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Abstract—Human mobility analysis and modeling is a very
interdisciplinary field of research. Mobility models play an im-
portant role particularly in assessing the simulative performance
of mobile and opportunistic networks. The mobility traces, which
most of these models are based on, however, mostly suffer from
several shortcomings. In this paper, we use the extensive Lausanne
Data Collection Campaign (LDCC) mobility trace as basis for
further map-oriented processing. Map-matching and sensible
addition of optimal routes between points mitigate problems like
GPS spatial noise, anonymization, and data gaps. Moreover, stay
point extraction is performed as a preparation for the analysis
of elemental statistical mobility characteristics. An exemplary
impact evaluation of contact statistics shows that the resulting
map-oriented trace basis is indeed suited for large-scale mobility
analysis and simulation.

Keywords—Trace Processing, Map-Matching, Stay Point Ex-
traction, Mobility Analysis, Human Mobility, Opportunistic Net-
works

I. INTRODUCTION

For several years now, the statistical analysis of human
mobility has been a considerably active research domain.
Fields of application range from transportation system plan-
ning and travel demand forecasting (cf. [13], [17]) to biological
and wireless virus spreading (cf. [5], [9], [14] and [19],
[40], respectively). In the wireless and mobile networking
research community, however, human mobility analysis is most
commonly applied to and known in the context of mobility
modeling for simulative performance evaluation of mobile and,
particularly, opportunistic networks (for surveys, see [16], [27],
[31], [38]). Mobility models characterize the nodes’ mobility
patterns in a network simulation and have long been found to
have a significant impact on simulation results.

Opportunistic Networks (OppNets) [6], [27] are seen in
challenged environments and are typically characterized by
high-delay communication and rare end-to-end connectivity.
Node mobility is not considered as a problem but rather as
an opportunity to transport data with the store-carry-forward
principle: Store data on the communication device, carry it to
another position, and forward it to the next user as soon as
the opportunity arises. This allows OppNets to bridge gaps
in a partitioned network and forward the data from source to
destination. Opportunistic communication is also regarded as
an alternative solution (apart from Wi-Fi or femtocells) to data
offloading [1], [10], where selected data is offloaded on to the
OppNet, thus, saving valuable traffic resources of the Public
Land Mobile Network. Evidently, human mobility is vital to

data offloading using opportunistic communication and to the
performance of OppNets in general [4].

Mobility models can be divided into trace-based and
synthetic models [2]. Synthetic models, such as Random
Waypoint (RWP) or Random Walk, mostly rely on arbitrary
statistical assumptions about mobility but are easy to handle
both in terms of trace generation for simulation as well as
analytical evaluation. Trace-based models, on the other hand,
rely on findings from statistical analysis of real trajectories
(traces) measured by some device. These are usually more
complex but also much more realistic. However, most trace-
based mobility models make use of flights, where nodes move
on a straight line to the target position. Map-based mobility
models instead try to increase credibility by restricting the
nodes’ movements to the road network, thus, accounting for
geographic constraints (see [34]).

Trace-based mobility models can only be as realistic as
their trace basis and analysis thereof. Most mobility traces
found in the literature suffer from scenario dependency, low
granularity, a small user base, or short time span of the
measurement campaign. If the traces were collected in the
context of a certain scenario (e.g., campus), the validity of
the analysis results might be limited to this scenario. Low
granularity might suffice in the case of macro- or meso-scopic
mobility, where the mobility of multiple users is aggregated
and metrics such as cell-change rate are of interest. But in the
case of micro-scopic mobility, which we focus on, mobility
of single users is modeled and Global Positioning System
(GPS)-level granularity is needed. A large user base and long
measurement campaign results in a higher quality trace basis
and is necessary to add credibility to the statistical analysis
and derived model(s). In this paper, the trace basis is given by
the Lausanne Data Collection Campaign (LDCC) data set [18],
composed of GPS data (among others) collected from a total of
185 users for 19 months. This should, however, not be used in
its raw form due to shortcomings like GPS measurement noise,
anonymization of selected points, and intermittently missing
positional data.

