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Abstract—Network utility theory has been extensively em-
ployed for resource management purposes. However, traditional
utility functions cannot support attributes that affect the resource
allocation, such as mobility or more advanced traffic models.
Especially in the context of a heterogeneous wireless network,
transient parameters can have varying effects on each access
network type. This work proposes a new utility function that
can support multiple design requirements for mobile networks
including advanced traffic models, user classes, handover and
session priorities. We integrate the new utility function with the
Super Base Station framework and devise a novel trigger-based
network and resource assignment framework that efficiently
copes with the complexity of a heterogeneous wireless network.
Our simulation results show that the proposed sub-optimal
trigger-based framework performs equally well as the complex
optimal scheme.

I. INTRODUCTION

The prevalence of multi-interface mobile devices has be-

come more apparent in the last years. Modern smartphones

and tablets utilise multiple radio technologies in order to

keep the users connected to the Internet, as different types

of network infrastructure are available, within and across

countries. It is now a common practice for mobile operators

to support the rollout of their 4G LTE network with the

pre-existing 3G and 2G coverage. Some operators may also

complement the service with WiFi hotspots, synthesising a

highly heterogeneous wireless network.

In such heterogeneous setting, mobile devices typically

choose the network access technology based on a predefined

handover policy [1]. Additionally, the Points of Attachment

(PoAs) individually manage their resources, in a distributed

fashion, without taking advantage of the coverage overlap

between them. Hence, the utility of both network operators

and users is not optimised. To achieve this goal, a joint cen-

tralised framework is required to improve the system resource

utilisation and user perceived quality of service (QoS) [2].

Several centralised schemes are proposed for network se-

lection and resource allocation. In [3], the authors propose a

centralised, utility-based resource allocation scheme for mixed

traffic. A centralised network selection scheme is presented

to optimise the users’ QoS in [4]. In [5] a joint resource

allocation and network selection scheme is proposed for static

users. In [3], [4] user utility is employed to achieve their goals.

However, their utility models are based on standard functions;

e.g., logarithmic and sigmoid functions, or discrete thresholds.

In this paper, we propose a centralised framework for joint,

utility-based resource and network assignment (JURNA) in

heterogeneous mobile networks. In our framework, we devise

a novel utility function to accommodate different design goals

including supporting different user classes, avoid unnecessary

handovers, and prioritising active users over new connections.

Additionally, we introduce the new utility function to Super

BS framework to enable its applicability to mobile systems.

Furthermore, we propose a trigger-based strategy to ensure

the scalability of the joint problem solution. Our performance

evaluation shows that our developed framework achieves per-

class throughput and fairness similar to those achieved by the

optimal solution. We also show that our framework achieves

such performance at a significantly reduced handover and

relatively improved resource utilisation rate.

The remainder of this paper is organised as follows. We

present the related work in Section II. Section III discusses

the simulated network model. Section IV introduces JURNA

framework components including the design of a new utility

function and trigger-based assignment problem. Our perfor-

mance evaluation is presented in Section V followed by our

conclusion in Section VI.

II. RELATED WORK

Following Kelly’s seminal paper on Network Utility Max-

imisation (NUM) [6], extensive research work targeted numer-

ous aspects of resource sharing and management. An up-to-

date survey of methodologies applied on network selection

on Heterogeneous Wireless Networks (HWN) is presented

by Wang and Kuo [7], identifying utility theory as the most

popular. Utility refers to the satisfaction the user derives from

obtaining the service or goods in question. Most research work

based on NUM considers that best-effort traffic is modeled

by monotonously increasing concave functions, and QoS-

bound traffic by convex-concave functions, e.g., logarithmic

and sigmoidal utility functions ([3], [6], [8], [9]).

In wireless networks, optimal resource allocation in a single

Point of Access (PoA) is now approached by heuristic algo-

rithms that can provide realtime solutions. Abdelhadi, et al.,

[10] devised a pair of centralised and distributed algorithms



that handle both best-effort and real-time traffic in a propor-

tionally fair way. On the other hand, Chen, et al., [3] model

best-effort traffic also with a sigmoidal utility, with the slope

and inflection point set accordingly, towards a unified utility

function. Regardless of the approach, the amount of research

in this field allows us to assume that it is feasible to achieve

near-optimal utility fair resource allocation in a single PoA.

Nguyen-Vuong, et al., focused on utility models in the

context of access network selection [8]. They employed a

sigmoidal function for different attributes of the access net-

works (e.g., cost, QoS, and network load), and multiplied

them to form a multi-criteria utility. Srivastava and Bullo [11]

studied a family of knapsack problems with sigmoid utility that

implement a linear cost factor, named penalty. They provide

feasible solution algorithms, albeit their approach is strictly

mathematical and is not applied on practical problems.

