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ABSTRACT
Demographic prediction is important for many applications,
such as recommendation, personalization and behavior tar-
geting. The task of the challenge [8] is to predict users’
demographics based on the data collected by users’ mo-
bile phone. To accomplish the task, we propose a super-
vised learning framework to perform feature construction
from the raw data, data clearing, feature extraction and
selection, model building and ensemble, and prediction revi-
sion. The experimental results show that the framework can
achieve prediction accuracies on “gender”, “job” and “mari-
tal” as high as 96%, 83% and 86% respectively, and achieve
RMSE on “age” and “number of people” as low as 0.69 and
0.66 respectively, under the leave-one-out evaluation.

1. INTRODUCTION
The task is to predict users’ demographics, including“gen-

der”, “job type”, “marital status”, “age” and“number of fam-
ily members”, based on users’ mobile data. We describe
our solution, which is a supervised learning framework, in
this paper. The proposed framework has five components:
feature construction, which extracts features from the raw
data, such as the number of calls in the morning, the num-
ber of applications used in the evening, etc. and converts the
data of each user into a feature vector; data cleaning, which
replaces missing data and normalizes features into a fixed
scope; feature selection and extraction, which reduces the
huge number of dimensions brought in the feature construc-
tion step; model building, which builds a classification or
regression model based on the selected features; and predic-
tion revision, which adjusts the prediction results according
to the relationship between each demographic. We highlight
the novelties of our solution as follows:

1. A unified feature construction framework. We define
each feature is a conditional probability of an action
by given users and conditions and then estimate this
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probability using maximum likelihood estimation tech-
niques. In addition, to handle the huge data, we for-
mulate the original data into a entity-relation model,
where each kind of information is an entity (corre-
sponding to one csv file) and the relation between each
entity is built according to user ID. Then, to construct
a feature, we can send a query to this generated re-
lational database to obtain sufficient statistics. Our
previous work [3] show that feature construction is an
effective way to improve classification performance.

2. Cost-sensitive classification based regression models.
As most feature selection and extraction methods are
proposed for classification problems, to utilized these
state-of-the-art approaches, we convent the regression
tasks (number of family members and age) into cost-
sensitive classification problems. The experimental re-
sults show that cost-sensitive SVM outperforms the
support vector regression and linear regression models
as much as 0.12 on RMSE. Most of our submissions
for two regression tasks are based on such models.

3. Collaborative Prediction Adjustment. One interesting
point of this challenge is that all subtasks are related.
For example, age is related to job type. For a PhD stu-
dent, she is unlikely younger than 16 or older than 35.
Thus, besides building individual models for each task,
we also utilize the task relevant to adjust predictions.
In our experiment, this improves about 4% accuracy
on classification tasks and reduces about 0.02 RMSE
on regression tasks.

Considering the limited number of labeled data, we pro-
pose a simple model averaging framework to generate the fi-
nal submission. Specifically, we first manually select models
with best leave-one-out performance and then group them
into several levels. Finally, we average the results respect
to different levels to obtain different submissions. We an-
alyze that the leave-one-out evaluation is not biased while
the model averaging can reduce the variance, and hence the
built models have good generalization ability.

2. THE PROPOSED FRAMEWORK
The proposed framework is composed of five components,

including feature construction, data cleaning, feature selec-
tion and extraction, model building and prediction adjust-
ment. One important point is that, we formulate the whole
process into an iterative framework, and hence the evalu-
ation results on built models in each iteration can help us
construct more meaningful features in the next iteration.
The whole process can be found in Figure 1.



