
Been There, Done That: What Your Mobility Traces Reveal
about Your Behavior

Nokia Mobile Data Challenge - Next Place Prediction
∗

Vincent Etter
LCA 3-4, EPFL

Lausanne, Switzerland

Mohamed Kafsi
LCA 3-4, EPFL

Lausanne, Switzerland

Ehsan Kazemi
LCA 4, EPFL

Lausanne, Switzerland

1. INTRODUCTION
Mobility is a central aspect of our life; the locations we visit
reflect our tastes and lifestyle and shape our social relation-
ships. The ability to foresee the places a user will visit is
therefore beneficial to numerous applications, ranging from
forecasting the dynamics of crowds to improving the rele-
vance of location-based recommendations. To solve the Next
Place Prediction task of the Nokia Mobile Data Challenge,
we developed several mobility predictors, based on graphi-
cal models, neural networks, and decision trees, and explain
some of the challenges that we faced. Then, we combine
these predictors using different blending strategies, which
improve the prediction accuracy over any individual predic-
tor.

The paper is organized as follows: In Section 2, we introduce
a framework where we define the notations, the learning
process and the prediction performance measure. Then, we
briefly present, in Section 3, various models we use to build
predictors, and show their individual performance. Finally
in Section 4, we describe different blending strategies we
implemented.

2. PLACE PREDICTION FRAMEWORK
In the Nokia Mobile Data Challenge, our task is to propose
a user-specific predictor that learns from a user’s mobility
history and predicts, based on the current context, the next
location he will visit. The dataset we use consists of data
collected from the mobile phones of 80 users, over periods
of time varying from a few weeks to two years. A detailed
description of the dataset and the collection campaign is
available in [4].

We summarize here only some salient characteristics of the
data that we believe are critical to the prediction task:

∗This material was prepared for the Mobile Data Challenge
2012 (by Nokia) Workshop; June 18-19, 2012; Newcastle,
UK. The copyright belongs to the authors of this paper.

Figure 1: We represent a user’s habits as a matrix
where each row represents an interval of 2 hours,
and each column represents 1 day. Each location is
associated with a color. For this user, we observe
both a data gap of 60 days and non-stationarity.
Note the home change at the end of the observa-
tion period.

User Specificity. Although the dataset derives from 80
different users, the data and the prediction task are
explicitly user-specific. It is therefore not possible to
build joint models over the user population, i.e., to
learn from one user to make a prediction for another.
For this reason, we build user-specific predictors, and
consider each user independently.

Non-Stationarity. We observe a change in users’ habits
over time. The fact that some users change their home
or work location right at the end of the observation
period complicates the prediction task.

Data Gaps. We experience, for some users, long periods
(up to a few months) with no information about their
behaviour. Moreover, as shown in Figure 1, these gaps
are sometimes followed by change of mobility habits.

Figure 2: We represent a user’s habits as a matrix
where each row represents an interval of 2 hours
and each column 1 day. Each location is associated
with a color. The user’s mobility patterns are regu-
lar with no change of habits during the observation
period (as opposed to the user represented in Fig-
ure 1). As expected, the prediction accuracy for this
user is high (more than 90%).

Sparsity. The period of observation for some users is too
short (less than 15 days) to reflect faithfully the user’s
mobility patterns.

We believe that taking the above characteristics into ac-
count, when designing predictors, has a significant effect on
their prediction accuracy.

2.1 Notation
Before formally introducing our predictors, we need to define
the variables that describe a user’s mobility. During the
study period, the user makes N visits of variable duration to
L distinct locations, represented by the set L = {1, . . . , L}.

In Table 1, we describe the variables relative to the nth visit.
The binary variable Itrust(n) indicates whether the transi-
tion from location X(n) to location X(n+1) is trusted, i.e.,
there is no visit to an intermediary location when moving
from X(n) to X(n + 1). Discretized starting hour Hk

s (n)
and ending hour Hk

e (n) are both computed from a UNIX
timestamp t as follows:

quantize(t, k) =

⌊(
t

3600
mod 24

)
k

24

⌋
+ 1.

