unique pair of nodes
where the length of the series equals the number of pairs of
intervals after partitioning the trace at a chosen granularity.
For a pair of nodes, if they have an encounter during a spe-
cific interval, we record a 1 in that interval, otherwise, a 0
is recorded.
Given a monitoring duration σ and a granularity τ , the

encounter series for a pair of nodes {x,y}, is defined as:

sx,y = {d1, ..., dn} where n = ⌈
σ

τ
⌉ and dj = {0, 1} ∀j ∈ [1, n]

In this paper, our analyses focus on 1 hour and 1 day gran-
ularity. Table 1 presents the summary of the datasets and
encounter series.

Network Hourly Daily
Type NN NS ANE ANE

Bluetooth 126235 179606 4.24 1.55
GSM 23644 45839 13.01 4.96
WLAN 126969 257491 8.86 3.59

NN=Number of Nodes
NS=Number of Series
ANE=Average Number of Encounters 1

Table 1: Overall summary of all traces

3. PERIODICITY
Using binary encounter series as input, our objective is

to find periodic behaviour. In this section, we present our
detection techniques and observations on the Nokia-MDC
datasets.
By examining the cumulated re-appearance probabilities

of nodes to specific locations [4, 6, 10] and the cumulated
probabilities of users to return to a certain location after a
certain amount of time [1], previous work revealed periodic
behaviour within user mobility. However, finding a route in
a mobile network, using a store-and-forward approach, needs
more than that. First, we need to find out which pairs of
nodes exhibit periodic behaviours. Second, among encoun-
ters between two users, we need to know which encounters
are periodic encounters, and which encounters are just oc-
casional or even random encounters. A route may fail if
an occasional or random encounter is selected and therefore
should be avoided.
Recent studies aimed at detecting pair-wise periodic en-

counters. One study reported spectral analyses of periodic-
ities of association patterns from access points [8]. Another
presented spectral analyses of mobility traces to quantize
the regularity and periodicity of access points nodal encoun-
ters [9]. The fundamental tool used in both works is Discrete
Fourier Transformation. However, one of the main problems
from using Discrete Fourier Transformation is the artifact
that affects the accuracy of period detection. For example,
the most significant period could be 7 days and 8 hours in-
stead of integers as 7 days or 8 days. How to correctly inter-
pret fractional period is itself a non-trivial (and a domain-
dependent issue). In addition to spectral analyses, tech-
niques from data mining can also retrieve locally/partially
periodic behaviour that persists only for a very short period
of time, whose long-term persistence is unknown [2]. Tar-
geting at long-term periodic behaviour within real mobility

1ANE= 1
NS

∑
sx,y∈S

∑
di∈sx,y

di where S contains all en-

counter series.

traces, our methods extract the specific encounter patterns
(both period and phase) for pairs of nodes that meet each
other periodically whereas other work has stopped short of
this.

Our fundamental tool is the auto-persistence function [11,
12]. It calculates the conditional probabilities of the different
combinations of two values in a binary time series that are
separated by a given lag k, i.e., that is k positions away in
encounter series. There are, of course, four combinations
of two binary values. We concentrate on the combination
where two intervals k-lags away from each other have value
1, i.e., containing encounters. We define the auto-persistence
function (APF) as:

APF (k) = P (dt+k = 1|dt = 1) (1)

where k is the lag between the two intervals, and t represents
the interval number.

As an empirical counterpart to the auto-persistence func-
tion, the auto-persistence graph (APG) is defined as:

APG(k) =
n

n− k

∑n−k
t=0 I{dt+k = 1, dt = 1}∑n

t=0 I{dt = 1} (2)

where n is the size of encounter series, k is the lag, and I is
the binary indication function, whose value equals 1 if and
only if the condition is satisfied.

As an example, Figure 2 shows the APG for an encounter
series derived from WLAN traces with a 1 day granularity.
Three peaks can be found at lags 7, 14 and 21. These lags
represent exactly 7 days, 14 days and 21 days, which appear
at multiples of the minimum lag of 7 days. This repetition
in the APG comes from the underlying periodicity in the en-
counter series. If an encounter series has periodic behaviour
with length p, then this encounter series also has periodic
behaviour with length 2p, 3p and so on.
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Figure 2: APG for a real encounter series

3.1 Periodic behaviour
The duration of the Nokia-MDC datasets is 13128 hours,

which covers 548 days. After transforming a mobility trace
into encounter series for every encountering node pair, we
obtain two sets of encounter series. One with 548 values is
the daily encounter series, and the other with 13128 values
is the hourly encounter series.