Figure 1: Main Flow

2.1 Feature Construction
As the given data is raw data, which cannot be taken as

supervised models’ inputs, the first and the most important
process is to construct features with highly discriminability
and represent each user as a feature vector, i.e., x = {xi}

m
i=1,

where xi represents the i-th value of the instance x and m is
the number of features. Without explicit prior knowledge on
inferring user profiles, we aim to construct features as many
as possible and then perform feature selection or extraction.
Since there are infinite ways to perform feature construc-
tion, to make the feature construction process tractable, we
formulate it into a unified paradigm. We propose to extract
two kinds of features: global and local. A global feature
is defined as the probability that one given user will do one
kind of actions, where each kind is related to a csv file F , and
formally, we define it as Pr(F |u,Θ). This kind of features
captures users’ global active status. In addition, we define a
local feature in each csv file as the conditional probability of
an action given users and conditions. Formally, for a given
user u and conditions Θ, the conditional probability of an
action is defined as Pr(a|u,Θ). Then, the task of feature
construction can be divided into three subtasks:

• Enumerating possible actions as many as possible
• Defining appropriate conditions
• Computing the conditional probabilities

Firstly, we categorize the actions in the raw data into three
cases: continue variables, such as the time length of call-
ing (in calllog.csv) and the avdelt value (in accel.csv); inde-
pendent discrete variables which are different for different
users, such as the number of places visited by users (in
visit sequence 10min.csv); and common discrete variables
which are shared by every users, such as the call type, e.g,
short message and phone call (in calllog.csv). For the con-
tinue variables, we extract their mean and variance. For ex-
ample, we extract the mean and variance of the call length
for each user. For the common discrete variables, we record
the frequency of each discrete value for each user. For exam-
ple, we extract the number of calls, number of messages, etc.
For the independent variables, we retain ratio of the top-5
values as features. For example, we extract the running time
ratio of top-5 frequent applications for each individual user.
The third level is specific features, which are designed for
specific task, such as the average number of accelerometer
records for gender and the number of in-calls for job type.
We summarize the extracted actions or statistics in each csv
file as follows:

• accel: the average acceleration and the Std of average
acceleration

• application: the general operation to a phone, the
three most frequently used applications

• bluetooth: the three most frequently used bluetooth
prefix

• calendar: private appointment
• calllog: the most frequent call regions, the out-going

calls and in-coming calls, the message and voice calls,
the duration of calls, and the missing calls

• contacts: the phone prefix
• gsm: the time staying at home
• media: the average size of the media and the std of the

size of the media
• mediaplay: listening to songs from a particular artist

and listening to a particular song
• process: using “phonebook.exe”, using “accontrol.exe”,

using “sniffer.exe” and “WELCOM.exe”
• distance: moving length and maximum moving speed
• sys: space left in the drive D and time being in silent

mode
• wlan: most frequently used brand
• visit: most frequently visited places

Secondly, we introduce two conditions based on the tempo-
ral information. The first one is based on whether the hap-
pening time is weekend or not and the second one is based
on four user-defined timeslots: morning, afternoon, evening
and midnight. Then, for a given user, his/her features can
be constructed based on the above actions and conditions.
For example, Pr(a = calling|u = 001,morning) represents
the probability that the user 001 makes a call in the morning.
Motivated by“bag of words” [9], we estimate this probability
based on counting. In other words, we compute this prob-
ability by calculating the number of given actions for each
user under some conditions. For example, we aim to cal-
culate the number of calls, the number of applications, the
number of processes, etc. In practice, since the number of
records in different csv files can be very different, e.g, tens in
application.csv and thousands in accel.csv, in order to avoid
the imbalance problem, we estimate Pr(a|u,Θ) according to
the file F that the action a belongs to. Hence, we denote
it as Pr(a|u,Θ, F ). Using the Bayesian rule, we obtain the
following computing equations:

Pr(F |u,Θ) =
Pr(F,Θ, u)

Pr(Θ, u)
∝

nF,u,Θ

nu,Θ

(1)

Pr(a|u,Θ, F ) =
Pr(a,Θ, u, F )