We have already shown in earlier work that integrat-
ing geographic restrictions in the form of digital map data
into a human mobility model [34] and the road network’s
structure [35] show a significant impact on the performance
evaluation of OppNets. These results collectively motivated
us to go back in the trace-based modeling design chain and
incorporate this map-oriented approach from the ground up,
i.e., the trace analysis. Several incremental processing steps
such as map-matching are involved and finally end in the



extraction of so-called stay points: A stay point in the context
of mobility modeling is a position where the user changes the
direction and/or speed, while also pausing for a certain amount
of time. Stay points are important for the analysis as they are
the basis for the calculation of typical movement properties.
This approach to trace processing yields traces which are—at
least to some extend—rebuilt in the sense that they are closer
to how the tracked user (likely) has moved in reality. Thus,
it mitigates the above-mentioned shortcomings and adds more
credibility to working with these traces. Furthermore, traces
processed this way can be used more easily for trace-driven
simulation where real traces are directly taken as input for the
simulator. A big challenge, however, is the validation of the
processed traces, especially if there is no ground-truth data
to compare with. Since there is no ground-truth available in
the case of the LDCC data set, we compare the data bases
resulting from individual processing steps in the context of
metrics commonly used for human mobility analysis.

The contribution of this paper is three-fold: (1) We detail
the steps involved in processing the raw trace data in a map-
oriented manner. (2) We evaluate the goodness of the resulting
data bases after stay point extraction in spite of the lack of
ground-truth data. (3) We inspect contact statistics for the
best-fitting data basis as an indication for impact on OppNet
performance.

II. RELATED WORK

A. Trace-based Mobility Modeling

Numerous trace-based mobility models have emerged over
the past years. A quite comprehensive, though by now some-
what outdated, survey was assembled by Aschenbruck et al.
in [2]. They also survey several sources for publicly available
mobility traces. A more recent survey by Hess et al. [12] fo-
cuses more on the engineering side of mobility modeling. They
explain and give guidance on all parts of the modeling design
chain, from mobility trace measurement to model validation.
Treurniet [38] instead focuses on micro-scopic mobility models
and presents a thorough taxonomy. Human mobility modeling
in the context of OppNets is surveyed in [16], [27], [31].

B. Map-Matching

Research in the context of map-matching has yielded a
plethora of algorithms [32]. However, since the most common
application areas are transportation and navigation systems,
these algorithms were engineered while keeping the on-line
version of the map-matching problem in mind. Transportation
and navigation systems require a real-time solution, and, there-
fore, the algorithm mostly has to manage on current and past
input positions. Solving this on-line version of the problem
when faced with post-processing of a trace is ineffective,
though, as accuracy suffers from this limited knowledge. Thus,
an off-line algorithm should be applied, which can incorporate
knowledge about future positions to increase accuracy of the
matching. These off-line algorithms can also better cope with
challenges like low sampling rates or data sparseness.

Lou et al. [24] proposed an off-line map-matching al-
gorithm for GPS traces with low sampling rates (sampling
around every other minute). Their algorithm especially con-
siders spatial geometric and topological structures of the

road network. Furthermore, speed constraints are utilized to
choose between different types of roads (e.g., motorways and
residential roads). Pereira et al. [30] focused on improving
incomplete map databases and proposed a hybrid genetic
algorithm, which combines map-matching and identification of
missing or erroneous road network data. An off-line algorithm
robust to GPS spatial noise as well as temporal sparseness
was proposed by Newson et al. [28]. Using a Hidden Markov
Model (HMM) and the Viterbi algorithm, the most probable
route among several candidates is computed for a given input
trip. If an outlier in the input data would result in unlikely
routes, this point is discarded and the computation is rerun on
the remaining points. More details are given in Section IV-B.