We applied our detection techniques to both daily and
hourly encounter series. Unfortunately, none of the en-
counter series exhibits periodic behaviour for the full du-
ration of the series. However, this does not mean that there
is no periodic behaviour that lasts for shorter periods. We
will discuss the reason for this shortly.

To discover short-term periodic behaviour, we break the
traces into disjoint segments with the same length. For ex-
ample, each daily encounter series could be broken down
into 19 segments where each segment is 30 days in length.
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Figure 3: Detected periodic behaviour

For daily and hourly encounter series, we apply our detec-
tion techniques to segments with length varying from 1 day
to 548 days or 24 hours to 13128 hours with a 1 day or 24
hour increment.
As shown in Figure 3(a), 35-day segments in the daily

encounter series have the largest number of detected peri-
odic encounters. Similarly, even though not shown here, we
observed that 120-hour segments in the hourly encounter
series return the largest number of detected periodic series.
To understand these periodic behaviours in daily encounter
series, Figure 3(b) provides more details about detected pe-
riodic behaviour by presenting the Cumulative Distribution
Function (CDF) of their period. The results indicate that
there is a strong weekly encounter behaviour in Figure 3(b)
in daily encounter series. Similarly, a 24 hour pattern could
also be seen in the hourly encounter series.
Theoretically, our detection techniques require the length

of each segment to be a minimum of four times the period
length. For example, if there is a 7-day periodic behaviour,
our techniques need a minimum of 28-day segment to de-
tect such periodicity. With a 28-day segment, the APG can
calculate correlations within encounter series from lag 1 up
to lag 14 where two peaks can be observed at lag 7 and 14.
However, because the APG stops at lag 14, we do not know
whether the curve at lag 14 is going to climb or drop at the
next lags, i.e., lag 15, 16 and so on. In other words, we can
not decide whether the peak at lag 14 is caused by the repe-
tition of underlying periodicity. Therefore, instead of using
28-day segments, our detection techniques requires longer
segments. Because 35 days is the next duration greater than
28 that perfectly accommodate 7-day periodicities, 35-day
segments have the largest number of detected periodic en-
counters even though they do not match to any commute
schedule.

3.2 Persistence of periodic behaviour
Once the period length is known, we can extract periodic

encounters from the original segments using alignment. For
alignment, each segment is split into disjoint sub-segments
where the length of each sub-segment equals the period
length previously detected. Then, we stack all sub-segments
vertically to examine the probability that encounters appear
at a particular column. When the probability of encounters
in a column is greater than a user-defined threshold, we con-
sider that encounter as a periodic encounter. After finding
all periodic encounters, we examine how long those periodic
encounters reliably appear in the future. We call this time
range the projected persistence.
After extracting periodic encounters, we evaluate their

projected persistence by using the remaining encounter se-
ries right after the segment. For example, if the very first
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Figure 4: Projected persistence evaluation

35-day segment has periodic encounters, we use the remain-
ing 513 days to evaluate the persistence of detected periodic
encounters. Similarly, if the second 35-day segment has pe-
riodic encounters, we use the remaining 478 days to evalu-
ate persistence. We first partition the remaining encounter
series into disjoint intervals, I, whose size equals the pre-
viously detected period. To evaluate projected persistence,
we introduce two thresholds: 1) the matching probability
of periodic encounters within an interval, θ, and 2) the ac-
ceptable number of intervals without periodic encounters,
∆. Given an interval, θ measures the probability that this
interval has periodic encounters. For example, if detected
periodic encounters take place every Monday and Friday,
and a given interval only has an encounter on Monday, then
θ = 1/2 = 0.5 for the given interval. Because of unexpected
events, periodic encounters may get interrupted. Therefore,
∆ is used to tolerate the number of intervals that suffer from
missing periodic encounters because of interruptions.

