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ABSTRACT
GPS-enabled mobile devices are giving birth to a plethora
of interesting applications, all based on localization capabil-
ities. Check-ins represent a widespread trend in (mobile)
social networks, but they don’t exploit the full potential of
mobile localization. For instance, while check-ins can pro-
vide a powerful signal of how popular a certain Point Of
Interest (POI) is, they do not convey the semantic meaning
of the POI. In this paper, we show how to predict (from 10
different classes) the semantic meaning of a place. Our re-
sults are obtained by careful feature extraction over a variety
of data types collected by the mobile devices. With these
features available, we show that a simple supervised learn-
ing algorithm can achieve reasonable accuracy on a real-life
dataset provided by Nokia.

1. INTRODUCTION
This work was performed in the context of the Mobile Data
Challenge launched by Nokia in early 2012. Three tasks
related to mobile data mining were proposed to researchers.
This paper involves the first task, which was to predict the
semantic meaning of places. In particular, the task is to
assign one of ten labels such as workplace, bus stop, friend’s
home, etc. to each place found in the data. To the best of
our knowledge, although there exist many localization-based
applications/services for mobile phones, such as “check-ins,”
none of them truly exploit the “meaning” of places. Thus,
inferring the semantic meaning of places may represent an
opportunity to enrich some mobile applications and make
them more useful.

In the challenge data, each “place” is visited one or more
times, and at each visit a variety of information such as
day, time, discovered networks, applications used, and calls
sent/received is collected. A training set is provided where
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some (but not all) of the true labels for the places are given.
The final task is to predict the labels for each place in a
separate test set. The test set again consists of a sequence
of visits, but for a disjoint set of users.

For this problem, we chose to focus on the identification and
construction of useful features that could be used for predic-
tion, rather than on developing new prediction algorithms.
Thus, we make use of standard (and simple) machine learn-
ing techniques as provided in the popular toolkit Weka [9].
In particular, we used regularized logistic regression and sev-
eral simple feature selection techniques. While potentially
accuracy can be improved by using more sophisticated al-
gorithms, using simple techniques have some advantages.
First, simple techniques are scalable, which could be impor-
tant for mobile datasets as such datasets grow in numbers
of users and time. In addition, computationally efficient al-
gorithms are more suitable for possible deployment directly
on mobile phones, instead of in a back-end server. Further-
more, simple methods tend to capture only the most rele-
vant aspects of the underlying phenomena, leaving aside the
less meaningful features, thus usually mitigating overfitting–
a significant advantage for our task, given the small amount
of labeled training data. Finally, as shown by Hand [2], us-
ing complex models may bring only marginal benefit at the
expense of significant additional implementation and com-
putation time.

The rest of this paper is organized as follow. The next sec-
tion describes the goal pursued in this work and provides
more detail about the challenge task and about what types
of data were available. Section 3 describes the set of fea-
ture candidates we extracted and explains why we expected
these features to be relevant for our task. In Section 4, we
describe how we approached the challenge and justify the
implementation choices. The performance of our method
and the most interesting findings are highlighted in Section
5. Some related works are presented in Section 6. Finally,
Section 7 summarizes our work and discusses potential im-
provements and future work.

2. TASK DESCRIPTION
This work addresses the semantic place prediction challenge
proposed by Nokia. More specifically, the task was to lever-



1. Home

2. Home of a friend

3. My workplace/school

4. Location related to
transportation

5. Workplace/school of a
friend

6. Place for outdoor sports

7. Place for indoor sorts

8. Restaurant or bar

9. Shop or shopping center

10. Holiday resort

Table 1: Place labels

age mobile phone data to infer the meaning of places
which were visited by smart phone owners. The semantic
meaning of a place was represented by one of ten possible
types as listed in Table 1. In machine learning terminology,
because the prediction targets (classes) were known, our task
results in a 10-way classification or labeling problem. Each
place to be classified was represented by one or more vis-
its. A partially labeled training set was provided, and the
final objective was to classify places in a test set that was
constructed from a separate set of users.