Pr(Θ, u, F )
∝

na,u,Θ,F

nF,u,Θ

(2)

where nF,u,Θ is the number of records under conditions Θ
in the file F , na,u,Θ,F denotes the number of action a that
the user u takes under conditions Θ in the file F , nu,Θ de-
notes the number of all actions that the user u takes under
Θ, and nF,u,Θ denotes the number of all actions that the
user u takes under Θ in the file F . These statistics can be
calculated directly from the raw data in csv files directly.
Based on the conclusion in [9], this estimation is also the
result of maximum likelihood estimation. In addition, to
make the computation process efficient, we formulate the
original data into a entity-relation model, where each raw
information is an entity (corresponding to one csv file) and
the relation between each entity is built according to user
ID. Then, each statistic is related to one query. For exam-
ple, na=calling,u=001,morning is considered as a query, “select
count(*) from calllog where user=001, action=calling and
time=morning”. Let n denote the number of users, m denote
the number of features and c denote the number of tasks.
The generated dataset can be defined as T = {xi,yi}

n
i=1,

where yi = {yi
j}

c
j=1 and yi

j ∈ Yj . Yj is the label space
of the j-th subtask. For example, for the gender predic-
tion, Y = {female,male} or Y = {1, 2}. In this challenge,
n = 80 and c = 5.



2.2 Data Cleaning
Each feature may have different value scopes and some

features may contain missing values. In addition, some of
the constructed features may have non-zero values in only
one or two users, which has no discriminability. Thus, in
this step, we perform feature filtering and normalization.
Firstly, we set a threshold for each feature, if there are only
two non-zero values of this feature, it is removed. Then, for
the rest features, we normalize them into [−1, 1] using

xt
i = 2

xi − xmin

xmax − xmin

− 1 (3)

where xmax and xmin represent the maximal and minimal
values of this feature.

2.3 Dimension Reduction
The number of initial features constructed from raw data

is huge, which is more than tens of thousands. Compared
to the number of instances, which is less than 100, the huge
number of features will cause models overfitting and mis-
guide the prediction. Thus, we perform dimension reduc-
tion before model building. We adopt two kinds of methods:
one is supervised feature selection, including F-test [13] and
Relief [5] and the other is unsupervised feature extraction,
including PCA [7], kernel PCA [14] and LLE [12], which
stand for three kinds of feature extraction methods, i.e., lin-
ear, kernel-base, and manifold-base respectively. We discuss
these adopted methods briefly as follows.
F-Test F-Test is any statistical test in which the test statis-

tic has an F-distribution under the null hypothesis. It
is widely used when comparing statistical models in
order to select the model that best fit your data dis-
tribution.

Relief Relief feature selection evaluates each attribute by
comparing an sample of instances with a set of near-
est neighbor instances, the attribute which makes in-
stances with the same label close to each other while
keeping instances with different labels away from each
other has high relevancy.

PCA Principal component analysis generates a set of lin-
early uncorrelated variables in all the given possibly
correlated variables.

kernel PCA Kernel principal component analysis is an ex-
tension of principal component analysis using tech-
niques of kernel methods. Using a kernel, the originally
linear operations of PCA are done in a high dimension
space with non-linear mapping.

LLE Locally Linear Embedding attempts to discover non-
linear structure in high dimensional data by exploiting
the local symmetries of linear reconstructions.

2.4 Model Building
After obtaining features with high discriminability, we

perform model building following two ways. One is to build
models for each task individually, where we build a serial
of models based on state-of-the-art algorithms, including
C4.5 [10], gradient boosted tree [4], random forest [16], SVM [2]
and logistic regression for classification tasks, and RepTree [1],
support vector regression [15], Gaussian process [11], linear
regression and lasso [17] for regression tasks. These kinds of
algorithms can be divided into three categories: tree-based
algorithms, linear algorithms, and kernel-based algorithms.
For both linear and kernel-based algorithms, each of them

aims to build a model f with the following objective:

min
f

`(f, T ) + λR(f) (4)

where `(f, T ) is the loss function, λ is the trade-off parame-
ter, and R(f) is the regularization term to control the model
complexity. For example, SVM uses the hinge loss and lin-
ear regression uses square loss. In addition, considering the
huge number of features and small number of instances, be-
side the traditional L2-norm for R, we also build models
with L1-norm, i.e., R(f) = |f |1. For the regression tasks,
we also convert them into cost-sensitive classification tasks.
We implement it based on hinge loss as follows. Let s(xi, y)
be a discriminative function for both the label and the in-
stance, e.g, s(xi, y) = wyx