a) ∆ = 0
θ threshold 35-day 120-hour

0.1 54.68 days 563.75 hours
0.3 39.9 days 469.39 hours
0.5 29.01 days 252.54 hours
0.7 22.28 days 124.94 hours
0.9 14.59 days 64.77 hours

b) θ = 0.9
∆ threshold 35-day 120-hour

0 14.59 days 64.77 hours
1 17.29 days 81.61 hours
2 23.41 days 103.78 hours
3 29.17 days 138.76 hours

Table 2: Projected persistence

Using Figure 4 as an example, let us assume that from the
very first 35-day segment, we detected periodic encounters
repeating every 7 days. Since the period length is 7 days,
we partition the remaining encounter series into intervals
whose size equals 7 days and calculate θ for each interval.
Given thresholds at θ = 0.9 and ∆ = 0, only I1 satisfies the
θ threshold; therefore, the projected persistence is 7 days.
If thresholds are θ = 0.9 and ∆ = 1, by treating I2 as the
tolerated non-periodic interval, I4 is the interval furthest in
the future for which the thresholds are satisfied, therefore,
the projected persistence is 28 days. Similarly, if thresholds
are θ = 0.9 and ∆ = 2, the projected persistence is 42 days.

Table 2 shows the average projected persistence for both
35-day and 120-hour segments. On one hand, as θ increases,
the average persistence decreases because we are looking for
intervals with highly persistent and stable periodic encoun-
ters. On the other hand, as ∆ increases, we have longer
projected persistence because we are more tolerant of inter-
ruptions in the patterns.

This explains why we did not detect any long-term pe-
riodic behaviour in the full-length traces: their persistence
gets interrupted by unexpected events from time to time. As
shown in Table 2, for a certain value of ∆, periodic behaviour
can last up to a few months on average, i.e., 35+29.17=64.17
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(d) Integrated network

Figure 5: Connectivity in different network types

days (segment length plus projected persistence).
Due to human factors, the limitation of hardware fea-

tures, services running behind different network platforms
and other causes, the persistence of periodic behaviour could
be affected. For example, even though a person stays at the
same place, it does not mean that he/she will always con-
nect to the same cellular tower. However, determining the
causes of such short-term periodic behaviour is beyond the
scope of this paper.

3.3 Network connectivity
We have also built graphs based solely on periodic en-

counter series. The connectivity graph G = ⟨V,E⟩ is an
undirected graph, which is defined as follows. Given a set of
encounter series with periodic behaviour, P , V is the set of
nodes participating in P . For a pair of nodes u and v, the
edge eu,v ∈ E if and only if su,v ∈ P .
Using 35-day segments, the connectivity graphs shown in

Figure 5 represent connectivities among nodes with periodic
behaviour from different network types. In this figure, con-
nection graphs derived from Bluetooth, GSM and WLAN
traces consist of several star shapes. In the Nokia-MDC
datasets, we have a total of 38 participants whose encoun-
ters are recorded. As a result, the center of each cluster
is one of the participants whereas leaf nodes are external
MAC addresses whose encounter series is unknown, except
for one encounter with a non-leaf node. All three graphs are
composed of multiple isolated clusters where nodes from dif-
ferent network types cannot communicate with each other.
In real life there are various co-existing network types.

For example, in the Nokia-MDC datasets we have cellular
networks, wireless local area networks and Bluetooth en-
counters. Mobile nodes could exhibit different periodic be-
haviour within each network type. As shown in Figure 5(d),
integrating periodic encounter series from different network
types presents a better connected graph, which could sub-
stantially improve the effectiveness, and likely efficiency, of
communication overall. Nonetheless, there still exist isolated
clusters. How to provide services between different clusters
in large-scale networks requires further research.

3.4 Modelling Periodicity
To utilize periodic encounter for routing in mobile net-

works, our detection techniques provide three important in-
formation: 1) the pair of mobile nodes who exhibits periodic
behaviour, 2) the period length of each periodic behaviour
and 3) the phases containing periodic encounters. If we com-
bine detected periodicities from all mobile nodes in the net-

work, a connectivity network, i.e., a graph model, can be
created to represent all periodic encounters. During an en-
counter, messages can be exchanged between the two en-
countering nodes. Further, mobile nodes can relay messages
among themselves serving as temporary storages. Therefore,
the problem to be solved is to establish a route between
a source and a destination (unicast), a set of destinations
(multicast) or all destinations (broadcast) with respect to
minimize network constraints such as the energy cost, the
delivery delay and nodes’ storage space, where only change
to different constraints in the network is in the assignment
of weights for the edges. With the connectivity network, all
these problems can be converted to classical graph problems
such as the shortest path problem, the minimum weighted
Steiner tree problem and the minimum spanning tree prob-
lem. For instance, our initial proposal [13] for the unicast
problem required a Shortest Path solution on a connectiv-
ity graph (that could be obtained by using the methodology
presented in this paper).