C. Stay Point Extraction

Ashbrook et al. [3] proposed one of the first approaches
to place extraction, where GPS signal loss was used as an
indicator for a stay point. According to them, a stay point
occurs when the user stays for a minimum of t seconds within
a building, where no GPS signals can be received and, thus,
no positions can be calculated. GPS noise is accounted for
and stay points are aggregated to places by applying a variant
of k-means clustering. More intelligent approaches choose a
maximum roaming distance in addition to a minimum sojourn
time as a parameter for stay point extraction [11], [15], [39].
Main differences can be found in the clustering algorithm, such
as agglomerative clustering [11], on-line time-based cluster-
ing [15], or density-based clustering [39]. Montoliu et al. [25],
[26] extend the approach by Ye et al. [39] by an upper time
limit for stay points, such that data gaps are also accounted
for. An improved grid-based clustering algorithm generalizes
stay points to stay regions. Pavan et al. [29] make use of the
accuracy and instant speed values provided by GPS to discard
unreliable points and further improve the extraction. However,
in our experience, these values are quite unreliable themselves.

III. TRACE BASIS

As mentioned in Section I, our trace basis is the GPS data
of the LDCC data set [18], collected from a total of 185 users
for 19 months between 2009/09 and 2011/03. This data set
was also the main subject of research in the Nokia Mobile
Data Challenge (MDC) [21], [22]. The collection campaign
was performed within the area of Lausanne, Switzerland,
and participants were recruited in a viral manner, eventually
leading to a heterogeneous population of socially connected
users from mixed backgrounds. Based on a state machine for
optimizing power consumption of the mobile device, among
other information, location data was logged for every user on a
regular basis. Since sufficient GPS signal quality is not always
available, GPS receiver data was complemented by GPS posi-
tions of known Wireless Local Area Network (WLAN) access
points and cellular network information. However, we decided
to ignore the cellular network information as these were not
geo-localized and the estimated amount of work invested in
data fusion outweighed the (for our purposes) potentially small
overall gain in quality of the location data.

In order to protect the privacy of participants, they were
able to access and free to delete their own data in part or even
completely since the ownership of the data remained with the
respective user. Additionally, the raw data was anonymized



before given out to researchers [22]: Based on the principle
of k-anonymity (cf. [37]), positional data, which would have
led to the identification of users with given precision, was
manually truncated in terms of (longitude, latitude) decimal
places. The resulting anonymity rectangle was chosen such that
it contains enough inhabitants, mitigating the risk of singling
out a specific user. Obviously, anonymization of location data
reduces the value for analysis purposes, however, it is a
necessary step to protect the privacy of the users participating
in the data collection campaign and is a general challenge with
trace data.

IV. TRACE PROCESSING

In order to obtain a map-oriented trace basis, we apply
a series of different processing steps. One of these steps is
called map-matching, where raw positional data is basically
matched with and snapped to the road network underlying
a given digital map. In a further step, we extend this map-
matched data by computing optimal routes to fill data gaps.
Note that the map-oriented methodology proposed here can, in
general, be applied to other GPS traces. However, the initial
filtering step and, e.g., parameter values for further steps, need
to be adapted to each trace basis individually.

The trace data, as described in the previous sec-
tion, is basically a spatio-temporal sequence of quadruples
(user, time, latitude, longitude), composed of raw GPS
and geo-located WLAN access point positions. After the
removal of duplicate data points, a total of roughly 22 million
samples for all users remains for further processing. In the
following, we will detail the processing steps taken before the
actual stay point extraction. As no ground-truth is available to
evaluate the validity of the processing results, we will take the
data bases resulting from each of these three steps as input for
the stay point extraction algorithm and compare the output
concerning commonly used metrics. In the first processing
step, we filter user traces that are heavily anonymized or
contain too few samples. Secondly, we apply a map-matching
algorithm. In the last step, we fill data gaps with optimal routes.

A. Filtering

As an initial explorative inspection of the given trace data,
we want to investigate how much of the location data is
anonymized and to which degree. The degree of anonymization
here is defined inversely proportional to the number of decimal
places in the latitude/longitude decimal degree values (here
called scale for short) since these have been truncated during
the process of k-anonymization (cf. Section III). Figure 1
shows the scale distribution over all samples. The highest
scale of 10 was the default of raw location data. Based on
the distribution, a clear distinction can be made between
anonymized and non-anonymized data: A scale up to 3 means
that the corresponding location data has been anonymized.
Samples with 3 or less decimal places amount to 41.8% of
the data and correspond to a precision of around 100 m or
less1. Decimal degree latitude/longitude values with 4 decimal
places or more correspond to around 10 m precision or higher,
which is sufficient for our purposes.