Unlike most prior work in this area [3][4], for privacy rea-
sons, we did not have access to GPS information. Instead we
were provided with symbolic place IDs which have been
inferred partly based on raw GPS data. Although no local-
ization information was available, we had the visit history of
places, which means we knew when a user arrived at a given
place and when the user left. Notice that because GPS data
was not given, and because place identifiers were made user
specific, it was not possible to determine if two users visited
the same place.

In addition to the information about visit sequence and tim-
ing, we also had access to a broad range of contextual data
from the users’ smart phone. For instance, data was pro-
vided on the wlan networks detected, the calls made by
the user, the mobile applications used, etc. In general,
the specific values for these attributes (such as the names of
networks) were also anonymized in a user-specific way.

3. FEATURE EXTRACTION
Guided by common sense and preliminary data analysis,
we extracted a large number of features that we expected
would be relevant for the place label prediction. This sec-
tion describes those features, while Section 4 describes how a
smaller set of features was automatically selected for actual
use by the classifier.

We considered two general categories of features. The first
one, based only on the visit sequence dataset could be used
on its own, without the need to reference with (or join) any
other data. For instance, time of day is a simple feature in
this category. The second group of features, which we will
refer to as mobile data, was derived from phone logs that
needed to be joined with the visit sequence data in order to
be useful. For instance, the number of calls received was one
such feature in this category, because the call log needed to
be joined with the visit sequence in order to connect calls to
their associated visit.

In the training set, only about 66% of all visits were labeled
as having trusted_start and trusted_end times. However,
in order to keep the training set as large as possible, we
treated all start and end times as trusted.

3.1 Visit sequences
Participant visits were recorded in two datasets:
visit_sequence_10min and visit_sequence_20min. These
datasets contain all visits of at least 10 (respectively, 20)
minutes. The second dataset is thus a proper subset of
the first, except that it also contained an additional flag
trusted_transition. Because we did not believe that this
flag would be helpful for prediction, we chose to utilize only
the first, larger dataset visit_sequence_10min.

Clearly some key characteristics relevant to the semantic
meaning of a place are the temporal properties of visits to
that place. The visit sequence data provided information
about when a user arrived at a place (start_time) and when
the user left (end_time). Early examination of the data
convinced us that the visit duration was a good candidate
feature. For instance, we observed that most people stayed
at their workplace for at least four hours, and even longer
for their home.

Likewise, visits at certain periods of the day should also
be good indicators for the meaning of a place. For example,
most people have lunch around noon, so visits between 11:45
and 13:30 are likely to be to restaurant places. Likewise,
the day of the week of visits should also supply information
on the type of places visited. For instance, in Switzerland
(where the data collection campaign took place) opening
times are strictly regulated by laws, so it is very unlikely
that a user visits a shop place on Sunday.

To capture these temporal trends, we first divided the week
into three type of days: Weekday, Saturday and Sunday.
Then, as shown in Figure 1, we built a different time dis-
cretization for each type of day. The bins represent the
starting time of a visit. For instance, visits starting on a
Weekday can fall into 9 different bins, and a visit starting
between 7 a.m. and 10 a.m. will be assigned to bin number
3.

Figure 1: Day discretization

Each place can then be represented by a number of features
that are computed by counting with these bins. For instance,
for a certain place p, counting the number of visits that are
assigned to each of the 9 Weekday bins yields 9 features
that describe that place. We also computed features over



coarser granularities, e.g. the number of visits for each type
of day (weekday, Saturday, or Sunday) and the total number
of visits (i.e., the “global” number of visits).

These features, combined with a few others based on dura-
tion and counting of distinct occurrences, yielded the follow-
ing set of candidates:

• nb. of visits global

• nb. of visits on weekdays

• nb. of visits on Saturday

• nb. of visits on Sunday

• nb. of visits in weekday bins [1..9]

• nb. of visits in Saturday bins [1..8]

• nb. of visits in Sunday bins [1..7]