Utility theory is also applied in HWN by combining

throughput and cost utilities for network selection and resource

allocation (e.g., [12]). A NUM problem is solved for allocating

bandwidth to the service types present in the network, which is

then shared between the users according to bankruptcy game

theory. This approach assumes that different access networks

impose different monetary costs on the user, whereas we

assume the real-world paradigm of flat-rate user subscriptions

in single-operator HWNs and introduce a pure utility-based

joint network and resource assignment framework.

III. NETWORK MODEL

We consider a HWN consisting of PoAs with partially over-

lapping coverage. The bandwidth allocated to every PoA s,

denoted as Cs, is considered known and constant. Each PoA

offers a number of nominal connection data rates, correspond-

ing to adaptive modulation and coding (AMC) techniques

used in different technologies. For each client i, the current

maximum achievable throughput t̂i,s via PoA s is assumed to

be known. Each client has minimum and maximum throughput

demands, denoted as Dmin
i and Dmax

i , respectively.

When a client connects to a PoA, a portion of its available

bandwidth is allocated to that client. It is worth noting that

this allocated bandwidth, denoted as bi,s, contributes to the

user throughput ti, according to Ri,s, the spectral efficiency of

a user at each PoA. Typically, the spectral efficiency depends

on the client-PoA channel condition and the adopted AMC.

IV. JURNA FRAMEWORK

In this section, we first present our JURNA problem

formulation followed by important design aspects including

the design of the utility function and the reduction of the

complexity of its operation.

A. Problem Statement

Our objective is to maximize the sum of users’ utility

subject to constraints on the available resources and user

demand. This program can be expressed as:

Maximise
ti

∑

i

∑

s

ai,sU(s, ti) (1a)

subject to:

ti =
∑

s

ai,sRi,sbi,s (1b)

∑

s

ai,s ≤ 1, ∀i (1c)

∑

i

bi,sai,s ≤ Cs, ∀s (1d)

bi,s ≥ 0, ∀s, i (1e)

ai,sRi,sbi,s ≤ t̂i,s, ∀s, i (1f)

ti ≤ Dmax
i , ∀i (1g)

ai,s =

{
1, if bi,s > 0
0, otherwise

(1h)

The solution of this program provides the assignment vari-

ables ai,s that defines user-PoA associations and bi,s the

allocated resources per user at their respective PoA. A client

receiving less throughput that his demand should not lead to

an infeasible solution, thus, Dmin is considered in the utility

function and not as an optimisation constraint. We now present

the new utility function used in Eq. 1a.

B. Utility Function Design

Concave throughput-utility functions are widely used to

model the appreciation of a basic level of throughput to

be quantitatively more than an equal increase thereof. This

property entails that the maximum total utility is achieved with

a fair allocation of throughput among a number of similar

clients. Supporting multiple client classes is possible with

different utility curves for each class. We define the utility

of client i in a priority class as [13]:

fPi
(ti) = Pi ln

(
e− 1

Pi

ti + 1

)
, (2)

where Pi is a class-specific tuning parameter of the utility

function curvature. Note that the larger Pi the higher the user

priority. Additionally, this utility definition ensures fairness

between clients of the same class.

In heterogeneous mobile networks, there exist several design

requirements in addition to fair resource assignment and class

differentiation, including the prioritisation of active connec-

tions over new ones and avoidance of unnecessary handovers

which may represent a huge burden. We implement these at-

tributes by introducing handicaps to the utility, i.e., selectively

changing the utility for any PoA-client pair as presented below.

Hence, we define a PoA-client utility function, denoted as

U(s, t), as:

U(s, t) = u(t)− hHA(s, t)− hMA(s, t)− hAE(s, t), (3)

where u(t) is the base utility, hHA(s, t) is the handicap for

avoiding unnecessary handovers, hMA(s, t) is the handicap for

deprioritising short-range PoA under mobility, and hAE(s, t)
is the handicap for considering the Activity Endowment. It is

worth noting that this utility function is a pairwise relation

defined between individual clients and PoAs, but the user

index is dropped for presentation simplicity. The design of

every component in Eq. 3 is presented below.
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Fig. 1. The base utility function as proposed and the effects of the Endowment
Effect and Handover Avoidance handicaps.