T
i for linear SVM, where wy is

the coefficients. The hinge loss for classification based on s
can be represented as

n
∑

i=1

∑

y

max
(

0, 1−
(

s(xi, yi)− s(xi, y)
)

)

(5)

By incorporating the cost information, the objective func-
tion for regression tasks is defined as

min
s

n
∑

i

∑

y

Myi,y max
(

0, 1−
(

s(xi, yi)− s(xi, y)
)

)

(6)

where Mi,j is the cost for misclassifying the instance into
j-th class, of which true class is i. Take the “age” task for
example, there are 6 classes, [0, 1, 2, 3, 4, 5]. Then, the M
is a 6× 6 matrix, where Mi,j = (i− j)2. The experimental
results show that this convention can improve the prediction
RMSE by 0.12 on the “number of families” task.

2.5 Prediction Adjustment
For the first kind of model building, each subtask is in-

dependent. Based on several common senses: 1. users in
different groups may have different probabilities to take dif-
ferent jobs, e.g, users have few opportunity to get married
and become a PhD student if they are younger than 16; 2.
users in different marital status may have different numbers
of family members, e.g, married people unlikely have only
one family member; 3. job type is also biased toward to users
with different genders, e.g, there are more male PhD stu-
dents than female students, we found that there are depen-
dency between each subtask. To utilize their correlations, we
revise the independent predictions using their concurrence
from two aspects. The first one is to produce the final pre-
diction for each task as the combination of the original pre-
diction plus the weight summation of the predictions from
other tasks. Formally, we define c × c matrices to measure
the label relation between two tasks, i.e, Wi,j for the i-th
and j-th tasks. Take the “gender” and “marital” tasks as an
example, where “gender” has two classes and “marital” has
three classes, and then their relation matrix is 2 × 3. Each
entities Wi,j(m,n) in each relation matrix represent the nor-
malized label concurrences between the label m in the i-th
and the label n in the j-th tasks. For example, there are 20
users who are male and married, and then the corespondent
entry Wgender,marital(male,married) = 20/80 = 0.25. We
define the output of f(xi) as a vector of scores for each can-
didate label. For example, for the “gender” task, the output
of f(xi) is [s(xi, y = 0), s(xi, y = 1)]. Let gj denote the final



Table 1: Gender (Accuracy)
Feature Set J48 Random Forest GBDT SVM Logistic Regression Linear SVM
General (50) 0.7948 0.7820 0.7948 0.8589 0.8333 0.8333

Temporal General (50) 0.8589 0.8846 0.8846 0.8974 0.8974 0.8846
Call Log Related (50) 0.7692 0.7179 0.7435 0.7564 0.6923 0.6923

Cross User Features (50) 0.8205 0.9102 0.8589 0.9102 0.9230 0.9230
Speed/Distance Related (20) 0.8333 0.7564 0.7948 0.7820 0.7820 0.7820

Count by 10min (20) 0.8717 0.8717 0.8333 0.8717 0.8589 0.8589
Best Combination (20) 0.8589 0.8846 0.8846 0.8974 0.8205 0.7820

Table 2: Job (Accuracy)
Feature Set J48 Random Forest GBDT SVM Logistic Regression Linear SVM
General (20) 0.5616 0.5342 0.6164 0.5753 0.5753 0.5753