1cf. https://en.wikipedia.org/wiki/Decimal degrees
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Figure 1. Normalized histogram of the number of decimal places (here called
scale) over all samples. Lower scale means higher anonymization.

Defining a scale of 4 or more as “sufficient”, we can
investigate the trace data quality per user (see Fig. 2). There are
quite a few user traces which have been heavily anonymized.
We decided to discard all user traces where the fraction of
samples with insufficient precision is above 70% (cf. blue
horizontal line in Fig. 2). Additionally, user traces with a total
sample size of less than 10,000 were also discarded. After
applying these filters to the trace data, 138 users with a total
of 18,211,204 samples remain and we denote this as data
basis (a).

B. Map-Matching

The next step and first towards map-oriented processing
is map-matching. Originally coming from the domain of ve-
hicle navigation systems, map-matching solves the problem
of matching measured location data to a given road network.
As one of our original motivation aspects is based on the
idea that humans nowadays mostly plan their routes with
navigation systems optimizing distance or time taken instead
of minimizing the flight length (cf. [34]), it should come as no
surprise that other problems and solutions from that domain
can be applied to human mobility modeling. Taking data
basis (a) as input, we apply the map-matching algorithm by
Newson and Krumm [28]. This algorithm is based on a HMM
and is designed to be robust to GPS spatial noise and temporal
sparseness in the input data. Since matching raw location data
to the nearest road is too error-prone, the HMM lattice is
build up by reading a sequence of points and an optimal path
through this lattice is chosen with the Viterbi algorithm. States
in the HMM represent road segments of the road network, state
measurements represent the location measurements from the
input trace data. Based on the connectivity of the road network
and other factors, probabilities are assigned to state transitions,
such that the most likely (reasonable) route is computed.
Transition probabilities are set to zero in the following cases
(cf. [28]):

• If a state represents a road segment that is too far away
(200 m) from the measured point.

• If a route’s length is much greater than the great circle
distance (greater by 2000 m).
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Figure 2. Distribution of anonymized location data per user. Samples with 3 or less decimal places are declared as “insufficient”. Vertical numbers on top
denote the absolute number of samples for that user.

Figure 3. Availability scatter plot of GPS data over time after filtering heavily anonymized user traces. Users are sorted according to fraction of sufficiently
accurate positions (color-coded with red-yellow-green).



��� ��� ���

�������	
�������	


����

���
�
�
�
��

�
�
�
�
�
�

Figure 4. Distribution of trip sizes as input for map-matching.

• If a route would require an unreasonable speed (more than
180 km/h or three times the speed limit).

These conditions might lead to unmatchable points if there
are no reasonable options among the candidates. The map-
matching algorithm now tries to heal these breaks in the HMM
by removing the problematic measured points and trying to
reconnect the points before and after within the HMM. If a
break could not be healed after incrementally trying to heal it
this way and exceeding a time threshold of 180 s, the data is
split into separate trips, and map-matching is applied to each
one individually.

The map-matching algorithm has two tuning parameters:
Gaussian GPS noise standard deviation σz and an indicator
for the tolerance for non-direct routes β. Newson and Krumm
estimate these parameters for their test data with the help of
ground-truth data (see [28]). However, as ground-truth data
is not available in our case, we had to manually adjust the
parameters. Since there is no reliable metric for assessing the
quality of the map-matching results without ground-truth, we
had to resort to manually checking the results on a visual basis.
For this purpose, we focused on the results for three represen-
tative user traces from different anonymization levels: Users
6014, 6000, and 6059 from the “low”, “medium”, and “high”
anonymization levels (cf. Fig. 3, where user traces are sorted
from low to high anonymization, i.e., low to high fraction
of insufficiently accurate location data). The implementation
of the map-matching algorithm we used is part of Open
Source Routing Machine (OSRM)2 (node-osrm) v4.6.1 and
was running on Switzerland OpenStreetMap (OSM) data from
2015/04/24. Before actually running the map-matching, we
dropped all remaining anonymized points since the algorithm
cannot cope with too many of these in a meaningful way.
Moreover, we divided user traces into trips, where a trip is
a sequence of location data, in which each two consecutive
points are at most 180 s apart, thereby abiding the above-
mentioned time threshold defined by Newson and Krumm.
Trips consisting of merely one point were also discarded. The
resulting distribution of trip sizes (number of points in a trip)

2http://project-osrm.org/

is shown in Fig. 4. The majority of trips contains only a few
points which means the trace data is quite sparse, which can
also be seen in Fig 3.