1) Base utility: In this work, the utility function is ex-

pressed as a product of two components and is expressed as:

u(t) = S(t)f(t), (4)

where f(t) is a typical concave utility function that also

includes user priority information as in Eq. 2 and S(t) is

introduced in order to support Dmin organically in the utility

function, such that the utility for throughput t < Dmin should

tend to 0. To attain such mode, we use a sigmoidal logistic

function expressed as:

S(t) =
A

(1 + e−ω(t−tsp))
+ 1−A (5)

The parameters of Eq. 5 are selected so that u(t) complies

with the following set of rules:

1) u(t) has to be strictly increasing.

2) u(Dmin) ≥ 0.95f(Dmin), so that for t > Dmin,

u(t) ≈ f(t).
3) The slope angle has to be sharp and proportional to

Dmin, so that u(0.95Dmin) ≤ 0.05u(Dmin).

Hence, the slope point is set to tsp = 0.98Dmin and the angle

to a steep ω = 65/tsp. For Dmin support amplitude is set

to A = 0.95 and its lower asymptote is set to 1 − A, so

that S(−∞) = 0.05 and S(+∞) = 1. Figure 1 illustrates

the impact of S(t) on a typical logarithmic utility assuming a

minimum throughput of 5 throughput units (tu).

This novel approach combines three different attributes

into a single utility function, including the concave utility,

supporting user classes, and the minimum demand.

2) Handover Avoidance (HA): In heterogeneous mobile

networks, users perform frequent vertical and horizontal han-

dovers. The base utility function is agnostic to the overhead

associated with handovers and may lead to additional han-

dovers to optimise the resource utilisation. Many of these

latter handovers may be performed even when the user is

static and some may not result in improving the utility of

the user. To alleviate this issue, we introduce a handicap to

prioritise the current PoA, by slightly reducing the utility of

other PoAs. Hence, two different PoA that can offer the same

throughput translate to different utilities, depending on the

current connection of the user. Note that this handicap converts

the NUM program from a stateless to a stateful problem in

which the state is implied in the definition of client-PoA utility.

The HA handicap is defined to comply with the following

rule: handover to a new PoA if it can offer at least ϕ times

better throughput than the current one. We further utilise this

facility by considering different handicaps for horizontal and

vertical handovers, under the assumption that the former are

more preferable in terms of handover time and complexity. A

multiplier δ is used for this purpose, with indicative values of

δs = 1 and δs = 2, for a PoA s that requires a horizontal and

a vertical handover, respectively. For the current PoA, δs = 0.

For a current throughput tcur, hHA is calculated as:

hHA(s, t)
A=1
= S(t)δs (u(ϕt

cur)− u(tcur)) (6)

The multiplication with S(t) ensures that hHA(x, 0) = 0, as

it makes no difference to the user whether a handover occurred,

if he is blocked. The combined base utility with HA handicap

is illustrated in Figure 1.

3) Mobility Assistance (MA): For moving clients, the ex-

pected duration of connectivity with a PoA depends on the user

speed and the range of the PoA. It is a common design goal

to discourage handovers to short-range PoAs while the client

device is moving at relatively high speed, as such connections

are more likely to disconnect in the immediate future.

Hence, we introduce Mobility Assistance (MA) handicap,

a negative utility to deprioritise short-range PoA for mobile

clients, estimated as:

hMA(s, t)
A=1
= S(t)µs (u(ϕtc)− u(tc)) , (7)

where µs is a factor reversely proportional to the range rs
of PoA s, normalised against the maximum range of all PoA

types in the HWN, expressed as:

µs = 1−
rs

max
s

(rs)
(8)

4) Activity Endowment (AE): It is widely accepted that

new sessions should not be accommodated at the expense

of ongoing sessions. Hence, we introduce an AE of active

user utility to increase its priority over new users1. AE can

be considered as another handicap hAE of active users to the

system and is expressed as:

hAE(s, t) = γ(1− S(t,Dmin))u(Dmin), (9)

where γ can be used to finetune the additional endowment

utility. Figure 1 illustrates the impact of changes in the user

utility function by introducing AE. Note that hAE , as defined

in Eq. 9 supports negative utility values by design when an

active client is forced to terminate, while maintaining the same

utility of the active user when its assigned resources are kept

unchanged. Hence, U(t) is not lower-bound at 0. Since u(t)
is logarithmic-based, U(t) also has no upper bound.

1The presented AE concept is inspired by the endowment effect in Eco-
nomics. This principle indicates that a person requires a compensation greater
than what he paid in order to abandon the ownership of a good.



C. Triggered JURNA

Optimising the resource allocation in heterogeneous mobile

networks mandates frequent changes in resource and network

assignment in response to variations in session, channel and

mobility dynamics. Achieving this goal in realtime is im-

practical due to the immense problem complexity. Hence, we

propose triggered JURNA as a practical approach for resource

management.