• duration of visits global

• duration of visits on weekdays

• duration of visits on Saturday

• duration of visits on Sunday

• nb. of distinct bins visited on weekdays

• nb. of distinct bins visited on Saturday

• nb. of distinct bins visited on Sunday

Note that we are not classifying individual visits, but rather
places that are each described by a set of visits to that place.
Thus, each of the features listed above must be an aggre-
gation over a set of visits that are all associated with one
particular place. To account for the fact that some places
may be visited more frequently than others, we computed
two versions of each feature. The first version was the cor-
responding feature value for a visit, summed over all visits
(e.g., the total number of visits, or the total time duration
of some visits). We refer to these as “number” or “sum”-type
features. The second version was the same feature value,
but normalized (averaged) over the appropriate number of
visits. We refer to these as“mean”-type features. Finally, we
also computed the standard deviation of each feature value
and provided this as a candidate feature (though our results
later show that none of them were selected by the feature
selection technique). The computation of sum, mean, and
standard deviations was also applied to the other features
described in the following sections.

3.2 Mobile data
This section describes features that were constructed by
joining together the visit sequence data with some additional
data collected by the user’s phone.

3.2.1 Wlan
We noticed that for some places, like work or home, the num-
ber of distinct wlans detected is often quite high. To create
a feature based on these detections, while filtering out some
noise, we used the following strategy. First, we observe that
wlan access points are identified by their ssid and rarely
change, so each place should be roughly characterized by
a set of ssids. To assess (and then count) which ssids are
relevant to a specific place, we retrieved a list of ssids seen

at that place during all the visits. Then we filtered out
those ssids which were observed less than n times, consider-
ing them as being noisy detections (we considered n = 2, 3,
or 4). Finally, we counted, for a particular place, the number
of remaining distinct ssids.

Note that because ssids were anonymized by user, we do
not know when the same wlan network is seen by different
users. Therefore it is not possible to leverage the wlan data
to extend the ground truth by sharing labels among users.

3.2.2 GSM and Bluetooth
As with the wlan networks, we extracted (by place and by
user) the number of distinct bluetooth devices (identified by
their mac_address) detected over all visits. Such features
could help to identify places where there are many other
people around, e.g., at restaurants and bars.

Likewise, for GSM data we counted the number of antennas
(or cell_ids) seen at a given place. We thought that this
feature could help to identify areas which are sparsely cov-
ered by GSM, such as countrysides or nature parks where
people might participate in outdoor sports or spend their
holiday.

3.2.3 Accelerometer
The field avdelt from the accelerometer dataset averages,
over a sampling period of about 50 seconds, the difference in
the acceleration between two consecutive measures for each
of the three axes x, y, and z. To roughly measure behavioral
differences, we created a feature for each place that counted
how many time over all the visits the avdelt was above a
specific threshold. Initially, we used a user-specific thresh-
old that was computed by identifying the 90th percentile
of a user’s avdelt values. However, further analysis showed
that this value was very similar across most users (especially
compared to the maximum possible value), so we ultimately
decided to use a single threshold across all users.

3.2.4 System
Users are much more likely to charge their cell phone at
home or at work then at a different location. To detect such
places, we computed two charging frequency features. The
first one calculates the ratio between the number of charging
actions (when the charging status goes from 0 to 1) and the
number of visits. The second feature normalizes the number
of charging events for a given place by the total number of
charging events for all places.

Users may also vary the current phone profile based on their
activity and/or place. For instance, they may use silent
mode at a restaurant but tend to leave the phone in nor-
mal mode at home. However, the specific preferred phone
profile (or ring) for a given place will depend upon the
user’s habits. Thus, to create a feature that was more ro-
bust to user variations, we computed the number of profile
switches per visit, normalized by the visit duration. Simi-
larly, phone inactivity may also be correlated with place. To
measure such effects, we computed two features: the longest
inactivity period and the sum of the inactive periods.

3.2.5 Application



In order to identify possible relationships between places
and the use of mobile applications, we first identified the
most popular applications over all users, by counting for
each of them the number of start_events. Then we clus-
tered the frequently used applications into thematic classes
that seemed relevant for the prediction task: clock, phone
book, calendar, camera, map, email, web, multimedia, and
leisure time (which includes email, web and multimedia).
Finally we computed for each place how often each type of
application was used (again, normalized by visit duration).