Using OSRM and OSM map data also requires defining
which type of (OSM-)ways should be considered. After ex-
perimenting with the map-matching, it turned out that almost
one third (30.6%) of all used (OSM-)ways were of the type
“motorway” and 4.2% of the type “railway”. This side result
indicates that a speed model for human mobility should feature
multi-modal transport in some fashion. Particularly note that
our choice of (OSM-)way types basically supports multiple
transport modes, i.e., pedestrian, bicycle, vehicle, train, etc.

The parameter value ranges tested were
σz ∈ {4.07, 6, 8, 10} and β ∈ { i

2
: i ∈ {1, . . . , 10}}. On

average, the best visual results were achieved with σz = 4.07
(estimated value in [28]) and β = 1.5. An example trip is
shown in Fig. 5. In order to at least get an idea of how well
the input location data was suited for the map-matching,
we can inspect the number of sub-matchings resulting
from the map-matching of a trip, which is related to the
number of HMM breaks (see above) that occured. The more
sub-matchings, the more problematic points were removed by
the map-matching algorithm. In Fig. 6, we can see that more
than 50% of all map-matched trips were not sub-divided,
i.e., resulted in exactly one sub-matching. Around 40% of
all trips resulted in 2 to 6 sub-matchings, which is quite a
lot considering that most of the trips contained only a few
points. After applying map-matching to data basis (a), a total
of 11,835,017 samples remain and we denote this as data
basis (b).

C. Route Filling

In addition to map-matching, it might also make sense to
extend the location data by route segment points to fill some
of the spatio-temporal data gaps. The rationale here is that
we tend to plan our trips to the destination based on optimal
routes. Thus, even if there is a gap in our data between two
points, we can assume in certain cases that the tracked user
traversed along an optimal route and fill the corresponding
gap. However, if, for example, the temporal gap between these
two consecutive points is too large, the uncertainty about the
movement during this time is too high. Also, if the speed
derived for the tentative route is too high, filling the gap
in this manner makes no sense. Inspecting the time deltas
(temporal gaps) between two consecutive points (cf. Fig. 7),
we find that almost 90% of all time deltas are shorter than
120 s (cf. intersection of blue lines). We chose 300 s as an
upper limit (corresponding to roughly 97%), which is still a
realistic value for assuming the user did not make a significant
detour during this time span. Furthermore, we set the upper
limit for derived route speed to 120 km/h, which is the speed
limit on motorways in Switzerland. This also matches well
with the route speeds derived for shortest routes between
consecutive points in data basis (b) as about 95% are below
this limit (cf. Fig. 8). We opted for shortest instead of fastest
routes since the considered time gaps are fairly small (cf.
Fig. 7). This also enables us to perform a feasibility check
on derived speeds: If the destination cannot be reached in the
predetermined time on a shortest route, then even less on a
fastest (usually longer) route and filling the corresponding data



Figure 5. Map-matching results for an example trip. Red indicates input points, green indicates matched points.
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Figure 6. Distribution of number of sub-matchings for a trip after map-
matching.

gap is likely infeasible. The computation of optimal routes was
performed using OSRM (osrm-backend) v4.7.0, running on
an OSM digital map for Switzerland (see above). Extending
data basis (b) by route segment points results in a total of
43,247,962 samples and we denote this as data basis (c).