In triggered JURNA, resource and user reassignment is

optimized periodically instead of per every network change.

Within this period, the network and resource assignment are

performed based on a predefined set of actions. Hence, the

system would be operating in a sub-optimal mode and the pe-

riodic evaluation enables avoiding long-standing non optimal

allocations caused by the defined actions. In the following, we

present the main triggers and the associated actions assuming

the IRM resource allocation heuristic introduced in [5]. In

IRM, an approximation of the client resource allocation is

estimated first. Then, this estimation is used to drive network

selection and the actual resource allocation.

D. JURNA Triggers

First we start with triggers associated with session dynam-

ics, i.e., session arrival and departure. For departing sessions,

we delay resource reshuffling until the periodic run of the

resource allocation scheme. We assume a possible sub-optimal

system operation as the freed resources would be allocated

to other users if needed. Similarly, the system operates in a

sub-optimal mode when new sessions arrive. This is attained

by pre-associating inactive users with a PoA at the previous

periodic run instant. During that run, we consider a class-

dependent average demand Davg , for inactive clients. The

client is assigned the BS that is able to better facilitate its Davg

when it becomes active. Note that no resources are reserved for

inactive clients, and that this scheme is supported by a special

feature in IRM framework; specifically, supporting negative

residual capacity at PoAs. This feature allows the evaluation

of resource allocations beyond the actual node capacity.

The second trigger class includes mobility-related events.

These events trigger actions that are designed to operate the

system sub-optimally until the next periodic run for global

resource allocation. Some of these actions are associated

with a scope limited to the involved clients or PoAs. Thus,

the scope selectively enables handovers for particular clients,

while resource allocation is managed in a per-PoA basis.

Depending on how wide the allocation reassessment should

be, two scopes are defined: Client and PoA. The Client scope

only allows handovers for the client involved in the trigger.

The PoA scope allows handovers for all attached clients of

the PoA involved in the trigger.

We now define the triggers, describing the events causing

them and the subsequent actions the system takes.

1) Trigger: Client-Mobile.

Event: Client movement is identified.

Action: Flag client as mobile, and enable hMA.

Scope: N/A.

2) Trigger: Client-Stationary.

Event: The Mobility timer expires.

Action: Flag client as stationary, and disable hMA.

Scope: N/A.

3) Trigger: Connection-Going-Down.

Event: Link condition deterioration, e.g., client leaving

the active PoA.

Action: Handover this client.

Scope: Client.

4) Trigger: Bad-Connection.

Event: Client is under-performing due to overestimated

connection quality.

Action: Re-evaluate link data rate, adjust client handi-

caps, reshuffle client / resources.

Scope: Client.

5) Trigger: PoA-overload.

Event: PoA utilised bandwidth exceeds 90%, and is

higher than the RMA allocation.

Action: Reshuffle clients.

Scope: PoA.

PoA-overload is expected to either result in clients handed

over to other PoAs, or identifying the high utilisation to be

normal under the current network load. It should be noted

that there are more events that could warranty some network

side response, however, they are covered with the scheme

introduced before. For example, when a client moves into

the coverage area of a PoA, the network does not consider a

handover at that point. If necessary, the client will be handed

over by a PoA-overload, Connection-Going-Down, or Bad-

Connection trigger, or during the periodic run. Alternatively,

it would be handed over to another PoA during the periodic

run if this move is expected to improve the total system utility.

V. PERFORMANCE ANALYSIS

A. Simulation Setup

We simulate a network occupying a square area of 2 km2,

as shown in Figure 2. The network density is derived from

the Nokia dataset of Lausanne [14], [15], with 1.75/km2 for

macro-cell Base Stations (BS), and 20/km2 for WiFi Access

Points (AP). A honeycomb topology is used for 4 macro-cells,

for the co-located 4G and 3G BS. The BS range is set to

600 m, to allow partial overlapping. Furthermore, 40 AP were

placed uniformly on the map, and their range is 100 m.

The clients are placed randomly on the map, and their

movement is dictated by the Truncated Levy Walk model [16].

Their mobility trace can be seen in Figure 2. The position,

movement, traffic patterns and demands of the clients are

different for each simulation run.

Clients are equally split into three priority classes: Bronze,

Silver, and Gold. The traffic demand of the users is assumed

to be uniformly selected from [1, 15], [3, 20], and [6, 30]
tu for Bronze, Silver, and Gold classes, respectively. The

creation of data traffic sessions is described by an ON-OFF

model [17]. The ON time follows a Weibull distribution (80,

0.4), with dON = 265s. The OFF time is modeled with a
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Fig. 2. BS positions in a 2 km2 map. 3G and 4G are co-located in the
centre of each cell, while WiFi APs are placed uniformly (x). The mobility
trajectories of the clients are also shown.