Temporal General (50) 0.6027 0.7260 0.6849 0.7808 0.7123 0.7123
Call Log Related (20) 0.4931 0.3972 0.4520 0.4931 0.4246 0.4657

Cross User Features (50) 0.5479 0.6301 0.5616 0.6164 0.5890 0.5753
Speed/Distance Related (20) 0.5616 0.5068 0.5205 0.5068 0.4794 0.4794

Count by 10min (50) 0.6027 0.6575 0.6712 0.6575 0.6712 0.6712
Best Combination (50) 0.5890 0.6575 0.6712 0.7808 0.6986 0.6986

prediction for the j-th task and we have

gj(xi) = βfj(xi) + (1− β)
∑

k 6=j

fk(xi)W
T
j,k (7)

In practice, β can be determined by cross-validation tech-
niques. We found that the optimal value is 0.9 under the
Leave-One-Out evaluation in the experiment. Another strat-
egy is considering the initial predictions from other tasks as
features for the current task and then build a new model,

gj(xi) = fj({xi, [fk(xi)]j 6=k}) (8)

where {xi, [fk(xi)]j 6=k} indicates the new feature vector is
combined by the original features and predicted labels in
other tasks. We used these two techniques in all of our pre-
diction results. Due to the limited number of labeled data,
we perform model averaging to avoid overfitting. Formally,
the final model h(x) is defined as

h(x) =
1

M

∑

f

f(x) (9)

where M is the number of models for averaging. We analyze
that the averaged model can reduce the prediction variance
as follows. Let f∗ denote the ideal model and d(f, f∗) denote
the difference between f and f∗. We obtain

d(f, f∗) = Ef

(

f(x)− f∗(x)
)2

= Ef

(

f(x)2 − 2f(x)f∗(x) + f∗(x)2
)

On the other hand, the difference d(h, f∗) is

d(h, f∗) = E
(

Ef (f(x)− f∗(x))
)2

= E
(

(

Eff(x)
)2

− 2
(

Eff(x)
)

f∗(x) + f∗(x)2
)

≤ d(f, f∗) as E[f ]2 ≤ E[f2]

In addition, according to the conclusion in [6], leave-one-out
evaluation is not biased for prediction and hence the strategy
we adopted, model averaging + leave-one-out, makes the
built models have good generalization abilities.

3. EXPERIMENTAL RESULTS
The main task in the experiment is to perform model selec-

tion, which aims to detect the best combination of feature
sets, learning models and model parameters. Most model

implementations are based onWeka 1 and libsvm 2. We eval-
uate the effectiveness of each combination using Leave-One-
Out (LOO) method. For classification tasks (i.e. gender,
marital, job), the performance is measured by classification
accuracy. Performance in regression tasks (i.e. number of
people, age) is tested by Root-Mean-Square Error(RMSE).
The best performance of each model using different feature
sets are shown in Table 1∼4 corresponding to each subtask
respectively. We observe that, in most cases, SVM and Ran-
dom Forest achieve the best performance in three classifica-
tion tasks. Thus, in our final submissions, which are based
on model averaging, most base results are contributed by
these two models. On the other hand, cost-sensitive SVM
outperforms other approaches. This, from the empirical as-
pect, provides evidences that the transformation from re-
gression to classification is effective, as shown in Section 2.4.
In addition, we report some results in feature construction
so as to indicate the improvement progress. For each sub-
task, we list 3 valuable features according to the relief feature
selection algorithm in Table 5.