V. STAY POINT EXTRACTION

After the map-oriented processing, we still have no (direct)
information about the stay points, i.e., where did the users
change direction and/or speed, while also staying for a period
of time. This is due to the measurement method of GPS traces,
where the tracking device usually logs the position every
few seconds. However, stay points are important for human
mobility analysis as they are the basis for the calculation of
typical movement properties like pause times, flight lengths,
speeds, etc. Stay points can be extracted (or estimated) from
the traces with an extraction algorithm. Note that while a lot of
work in this context is about finding stay regions or attraction
points by basically generalizing or aggregating multiple stay
points, this would be one abstraction level too much for our
purposes.

The algorithm we use was proposed by Montoliu et al. [25]
as an extension of the algorithm by Ye et al. [39] and has even
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Figure 7. Distribution of time gaps between two consecutive points in data
basis (b). Blue lines indicate 120 s and 0.9-quantile, respectively.

been applied by Do et al. [7] to a subset of the trace basis we
use here. According to this algorithm, three conditions must
be fulfilled for a sequence of location points (ps, . . . , pe) to
be declared as a stay point:

1) geoDistance(ps, pk) ≤ Dmax, ∀k ∈ [s+ 1, e]
2) timeDifference(ps, pe) ≥ Tmin

3) timeDifference(pk, pk+1) ≤ Tmax, ∀k ∈ [s, e−1]

Dmax is the maximum distance that may be covered by
the user within the stay point’s spatial bounds. Tmin is the
minimum pause time at the stay point and Tmax limits the
time two successive location points may be apart. A stay point
for location points (ps, . . . , pe) meeting these conditions
is then defined as the corresponding centroid. Note that we
replaced the strict inequalities in the above conditions with
simple inequalities (cf. [25]). This might seem like a minor
detail but can make a difference in output depending on the
input trace data. We also explicitly use the wording geo-
distance, denoting the computation of geodesic distances (more
on geodesic vs. Euclidean distances in [35]). Furthermore,
we fixed two problems with the original pseudocode in [25,
Alg. 1]: On one hand, the original made a premature break
(cf. [25, Alg. 1, line 9]) in the inner loop which results in
discarding potential stay points (i.e., for (pi, . . . , pj−1)). On



Algorithm 1: Stay point extraction (based on [25, Alg. 1]).

Input : Temporally ordered list of N location points lp = (p0, . . . , pN−1).
Tuning parameters Tmin, Tmax, Dmax.

Output: List of extracted stay points lsp.
1 i← 0;
2 lsp ← ∅;
3 while i < N − 1 do
4 j ← i+ 1;
5 while j < N do
6 tsucc ← timeDifference(pj−1, pj);
7 dtotal ← geoDistance(pi, pj);
8 if (tsucc > Tmax) ∨ (dtotal > Dmax) then // check upper time and distance bounds

/* we know that (pi, . . . , pj−1) meet the above conditions */
9 ttotal ← timeDifference(pi, pj−1);

10 if ttotal ≥ Tmin then // check lower time bound
11 sp← createStaypoint(pi, . . . , pj−1);
12 lsp ← lsp ∪ sp;

13 i← j;
14 break;

15 if j = N-1 then // include last stay point for (pi, . . . , pN−1) if applicable
16 ttotal ← timeDifference(pi, pj);
17 if ttotal ≥ Tmin then
18 sp← createStaypoint(pi, . . . , pj);
19 lsp ← lsp ∪ sp;

20 i← j + 1;

21 j ← j + 1;

22 return lsp;
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Figure 8. Distribution of derived route speeds. The speed limit of 120 km/h
on motorways in Switzerland is marked by the blue line.

the other hand, the inner loop variable runs one index too
short which results in discarding a potential last stay point.
The pseudocode fixing these problems can be found in Alg. 1.

As mentioned in Section IV, we took all three data bases
(abbreviated as DB in the following) (a), (b), (c) as input for
the stay point extraction. The evaluation of the stay point
extraction results is commonly performed with the help of

Table I. SAMPLE SIZES RESULTING FROM ALL THREE DATA BASES.