Pareto distribution (K = 1.3073, σ = 11.48, θ = 0), with

dOFF = 72s. The number of clients is selected in accordance

with their traffic requirements and the total network capacity.

More specifically, the number of clients is 261, so that the

average traffic can fully utilise the network.

We evaluate the performance of JURNA with a 2-minute

IRM period and compare it with the Network-preference (Net-

Pref) strategy, similar to how mobile devices operate today.

Under Net-Pref, each client prioritises the network types (WiFi

> 4G > 3G), and performs a vertical handover to a better

type when available. Horizontal handovers or vertical to worse

PoA types are performed when connectivity with the currently

associated PoA is lost. When choosing a PoA, the client

associates with the one of the best available network type with

the highest RSS. For consistency, all approaches assume that

PoAs internally use URM to manage their resources.

These two approaches are compared against the utility-

optimal URM [13] and the heuristic-driven IRM [5], albeit

with the utility function U(t) as defined in Eq. 3. We also

employ SuperBS [5] to compute the throughput that each

client would get in a fictitious single PoA equivalent to the

HWN, as a benchmark for fairness. The proposed algorithms

are evaluated with MATLAB simulations and fmincon is used

to solve mixed non-linear programs. We consider several per-

formance metrics including average throughput, and blocking

probability. A client is considered to be blocked if he is active

and his throughput is less than Dmin. The shown results are

based on the average of 100 two-minute simulation runs.

B. Performance Results

Figure 3 shows that JURNA closely achieves a per-class

throughput attained by the optimal URM. It also shows that

JURNA achieves a per-class throughput gain of 8-12% in
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comparison to the typical Net-Pref scheme. Similarly, Figure 4

shows that JURNA attains a similar level of fairness to URM.

The figure also suggests the superiority of JURNA fairness in

comparison to Net-Pref scheme. Further, Figure 5 indicates

that JURNA efficiently utilises the available resources by

attaining a similar utilisation, in comparison to URM, for both

4G and WiFi networks and a slight reduction in 3G network

usage. The figure also suggests that Net-Pref, under-utilises

the 3G PoAs, as expected. In fact it does not use them at all,

since they are overlapped by 4G.

Figure 6 shows that Net-Pref causes the least number of

handovers, as they are mainly initiated when a client moves

out of PoA coverage. On the other hand, in the search of

the globally optimal allocation, URM and IRM cause a large

number of handovers per client, a consequence that is not

shared with JURNA, which produces handover rates closer to

Net-Pref due to the trigger-based and limited scope of actions.

Additionally, Figure 7 shows that JURNA results in a similar

blocking probability to Net-Pref. There is a slightly increased

blocking probability for gold and silver users compared to

URM, while still below 0.7%. It can be attributed to the

proactive network selection in those cases that PoA-overload

cannot be immediately triggered, or in the reactive nature of

JURNA. On the other hand, Bronze users, with lower traffic

demands are more easily accommodated in their pre-selected

PoAs, and enjoy lower blocking rates. Since all users share

the same resources, it is understandable that blocking a user

may result in unblocking one of a different class.

It should be noted that SuperBS serves as the optimal

allocation for the fairness index (Figure 4). It is to be evaluated

in conjunction with other metrics, as a system that performs

equally badly for all clients is perfectly fair. Under this light,
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JURNA performs closely to URM and better than IRM, with

significantly fewer handovers. This performance is even more

impressive considering JURNA runs in realtime with O(nS)
complexity, against URM worst case O(nSn) complexity and

runtime exponential to the number of PoAs (S) and clients (n).

VI. CONCLUSION - FUTURE WORK

Optimising the operation of heterogeneous mobile networks

can be attained by using a global view of the network. Still,

the high optimisation complexity deems such a centralised

solution impractical. JURNA is proposed as a novel utility-

based centralised resource and network assignment framework

for heterogeneous mobile networks. JURNA employs a novel

utility function that considers user and system design goals.

Additionally, a trigger-based scheme is developed to reduce

the JURNA operation complexity. JURNA strikes a balance

between different design goals including efficient resource

utilisation, fair resource allocation, and improved QoS. As

future work, we consider further investigation of the scalability

of JURNA in very large-scale networks. We also consider

integrating new attributes in the design of the utility function.

Finally, we plan to work on a detailed system model that al-

lows JURNA to be implemented on actual network equipment.
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