The above function depends on a parameter k, which allows
us to consider a coarser separation of the day: instead of
splitting a day in 24 hours, for example, we can choose to
split it in k time periods. For instance, if k = 2, Hk

s (n) ∈
{1, 2}, with Hk

s (n) = 1 corresponding to a visit starting
between midnight and noon.

2.2 Learning and Performance Measure
Learning Procedure. For all users, we separate the data
into three parts, as illustrated in Figure 3: we define the first
80% of the data as set A, the following 10% as set B and the
last 10% as set C. Finally, we call set D the undisclosed part
of the data over which our predictors will be evaluated. The
reason we divide deterministically the dataset is based on
the non-stationarity of the user behavior. In fact, we expect
set D to be much more similar to the end of the dataset
than to its beginning. By training our predictors on “past”
data and evaluating them on very recent data, we can test
whether they are able to adapt to users’ change of habits.

Figure 3: Separation of the user’s dataset. We define
the first 80% of the user’s visits as set A, the follow-
ing 10% as set B, and the last 10% as set C. Finally,
we call set D the undisclosed part of the dataset, on
which the final performances are computed.

For each predictor, the training is performed in three parts:
first, we train over set A, and evaluate the performance on
set B, to compare individual predictors. Then, we train on
both set A and set B and test the prediction accuracy on
set C, with different blending strategies. Finally, we train
on sets A, B and C in order to predict the samples in set
D.

Evaluation Metric. To evaluate the performance of a pre-
dictor over a set of visits, we consider its prediction accuracy,
i.e., the proportion of samples for which it successfully pre-
dicts the next location.
First, consider a predictor φ: It takes as input vn, the data
corresponding to the nth visit, and outputs a probability dis-
tribution Pφn over the possible next locations. The predicted
location X̂φ

n is thus defined as

X̂φ
n = arg max

l∈L
Pφn (l).

We could directly define the output of a predictor as the
predicted next location. However, keeping as output a dis-
tribution over places allows us to combine predictors in the
blending phase, as explained in Section 4.
Finally, we define the prediction accuracy AS(φ) of the pre-
dictor φ over the samples in set S as:

AS(φ) =
1

|S|
∑
i∈S

I{
X̂
φ
i =X(i+1)

},

where |S| is the number of samples in set S, X(i + 1) is
the true next location corresponding to the ith visit, and
I{
X̂
φ
i =X(i+1)

} is equal to 1 if φ correctly predicts the next

location, and 0 otherwise.

Definition Domain Explanation
X(n) L Location
Ts(n) Z Starting time (UNIX timestamp)
Hk
s (n) = quantize(Ts(n), k) {1, . . . , k} Discretized starting hour

Ds(n) = day(Ts(n)) {1, . . . , 7} Starting day
Ws(n) = weekday(Ts(n)) {0, 1} Indicates whether the visit starts on a weekday
Te(n) Z Ending time (UNIX timestamp)
Hk
e (n) = quantize(Te(n), k) {1, . . . , k} Discretized ending hour

De(n) = day(Te(n)) {1, . . . , 7} Ending day
We(n) = weekday(Te(n)) {0, 1} Indicates whether the visit ends on a weekday
Itrust(n) {0, 1} Indicates whether the transition between visits n and n+ 1 is trusted

Table 1: List of the definitions and domains of the different variables describing the nth visit of a user.

3. PREDICTORS
In this section, we present the techniques we use to build
predictors. We briefly describe each method, and summarize
their performance in Section 3.4.

3.1 Dynamical Bayesian Network
We introduce a Dynamical Bayesian Network (DBN) to mo-
del the mobility patterns of individuals. The rationale be-
hind the model is as follows: the next visit of a user depends
on his current location, but also on the starting time of the
next visit. The current location is informative especially
when the next visit is close in time. However, as the time
gap between the visits gets larger, the starting time of the
next visit bears increasing importance. As we do not know
the starting time of the next visit, the main challenge is
to express its randomness, given carefully chosen informa-
tion about the current visit. As shown in Figure 4, our DBN

π
1− π

He We

Itrust

X

Hs Ws WsHs

X

n n+ 1

Figure 4: Diagram of a DBN where nodes represent
random variables and edges probabilistic dependen-
cies between them.