Type DB (a) DB (b) DB (c)

Location points 18,211,204 11,835,017 43,247,962

Stay points 42,126 24,885 31,764

Flights 9,375 7,343 8,598

SP IAT 31,990 16,462 21,611

ground-truth data, allowing the definition and usage of metrics
such as precision, recall, etc. which account for false positives
and false negatives (cf. [25]). However, ground-truth was
neither available nor collectible in our case. Therefore, we
compared results for all three data bases in the context of
human mobility metrics that are commonly found in the liter-
ature. Two prominent properties of human mobility are self-
similarity of flights (cf., e.g., [33]) and periodicity of visited
waypoints (cf., e.g., [8]). As indicators for these properties, we
inspected the distribution of flights, i.e., step lengths between
stay points, and the Inter-Arrival Time (IAT) between two
visits of the same stay point. The tuning parameters for the
stay point extraction were set as follows: Dmax = 200m,
Tmin = 5min, and Tmax = 1min. Note that values, espe-
cially for the time bounds, in the original paper were chosen
significantly higher (Dmax = 250m, Tmin = 30min, and
Tmax = 10min [25]), but their goal was different from ours
since they were ultimately looking for stay regions instead of
stay points. See Table I for the resulting number of extracted



stay points. Most stay points were extracted from DB (a), but
these also include stay points based on anonymized location
points. Anonymized location points were dropped before the
map-matching, leading to considerably less but more credible
stay points extracted from DB (b). Due to the sensible addition
of route segment points by the route filling processing step, a
lot more location points are present in DB (c), also leading to
more stay points.

Flights denote direct lines from one position to the next
and are a common statistic to describe the distances be-
tween two successive stay points—although their usefulness
in the context of human mobility is debatable [34]. As our
data bases contain some data gaps, we extended the stay
point extraction algorithm as described above to implement
a stricter notion of successiveness: Two chronologically suc-
cessive stay points sp1 and sp2 are strictly successive if
timeDifference(sp1, sp2) ≤ 300s. Note that this value
was chosen to be equal to the upper limit for time deltas
in Section IV-C for the same reason: We assume that the
tracked user did not make a detour significantly deviating
from the flight within this time. Computing flights for two
chronologically successive stay points with a higher time
difference might not be feasible anymore as the uncertainty
about detours increases. Table I lists the number of (strictly
successive) flights for all three stay point data bases.

The stay point IAT is defined as the time difference
between two successive visits of the same stay point and
is an indicator for periodicity. A post-processing step for
the spatially fine-grained stay point extraction output was
necessary to cluster stay points that might denote the same stay
point in a semantic sense. Therefore, we transitively clustered
all stay points within a range of 100 m, i.e., for each stay point
in a cluster, there is at least one other stay point in the same
cluster which is at most 100 m away (cf. waypoint clustering
in [23]). The number of computed IAT samples can be gathered
from Table I.

A comparison of the flight and stay point IAT distributions
is shown in Fig. 9 (note the logarithmic axes). We chose the
Complementary Cumulative Distribution Function (CCDF) as
representation since we are more interested in higher values,
i.e., the distribution’s tail, for both metrics. As motivated in
Section I, a map-oriented trace basis has several benefits,
thus, we prefer data bases (b) and (c), where map-matching
and the additional route filling, respectively, were applied.
Comparing flights of up to 200 m, DB (b) is closer to DB
(a) (cf. Fig. 9a). However, flights of this order are of lesser
interest as mobility within these ranges is quite limited and
can be considered as intra-stay-point movement due to the
above-mentioned clustering range of 100 m. Comparing longer
flights as well as stay point IATs (cf. Fig. 9b), DB (c) is
closer to DB (a). DB (c) also has the additional benefit of a
larger sample size since some data gaps were filled by sensibly
adding optimal routes. We conclude that DB (c) is preferable
over DB (b) and that there is no significant loss of statistical
properties. Thus, overall, the proposed map-oriented approach
to trace processing has not only sensibly rebuilt the original
data, but also mostly preserved the statistical properties, which
is mandatory for further mobility analysis.