4. SMALL-WORLD
In this section, we examine the properties of the connec-

tivity graphs by focusing on Figure 5(d). In that graph,
we have several clusters. Since some analyses can only be
performed on connected graphs, we present results for the
largest cluster in the graph.

4.1 Degree Distribution
The largest cluster shown in Figure 5(d) has N = 2025

nodes. We rank nodes in descending order based on their
degree. Plotting the sorted nodes in Figure 6(a), the first
38 nodes follow the power-law distribution. This number
matches the total number of participants in the Nokia-MDC
datasets whereas all other nodes are external nodes whose
complete mobility is unknown. This strongly suggests that
by building a network using nodes with periodic behaviour,
we can obtain a scale-free network rather than a random
network.

To show that networks formed by nodes with periodic be-
haviour can have a small-world structure, we present our
studies of another dataset, the USC traces [5]. In that
connectivity graph, the largest cluster contains 4961 nodes.
As shown in Figures 6(a) and 6(b), the node degree distri-
bution follows the power-law distribution. Therefore, they
come from a scale-free network. We also calculate the av-
erage path length for that network. Its value at 3.34 is a
good indication of the small-world structure, where 3.34 ≈



4.2 The small-world network
The average node degree in the network is d = 2.51. To
investigate the small-world structure, we find that the aver-
age path length, L, between any pair of nodes is 3.12. This
average path length is approximately equal to the logarithm
of the number of nodes in the network, 3.12 ≈ log(2025) =
3.30. This is a good indication that the network has a small-
world structure [14]. In addition, we calculate the Clustering
Coefficients (CC) for all nodes in the network. There are two
types of CC, local and global, which measure the number of
triangles with respect to the number of open triplets in the
graph [3, 14]. In other words, CCs measure how close the
graph is to a clique. Our calculations show that 99% of the
nodes in the Nokia-MDC datasets are external nodes whose
local CC equals zero as shown in Figure 6(b). Therefore,
the global CC of the network equals the relatively small
value of 0.0015. If we consider a node in a random graph,
the probability that two of its neighbours are connected is
equal to the probability that two randomly selected nodes
are connected. Consequently the global CC of a random
graph equals d

N
. Since the global CC for the network in the

Nokia-MDC datasets is very close to the one from a random
graph, 2.51

2025
= 0.0012, we conclude that the network does not

have a small-world structure even though the average path
length still satisfies the small-world phenomenon. One pos-
sible reason is that the traces of external nodes are unknown
where we may lose periodic encounter series among them.
As a result, the graph still consists of multiple star-shaped
components.
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Figure 6: Comparison between Nokia-MDC and
USC datasets in log-log scale

log(4961) = 3.69. In addition, given the average node de-
gree of 19.44, its global CC, 0.139, is much greater than the
one from a random graph 19.44

4961
= 0.0039. Therefore, we

conclude the network formed by the periodic nodes in the
USC traces have a small-world structure.

5. CONCLUSIONS
In this paper we investigate the problem of finding en-

counter patterns that could be used to further improve com-
munications in a mobile network setting. We proposed tech-
niques to determine periodic encounters among mobile de-
vices that can be used in any mobility trace/dataset. Using
the Nokia-MDC as a sample instance, we were able to iden-
tify strong weekly and daily patterns (with different lags and
phases). In addition we were also able to determine how sta-
ble and persistent a pattern is, which explains why one is not
able to find a pattern that lasts the whole duration of the
mobility trace. To understand the properties of networks
formed by periodic encounter series, our studies show that

networks are scale-free networks, and some of them satisfy
a small-world structure where messages between any pair of
nodes can be delivered through a very small number of hops
in the network.
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