As described in subsection 2.1, a large number of features
are extracted from the raw data. These features are con-
structed step by step in our experiment, followed by strict
selection process in order to provide solid foundation for sub-
sequent model building. Firstly, probability of each record
is computed based on temporal conditions. Secondly, we
calculate general statistical features, namely, mean and co-
variance for continues records, number of distinct values and
top-5 ratios for discrete ones. Thirdly, general statistical
and temporal conditions are considered together to gener-
ate plenty of sophisticated feature sets, which potentially
have power of exploring more detailed information. Finally,
specific features are extracted for each task. To test the dis-
crimination ability of constructed feature sets in each step,
first of all, we build a base line method as follow 1) the ma-
jority class in training data is employed to make the predic-
tion for classification tasks; 2) prediction value of regression
tasks is the average output value of training data. Secondly,
we train different models on each feature set and compare
the results against baseline method. The feature set can
be retained for future use if its best result among models
outperforms the baseline, otherwise, discarded.

1http://www.cs.waikato.ac.nz/~ml/weka/
2http://www.csie.ntu.edu.tw/~cjlin/libsvm/



Table 3: Marital (Accuracy)
Feature Set J48 Random Forest GBDT SVM Logistic Regression Linear SVM
General (20) 0.6455 0.6455 0.6329 0.6835 0.6582 0.7341

Temporal General (50) 0.7341 0.6455 0.7088 0.7594 0.7341 0.7215
Call Log Related (50) 0.5822 0.5569 0.6075 0.5696 0.5822 0.5696

Cross User Features (50) 0.6455 0.6962 0.6075 0.7721 0.7468 0.7468
Speed/Distance Related (20) 0.6582 0.5316 0.5569 0.5822 0.5316 0.5316

Count by 10min (50) 0.6202 0.7341 0.7341 0.7594 0.7594 0.7594
Best Combination (50) 0.6329 0.7088 0.7215 0.7848 0.7721 0.7721

Table 4: Regression Tasks (RMSE)

Feature
Gaussian Process SVR SVM LinearSVM Gaussian Process SVR SVM LinearSVM

Age Num People
General (50) 1.052 1.007 - - 1.098 1.001 - -

Temporal General (50) 0.932 0.911 0.880 0.887 0.964 0.885 0.765 0.824
Call Log Related (50) 0.969 0.975 1.024 1.066 1.038 1.024 1.083 1.089

Cross User Features (50) 1.010 0.914 0.851 0.887 0.865 0.845 0.765 0.800
Speed/Distance Related (20) 1.004 1.000 0.987 0.993 1.065 1.033 1.089 1.058

Count by 10min (50) 1.081 0.957 0.880 - 0.981 0.874 0.721 -
Best Combination (50) 1.018 0.987 0.864 0.948 0.819 0.760 0.721 1.013

The best performance in each round is shown in Fig.(2),
where “Round 0”means base line method, “Round 1∼4” in-
dicate the four feature construction steps. From the result,
we can see that feature set with good discrimination ability
is well constructed in each step. Specially, feature sets in
round 3 always outperform that in the previous two rounds.
Later on, we strengthen the feature sets with several strate-
gies. For instances, in round 5, a new feature set is raised
by selecting a group of subsets with high discrimination.
From the results, we can see that improvement always hap-
pens. Furthermore, in round 6, feature selection and extrac-
tion are employed, by which we reduce each feature set into
lower dimension (i.e. dimension 10, 20,50,100). It brings
in attractive performance improvement. Finally, we carry
out ensemble method on feature sets and models with top
performance, which makes the prediction results even bet-
ter. Hence, we select it as the final submitted method, the
details of which is described at the end of this section.
A serial of state-of-the-art algorithms are selected to per-

form model building. We show their results in Table 1∼4,
where the marks in the table (#) indicates the number of
features in the set. From the results, we can find that some
features achieve equally high performance with all models,
such as “Temporal General” in Table 1, “Cross User Fea-
tures” in Table 4. Nonetheless, most feature sets gain high
prediction results with some models but low values with the
rest ones, since the models capture data information from
different aspects. Consequently, feature sets with discrimi-
nation information will never be missed due to our carefully
selected models. In addition, feature selection and extrac-
tion also play an important role in the experiment. It not
only yields performance improvement, but also picks out
some explainable features. From Table 5, it is not difficult
to come up with some connections between features and task
classes. For example, feature-1 in gender is a informative at-
tribute to distinguish female from male. As we known, cell
phone accelerometer could measure the speed of movement
of the object it is attached to. Therefore, one possible reason
is that female is quieter than male, this factor is reflected
by the variance of acceleration on cell phone.
Finally, we describe the submitted results as follows. We