captures those intuitions: the conditional distribution of the
next location p (X(n+ 1)|X(n), He(n), Itrust(n),We(n)) is a
mixture of location- and time-dependent distributions

πp (X(n+ 1)|X(n))

+ (1− π)p (X(n+ 1)|He(n),We(n), Itrust(n)) ,

where π ∈ [0, 1] is the parameter that governs the con-
tribution of each distribution. For ease of notation, we

omit the parameter k for the time discretization and as-
sume that it is fixed. The location-dependent component
p(X(n+1)|X(n)) is simply a first order Markov chain which
encodes the frequency of transitions between locations. Us-
ing Bayes’ rule, we express the time-dependent distribution
p (X(n+ 1)|He(n),We(n), Itrust(n)) as∑
Ws

∑
Hs

p (X(n+ 1)|Hs(n+ 1),Ws(n+ 1), He(n),We(n), Itrust(n))

p (Hs(n+ 1),Ws(n+ 1)|He(n),We(n), Itrust(n)) .

Note that the conditional distribution

p (Hs(n+ 1),Ws(n+ 1)|He(n),We(n), Itrust(n))

captures the randomness of the starting time of the next visit
given the ending time of the current one and the trustiness
of the transition. Empirically, we observe that trusted tran-
sitions usually imply a shorter interval of time between the
visits. By assuming that X(n+ 1) is independent of He(n),
We(n) and Itrust(n) given Hs(n + 1) and Ws(n), we can
write∑

Ws

∑
Hs

p (X(n+ 1)|Hs(n+ 1),Ws(n+ 1))

p (Hs(n+ 1),Ws(n+ 1)|He(n),We(n), Itrust(n)) .

The assumption of independence makes sense, as knowing
the time (He(n),We(n)) at which a user leaves the current
location is not informative (with respect to the next location
X(n+ 1)), given that we know the starting time of the next
visit (Hs(n+ 1),Ws(n+ 1)).

The choice of the model structure and variables is driven by
intuition and confirmed by empirical evidence. We tested
several variants of our model: For example, we tried to in-
corporate in our DBN the distribution p(X(n + 1)|X(n),
Itrust(n)) instead of the distribution p(X(n + 1)|X(n)) but
the prediction error increased. Moreover, data sparsity pro-
hibits us from learning more sophisticated distributions.

To use our model for prediction, we estimate the model pa-
rameters p (Hs(n+ 1),Ws(n+ 1)|He(n),We(n), Itrust(n)),
p (X(n+ 1)|Hs(n+ 1),Ws(n+ 1)), p(X(n + 1)|X(n)), and
π. We take two approaches. The first approach is to learn
the distributions by counting the frequency of given reali-
sations and then choosing the parameter π that minimizes
the prediction error on the test set. The second approach is
to formulate the mixture of distributions with respect to a

latent variable z: we introduce a N dimensional binary ran-
dom variable z that indicates, for each visit, the distribution
from which it was sampled. In other words, zi = 1 means
that the ith visit is sampled from the location dependent dis-
tribution, whereas zi = 0 implies that it is sampled from the
time-dependent distribution. We then use an Expectation-
Maximization algorithm [1] to maximize the likelihood of
the data with respect to the model parameters.

Aging to Overcome non-Stationarity. In order to reduce
the negative impact of non-stationarity on the prediction
performance, we introduce an aging mechanism, governed
by the aging parameter λ ∈ [0, 1]. The aging parameter is
a multiplicative factor that intervenes in the learning pro-
cess to reduce the contribution of old samples. We have also
implemented an algorithm that detects changes in home lo-
cation and adapts the learning process accordingly.

3.2 Artificial Neural Networks
We can also consider next place prediction as a classifica-
tion task: given the current place, and potentially some ad-
ditional features, we predict the next location. With this
approach, we train for each user a 2-layer Artificial Neural
Network (ANN) that has Nin inputs and Nhu hidden units
and that outputs a probability distribution over places. Such
a network is illustrated in Figure 5.