We ignored some frequent “applications” such as Standby
mode or Application grid because they did not seem likely
to be correlated with the semantic label of a place. We also
ignored applications related to calls and messaging, because
they are likely to be redundant with the features based on
call log data that are described below.

3.2.6 Call log
The call log dataset records incoming and outgoing com-
munications for both voice calls and short messages (SMS).
Furthermore, it provides information on call durations and
missed calls. We considered independently the outgoing and
incoming communications, although knowing how they re-
late to each other (e.g., their relative proportion) could also
be informative.

We extracted the following list of features (here communi-
cation stands for calls + SMS): number of outgoing calls,
number of incoming calls, number of missed calls, number of
SMS sent, number of SMS received, outgoing call duration,
incoming call duration, number of outgoing communications,
number of incoming communications, in-out call ratio, in-
out SMS ratio, in-out call duration ratio, in-out communi-
cation ratio. All of these feature are normalized by the visit
duration.

4. METHODS
As described in Section 1, we decided to focus on task-
specific feature construction coupled with standard machine
learning techniques for feature selection and classification.
In particular, we used Weka1, a very common machine learn-
ing library. Weka provided also the tools necessary to do
cross-validation and to combine the feature selection with
the classification.

Given that the sets of users from the training vs. test data
were disjoint, we chose to use a single classifier that would
learn global patterns across all the users. For the classi-
fier, we selected multinomial logistic regression due to its
simplicity, typically strong accuracy, and ability to tolerate
correlated features. Because we had a large number of fea-
tures and a relatively small labeled training set, overfitting
was a potential concern–we addressed it in two steps. First,
to regularize the model, we assumed a Gaussian prior on the
feature weights learned by the model; the variance of these
priors was controlled by setting the “Ridge” parameter. Sec-
ond, we performed feature selection to reduce the number
of features actually used by the model. In particular, we
evaluated both filter and wrapper methods for feature se-
lection [6]. The filter method we chose (CfsSubsetEval)

1http://www.cs.waikato.ac.nz/ml/weka/

looks at each feature individually and then selects the one
that has a high correlation with the class to predict, but
a low correlation with the features that have already been
selected. The wrapper method simply uses our main clas-
sifier to evaluate the resultant accuracy of each subset of
features by cross-validation. We used the LinearForwardS-

election algorithm to search over the feature space. This
search method is relatively fast, and produces a compact
final feature subset.

In the training data, only 336 of the 6350 visited places
(5.3%) were labeled, thus forming the ground truth. Given
this sparsely-labeled scenario, semi-supervised learning (SSL)
could be a viable option to improve the prediction accuracy.
In particular, two SSL techniques that we considered for
our task were self-learning and co-training [10]. The for-
mer technique seeks to iteratively estimate labels for the
unlabeled training instances, identify the instances with the
most confident predicted labels, then retrain the classifier
with the labeled data and the most confident inferred labels.
The co-training technique involves two classifiers which are
trained on disjoint features sets and are then used to provide
additional (high confidence) labeled examples to each other,
gradually extending the size of the usable training set. Al-
though there were also multiple possible ways to divide our
data features into two sets, SSL is known to be challenging
to use, and to not always improve performance. Section 5
briefly considers some use of SSL.

5. RESULTS
We evaluated the overall accuracy using 10-fold cross-validation
on the provided training data. Surprisingly, the set of fea-
tures selected by the filter method differed only slightly from
the ones selected by the wrapper. Both the techniques pro-
duced on average the same overall accuracy, therefore we
present detailed results only for the wrapper method.

5.1 Selected Features
Figure 2 shows the 16 features that were selected by the
wrapper method. Notice that most of them (12) come from
the visit sequence. This outcome seems to indicate that
there exists a strong and global relationship shared by many
users between the temporal dimension and some of the types
of places visited, which is perfectly aligned with our first in-
tuition. On the other hand, it appears that we did not man-
age to identify many good features from the “mobile” data.
We suspect that this is due in large part to the sparsity
of these features: at least for this training data, for many
places the values of the mobile features were predominantly
zero, e.g., because no communication events took place or
no applications were used at that place. This data sparsity
may be partly explained by the fact that at least some users
participating in the data collection campaign were simulta-
neously using two cell phones (their regular phone plus the
one provided by Nokia), and thus not all relevant data was
collected. It is also possible that the mobile features that
we created were not well-aligned with the prediction task.
Alternatively, it may be that our mobile features could be
strongly predictive of a place, but only when a user-specific
classifier was used, instead of the global classifier necessary
for this task.