VI. IMPACT EVALUATION

Having chosen DB (c) for further consideration (simply
referred to as LDCC in the following), we can now exemplarily
evaluate the impact on OppNet performance. For this purpose,
contact statistics are most common since OppNets forwarding
protocols heavily rely on contacts between users. In case of
mobility traces, such as the LDCC trace, contact establishment
and break-off must be defined by a signal propagation model.
In order to minimize computation complexity, a simple unit
disk propagation model is the most common choice. Typical
contact-related metrics are the Inter-Contact Time (ICT) and
Contact Duration (CD). The ICT is the time between the
break-off and re-establishment of two consecutive contacts
between the same pair of users (cf. [4]). This metric is an
estimate for the time it takes for two users to meet again and
is directly related to communication delay. The CD is the time
between establishment and break-off of a contact. It is used to
estimate the amount of data (for a given data rate) which can
be transmitted during a single contact.

Sensibly comparing contacts to other trace data is chal-
lenging, to say the least, since there is no data available which
would be comparable to the LDCC trace. Nevertheless, we
used the INFOCOM2006 contact trace [4], [36] as an example
for contact statistics found in other available trace data. The
INFOCOM2006 trace has also been used for model evalua-
tion in, e.g., [20], [33]. These measurements were performed
during the student workshop of the INFOCOM conference in
2006 from April 24th to 27th. 70 students and researchers
participated and carried iMote devices, regularly scanning on
the Bluetooth interface for other devices within a range of
around 30 m.

CD and ICT distributions are shown in Fig. 10. In accor-
dance with the INFOCOM2006 trace, we computed contacts
for the LDCC trace with a tx range of 30 m. Overall, contacts
last significantly longer in the LDCC trace (cf. Fig. 10a),
which is, however, not necessarily to be expected: Attendants
of such a workshop usually share a conference room where
presentations are in progress for a certain amount of time.
Still, around half of all contacts lasted only up to around 2 min,
whereas half of all contacts in the LDCC trace lasted up to
around 8 min. This difference increases with higher quantiles.
ICTs in the LDCC trace are longer by multiple orders of
magnitude (cf. Fig. 10b). This was to be expected due to both
the much longer time span and much bigger area of the LDCC
trace.

VII. CONCLUSION & FUTURE WORK

In this paper, we have shown how to perform several
processing steps to achieve a map-oriented trace basis, ready
for further human mobility analysis. Map-matching allowed
to alleviate the problem of GPS spatial noise, inherent to
any GPS-based measurements, and matched raw points to the
underlying road network defined by a digital map. Temporal
data gaps were further filled by sensibly adding optimal routes
between two consecutive trace points. In a final step, we
extracted stay points, which is necessary to analyze mobility
characteristics such as pause times, flights, route lengths, etc.
A comparison of stay point data resulting from the individual
processing steps has shown that there is no significant loss of
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(a) Flights
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(b) SP IATs

Figure 9. Comparison of flights and SP IATs.

10
0 10

1
10

2
10

3 10
4

10
5

CD [s]

10
-2

10
-1

10
0

C
D

F
 P

r(
X

<
=

x
)

LDCC

INFOCOM2006

(a) Contact Duration

10
2

10
3 10

4
10

5
10

6 10
7

10
8

ICT [s]

10
-3

10
-2

10
-1

10
0

C
C

D
F
 P

r(
X

>
x
)

LDCC

INFOCOM2006

(b) Inter-Contact Time

Figure 10. Contact Duration and Inter-Contact Time distributions for tx range 30 m.

statistical properties, particularly concerning further analysis of
self-similarity and periodicity. In a further impact evaluation,
we inspected contact statistics as indicators for Opportunis-
tic Network performance. Contacts mostly last from several
minutes to a few hours, while Inter-Contact Times range from
several minutes to a few months. Thus, the LDCC trace is
suited for large-scale mobility analysis as well as simulation.

We conclude that even though we might have been able
to cope with some of the shortcomings in the original data
set, obviously, not all data gaps or anonymized points can be
sensibly mitigated. Therefore, there is still some work to do in
the area of trace collection in order to enhance the quality even
before processing. However, we still believe that the LDCC
trace is a step towards more extensive trace bases and that we
were able to increase its quality by performing the proposed
map-oriented processing. As future work, we plan to further
utilize the map-oriented LDCC trace by analyzing statistical
properties for human mobility modeling.
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