As input, we encode places as categorical data: we represent
each location l as a vector v ∈ {0, 1}L, where vi = 1 if l = i,
and 0 otherwise. Other attributes, such as De(n) or Hk

e (n),
can also be included as additional features, and are encoded
in a similar way if needed. For example, if we want to use
(X(n), Hk

s (n), Ds(n)) as inputs, we simply represent them
as explained above and concatenate them. The resulting
input vector x is thus of size Nin = L + k + 7. For each
user, we consider different subsets of the features described
in Table 1, as well as different values for k.

To obtain a probability distribution y ∈ [0, 1]L from the
output z ∈ RL of the second layer, we use a soft-max transfer
function:

yi = softMax(zi) =
exp(zi)∑L
j=1 exp(zj)

, i ∈ {1, . . . , L}.

A natural loss function to train such a network is the negative
log-likelihood. For the output y ∈ [0, 1]L, corresponding to
some input x ∈ RNin and the ground truth t ∈ {0, 1}L
(where ti = 1 if i is the true next location, and 0 otherwise),
we define the loss as:

L(y, t) = −
L∑
l=1

tllog(yl).

To find the optimal parameters of the ANN, we minimize
the above loss function over the training set.

Implementation. We implement our ANNs by using Torch
5 [2], a machine learning framework written in Lua. We
use a stochastic gradient descent [5] to train each ANN, and
we use early stopping as a regularization technique. For all
users, we empirically found that Nhu = 50 hidden units were
sufficient. To speed up the training, we use hardTanh as the
non-linear transfer function between the two layers. It is an

Method Accuracy

Most visited location 35.00%
First order Markov chain 44.00%

DBN 60.07%
ANN 60.83%

GBDT 57.63%

Table 2: Accuracy over set C of the different families
of predictors, trained on sets A and B, averaged over
all users. For each user, we chose the predictor that
yields the best prediction accuracy. Note that this
may overestimate the performance of each family in
general, as we take the best predictors for set C in
particular.

approximation of the hyperbolic tangent, that is much faster
to evaluate.

3.3 Gradient Boosted Decision Trees
Boosting is a method for combining weak base classifiers in
order to build a classifier whose performance is significantly
better than the base classifiers. In boosting methods, the
base classifiers are trained in sequence, and each of them
is trained using a weighted form of the data set, in which
the weighing coefficient of each data sample depends on the
performance of the previous classifiers. A Gradient Boosted
Decision Tree (GBDT) [3] can be used for classification; it is
accurate, fast and insensitive to noisy and incomplete data.
GBDT is an ensemble of weak decision trees, where all trees
consist of two to eight nodes and are learned using boost-
ing methods. The final prediction model is built by adding
up contributions of all the individual small trees. Indeed,
the model is an ensemble of the trees that becomes more
accurate as the number of trees increases.

3.4 Results
We show in Table 2 the prediction accuracy on set C for
each of the three families of predictors presented above, av-
eraged over all users. For comparison, we also include two
baseline predictors: the first always predicts the most vis-
ited location, while the second one uses a first order Markov
chain. We observe that the three families of predictors have
similar performances.

We obtain these results by using only simple features of the
visits. In an attempt to improve the accuracy of our pre-
dictors, we included additional contextual information, such
as distance between places, GSM cell towers, WLANs or ac-
celerometer data, but we observed no improvement. We also
implemented various preprocessing techniques, such as clus-
tering and feature embedding, with no improvement either.

4. BLENDING
As expected, the accuracies of the predictors presented in
Section 3 are different, but more importantly, each might
make different errors: samples for which a predictor fails
may be those on which another excels. This idea is the foun-
dation of blending, in which we combine several predictors,
in order to take advantage of their diversity. We introduce
several blending strategies in this section.

Figure 5: Architecture of our 2-layer ANN. A non-linear transfer function is applied between the first and
second layer, and a softmax function is applied to the output, to obtain a probability distribution over places.

Note however that, because of data sparsity, we do not pro-
pose sample-based blending techniques, i.e., techniques that
adapt their choice of predictors according to the features
of each sample. Indeed, learning a sample-based blending
strategy would require a reasonable number of samples, in
order to be accurate and not to overfit. Unfortunately, the
small number of training visits available for each user is not
sufficient for this task.