A closer look at the extracted features reveals that 62.5% of

http://www.cs.waikato.ac.nz/ml/weka/


• nb. of weekday visits starting in [00:30 - 03:00]

• nb. of weekday visits starting in [07:00 - 10:00]

• nb. of weekday visits starting in [18:30 - 21:00]

• nb. of Saturday visits starting in [18:00 - 21:00]

• nb. of Sunday visits starting in [00:00 - 06:00]

• nb. of visits on weekdays

• nb. of visits on Saturday

• nb. of visits on Sunday

• nb. of bins visited on Sunday

• global visit durations sum

• global visit durations mean

• weekday visit durations sum

• nb. of activity peaks (accelerometer)

• nb. of bluetooth mean

• nb. charging events / nb. visits

• nb. charging events / tot. charging event

Figure 2: Features selected by the wrapper feature
selection method. Features shown in blue/bold were
also selected by the filter method.

them (those highlighted in Figure 2) were found by both the
wrapper and the filter methods, which suggests that they are
strongly discriminative. This high overlap is possibly linked
to the search method used (which was the same), but also to
the classifier employed. Since logistic regression is a linear
method, it will tend to favor features which can linearly
explain the labels.

5.2 Classifier Accuracy
Using cross-validation on the training set, the logistic regres-
sion classifier achieved an average accuracy of 67.6% (227
correct out of 336 places). In contrast, simply guessing the
dominant class (workplace/school) would achieve an accu-
racy of only about 30%. We also learned classifiers for two
different subset of the features in Figure 2: one that con-
tained only visit sequence features, the other one with only
mobile data (as explained in Section 3). We obtained, re-
spectively, an average accuracy of 64.2% and 58%.

Thus, the combination of our features and classifier suc-
ceeded in obtaining informative predictions about the se-
mantic meaning of many places. On the other hand, this
accuracy fell short of our initial goals, as discussed later.
We also note that the small size of the labeled training set
means that this overall accuracy number may not be very
reflective of the performance on a larger sample.

Table 2 shows results broken down by the true class la-
bel of each place. Clearly, the highest precision and re-
call are achieved on home and my workplace (with preci-
sion of 0.91 and 0.756, respectively). Strong performance
on these two classes is not very surprising, since it is rela-
tively easy to design features that are highly predictive of
these locations–users make many visits to them, and we had
the most training data for these classes (see Figure 3). In

Label Place Precision Recall

1 Home 0.91 0.845
2 Home of a friend 0.537 0.63
3 My workplace/school 0.756 0.882
4 Location related to transp. 0.375 0.391
5 Workplace/school of a friend 0 0
6 Place for outdoor sports 0.4 0.48
7 Place for indoor sports 0.333 0.286
8 Restaurant or bar 0.333 0.091
9 Shop or shopping center 0.688 0.647
10 Holiday resort 0 0

Table 2: Classification results summary by class.

Figure 3: Number of training labels for each class.

contrast, the classifier performs very poorly on the classes for
which there are few training data instances, such as holiday
and friend’s workplace. In most cases there is a strong
correlation between the performance of the classifier and the
amount of labeled examples available.

Table 3 is a confusion matrix that helps to explain the nature
of the errors made by the classifier. For instance, row #2
of the table shows that 4 places with true class #2 were
predicted as class #1, and 29 places with true class #2
were predicted correctly (see Table 2 for the numbering of
the classes). Interestingly, most of the friend’s workplace

places were classified as my workplace, which is an under-
standable error. Similarly most of the misclassifications of
home places went to the friend’s home. Finally, perhaps
because they were geographically close, places related to

transportation were often confused with workplace

The recall for restaurant was surprisingly low, despite the
fact that the day discretization we designed effectively pro-
vided a dedicated bin that should have been predictive of
this class. This result can probably be explained by the fact
that the classifier was not able to leverage enough mobile
data to discriminate restaurant places from other places
like indoor sports which were visited in the same time
span. Indeed, Table 3 shows that such prediction errors
did occur.