first adjust all predictions using the strategies presented in
Section 2.5. Consequently, the adjusted and unadjusted pre-
dictions are pooled together to perform model averaging
to generate the final submissions. For classification tasks,

the final submission is the model averaging of single results.
Specifically, each single model will produce a prediction of
class probabilities, or confidences for each class. Then, we
aggregate all probabilities together and select the class with
highest probabilities as the final prediction. For regression
tasks, we average the predictions from each single model di-
rectly. Our consideration is that, combinations of different
models and feature spaces can describe the final predictions
from different perspectives, and feature spaces, and hence
achieve more robust results.

• Top-3 predictions with lowest leave-one-out errors, all
of which are generated by SVM (Cost-sensitive SVM
for regression tasks).

• Predictions which have lower leave-one-out errors than
a threshold, 0.9 in accuracy for “gender”, 0.8 in accu-
racy for “job” and “marital”, and 0.75 in RMSE for
“age” and “number of people”. Each task contains
about 15 base predictions. Among them, predictions of
three classification tasks are based on SVM and Ran-
dom Forest while predictions of two regression tasks
are based on Gaussian Process and Cost-sensitive SVM.

• Predictions which have lower leave-one-out errors than
another threshold, 0.85 in accuracy for “gender”, 0.75
in accuracy for “job” and “marital”, and 0.8 in RMSE
for “age” and “number of people”. Each task contains
about 30 base predictions.

• Predictions in 4 specific feature sets filtered by Reflief
selector: accel, wlan, calllog and visit under temporal
conditions with all models.

• Predictions of SVM (Cost-sensitive SVM for regression
tasks) under the feature space constructed in round 6.

4. CONCLUSION
We presented a supervised learning framework to predict

users’ demographics based on their log data recorded by
their mobile phones. Importantly, we proposed a unified
feature construction process to build features from provided
raw data for each user. We formulate each feature as a
conditional probability of an action given users and condi-
tions. Consequently, these conditional probabilities can be
computed through action counts in each csv file. We pro-
cessed data to convert each user as a feature vector and
clear noises. The products of the previous steps were taken
as the input for dimension reduction, in order to extract dis-
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Figure 2: Best Performance using Different Features (Round 0: baseline method; Round 1: global features
with temporal conditions; Round 2: local features without conditions; Round 3: local features with temporal
conditions; Round 4: task-specific local features with temporal conditions; Round 5: combination of high
discrimination features from round 3 and 4; Round 6: features generated by dimension reduction and feature
selection; Round 7: final ensemble results.)

Table 5: Several Useful Features

Task Feature-1 Feature-2 Feature-3
Gender variance of acceleration time spent at working place fraction of non-local calls at work days
Job chance of being at home at night time spent at work place at weekend chance of calling/answering at night

Marital number of places visited in the evening frequently used applications at evening ratio of calls and messages
Age The brands of bluetooth devices used The brands of wlan devices used The brands of devices used at work

Num People time talking to closest mobile-number time talking to closest telephone The brands of devices connected to

criminative attributes. Multiple state-of-the-art algorithms
were exploited to construct models for prediction, such as
SVM for classification and Gaussian Process for regression.
Specifically, we proposed a cost-sensitive classification based
framework for regression tasks and achieve respectable im-
provements on RMSE. We also adjust our predictions collab-
oratively to incorporate correlation knowledge among sub-
tasks. The final submissions are all based on model aver-
aging, as analyzed; this strategy can reduce the prediction
variance and has good generalizability.
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