Before describing each strategy, we first define Φ, the set
of all predictors trained on the data. This set can be split
into three subsets of predictors Φ = ΦDBN∪ΦANN∪ΦGBDT,
where each subset corresponds to all predictors of one same
family. For instance, ΦGBDT is the set of all predictors using
the GBDT method. A predictor φ is defined by its family,
some internal parameters, and the data it was trained with.
Thus, we can refer to the predictor φ in general, or to a
specific predictor φ(u), that was trained using the data of a
user u. We do not mention the dependence on u when it is
obvious from the context.

Below, we briefly explain the final five strategies we have
implemented:

1. For each user, we choose the predictor that has the
best accuracy over set C :

φ1 = arg max
φ∈Φ

AC(φ).

We are aware that this choice could lead to poor gener-
alization, as we may overfit to set C. However, it could
also yield good prediction accuracy in the case where
set D is similar to set C.

2. For each user, we choose the predictor that has the
best accuracy, averaged over set B and set C :

φ2 = arg max
φ∈Φ

{AB(φ) +AC(φ)} .

This strategy would reward the predictors with good
generalization.

3. For each user, we first select the best predictors of each
family, averaged over set B and set C :

φDBN = arg max
φ∈ΦDBN

{AB(φ) +AC(φ)} ,

φANN = arg max
φ∈ΦANN

{AB(φ) +AC(φ)} ,

φGBDT = arg max
φ∈ΦGBDT

{AB(φ) +AC(φ)} .

Then, we simply combine these three predictors uni-
formly:

φ3 =
1

3
φDBN +

1

3
φANN +

1

3
φGBDT.

4. For each user, the predictor is a weighted mixture of
all predictors, where the weight of each predictor is
proportional to its average performance over set B and
set C :

φ4 =
1

K

∑
φ∈Φ

(AB(φ) +AC(φ)) · φ,

where K is a normalizing factor to ensure the stochas-
ticity of φ4.

5. We choose the predictor that has the best average ac-
curacy over all users for set B and set C :

φ5 = arg max
φ∈Φ

∑
u∈U

(AB(φ(u)) +AC(φ(u))),

where U is the set of all users, and φ(u) corresponds
to the predictor φ trained using the data of user u, as
explained above.
Note that, contrarily to the others, this strategy choose
the same predictor for all users.

Results. We performed empirical tests with some of the
blending strategies which showed improvements over indi-
vidual predictors. However, because of our choice of data
separation, we would need to have access to set D in order
to assess the final performance of our blending strategies.

5. CONCLUSION
In this paper, we present various mobility predictors for the
Nokia Mobility Data Challenge. We use a wide range of
techniques, including Probabilistic Graphical Models and
Artificial Neural Networks. Moreover, we adapt these tech-
niques to the characteristics of the data, by implementing
various mechanisms that ensure the adaptability of the pre-
dictors to the sudden changes in users’ behavior and the
sparsity of the data. In order to benefit from the diversity
of these predictors, we introduce several blending strategies,
that combine them into a global and more accurate predic-
tor.

Our predictors reach an average prediction accuracy of more
than 60%, yet we observe a high variance between users. Is
this unpredictability mainly rooted in the users’ personality,
or is it is a consequence of data sparsity and noise?

Acknowledgements
We would like to thank Prof. Patrick Thiran and Prof.
Matthias Grossglauser for the insightful disscusions and their
feedback about this paper.

6. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine

Learning (Information Science and Statistics). Springer,
1st ed. 2006. corr. 2nd printing edition, Oct. 2007.

[2] R. Collobert. Torch. NIPS Workshop on Machine
Learning Open Source Software, 2008.

[3] J. H. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis,
38:367–378, 1999.

[4] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom,
O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle, and
M. Miettinen. The mobile data challenge: Big data for
mobile computing research. In Proc. Mobile Data
Challenge by Nokia Workshop, in conjunction with Int.
Conf.. on Pervasive Computing, Newcastle, June 2012.

[5] Y. Le Cun, L. Bottou, G. B. Orr, and K.-R. Müller.
Efficient backprop. In Neural Networks, Tricks of the
Trade, Lecture Notes in Computer Science LNCS 1524.
Springer Verlag, 1998.