We investigated SSL techniques only briefly, but did consider



↓ Classified as ↓
1 2 3 4 5 6 7 8 9 10

1 71 8 2 0 0 1 0 1 1 0
2 4 29 2 4 0 5 1 1 0 0
3 3 5 90 3 0 0 1 0 0 0
4 0 1 7 9 0 3 1 0 2 0
5 0 0 8 1 0 0 0 0 0 0
6 0 4 2 3 0 12 2 0 2 0
7 0 2 4 0 0 4 3 1 0 0
8 0 3 3 0 0 2 2 1 0 0
9 0 1 0 4 0 0 1 0 11 0
10 0 1 1 0 0 2 1 0 0 0

Table 3: Confusion matrix. The true label of each
example is indicated in the leftmost column.

one form of self-learning. Because our classifier achieved
strong accuracy only on home and my workplace, we decided
to augment the ground truth only with predicted instances
of those two classes, though we recognize the potential bias
that such a choice could induce. The label extension pro-
cess considered each class after the other, starting first with
home followed by my workplace. At each iteration only the 7
most confident predictions were promoted to the status of a
regular label, provided that they had a confidence score of at
least 85%. Given these restrictive conditions the algorithm
stopped after 3 iterations and then produced an overall ac-
curacy of 68.2%, which was a small improvement. These
gains came mainly from the outdoor sports class, which
improved to a precision of 0.5 and a recall of 0.6. Thus, SSL
improved performance but only slightly and not necessar-
ily in a statistically significant way. We suspect that SSL
may offer more gains for this task if the baseline accuracy
of the classifier could be improved or if more sophisticated
SSL techniques were considered [8].

For completeness, we also tried a small variant for counting
the number of visits that fall into each bin (see Section 3.1)
where the counting considers the entire visit period instead
of only the start of the visit. Unfortunately this variant did
not bring any improvement.

6. RELATED WORKS
There is a vast literature on algorithms and systems that are
able to detect and learn the important places for a user [3][4].
Depending on the context, GPS data can lead to good de-
tection accuracy [7], even though the signal is unreliable in
closed environments. Wi-Fi, GSM and historical data can
play a key role in improving the detection accuracy [5], but
they have still not be used to infer the semantic meaning of
a place.

To our knowledge, this is the first work that tackles a sce-
nario where both accurate GPS data and user behavioral in-
formation are missing. Furthermore, previous works focused
only on classes with coarser granularity (e.g., just “home”,
“work” and “other” [1]).

7. CONCLUSIONS
We were expecting to be able to predict the semantic mean-
ing of places with an higher accuracy than what we achieved–
we now discuss a few factors that could explain why we did

not reach our goal. First, many of the provided data signals
were more sparse than anticipated, perhaps due to the pre-
viously discussed simultaneous use of multiple phones (see
Section 5). Second, because the users in the test set did not
appear in the training set, we could not do user-specific pre-
dictions; we expect that capturing more user-specific behav-
iors could help substantially. Finally, having a fairly small
set of known training labels proved to be a very challeng-
ing scenario, and our results suggest that classes with more
training labels were much easier to predict (see Table 2).

Nevertheless, we did manage to identify a combination of
features and classifier that substantially improved over a
random classifier, and our results show that temporal prop-
erties are especially helpful for semantic place prediction.
Future work should begin by evaluating the kinds of fea-
tures that we have described on a dataset with many more
labeled examples, to see how performance improves and to
assess the extent to which our results generalize. In addi-
tion, we would like to explore the development of new mobile
features to better connect place prediction with events like
phone application usage and communications sent/received.
Finally, given that labeled examples are often difficult to ob-
tain, but unlabeled examples are fairly easy to collect from
mobile devices, we would like to explore in more depth the
use of semi-supervised learning for this domain.
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