Movement Primitives 2:
Time-Dependent Primitives

Gerhard Neumann

University of Lincoln, UK

Some geography first...

e Lincoln?

ENGLAND

ATLANTIC
OCEAN

NORTHERN
- JRELAND

¥ & IRELAND

' 3 London o A
Sea - ~ ©Canterbury :
Bude g eNewForest | -CELGIUMY

Nw \ If 4 By - “ TI’('
Q“‘JYQ' PR Wight cnannel

FRANCE

What we have seen so far...

Learning state-based policies:
. Policy depends on the state and on the parameters
. Represents a globally valid policy

. Complex non-linear representations are needed

Examples: Neural Networks, RBF Networks, Gaussian Processes, Locally
Weighted Regression Models

Trajectory-based policies:
. Policy also depends on time
. For the same time step, the robot is often in similar states

« Simple local models (e.g. linear) are often sufficient!

Examples: Variable stiffness controllers, Movement Primitives

m(uls;0)

m(uls,t;0)

Trajectory-Based Movement Primitives

Parametrized trajectories:
T* = dq1.7 — f(e)

Mean movement

Followed by trajectory tracking controllers

Properties:
Compact parametrization
Easy to learn
Adaptable

Learn the desired long term behavior!

Examples:
« Dynamic Movement Primitives (DMPS) [ijspeert 2002]

« Probabilistic Movement Primitives (ProMPs) [paraschos 2013]

Outline

Dynamic Movement Primitives

Probabilistic Movement Primitives

e |ntroduction

Learning ProMPs
Case Study 1: Robot Table Tennis
Case Study 2: Interaction Primitives

Case Study 3: Prioritization of Primitives

Dynamical Systems as Trajectory Generators

What movements can we encode?

Dynamical systems can be used to First order linear
represent trajectories dynamical system:
* Integrating the dynamical system _—

results in a trajectory Y= Oz(g o y)

y = f(y)

* Mimics physical systems

* Build-in Smoothness Second order linear
dynamical system:

Linear differential equations: j=a(Blg—y)—9)

. well-defined behavior e g ..goalattractor

. But: limited class of movements * af ..spring constant

e a ..damping

How can we make it more representative?

Use non-linear dynamical systems?

* Different behavior might emerge...
| Unstable ngd
y n ~

S e

Yy
)

Attractors

e Can represent more complex behavior

Limit cycles

e Can also get unstable!

Chaos

y=—2C0SX—COSy

X=—-2C0Sy—COSX

é /} ; .Repel\l:ar /

\ saddles, .

A \ y
i ' \\‘ ‘; \ N
p y X : =
v v ¥ /__
2 3

. A S & S & 4 4 £ 7
.\‘ = . 7
‘
i
4

__Attractor
-1 0 1

L
-3 -2
X

Dynamical movement primitives

[
« Use linear dynamical systems (2" order) :
 Introduce moving attractor :
.e . . I
j=a(Blg—y)—y) + fuw(t) .
. [
= a(B(g + fw(t)/(af) —y) —9) |
A\ -~ _J I
Moving Attractor :

« The forcing function fw () encodes the desired : 12 aiecon
additional acceleration profile ,
. fw(t) . learnable function :

I =
i
I
I
|
[ljspeert et. al., Dynamical movement primitives: learning attractor models for motor behaviors, Neurocomputing, 2013] o * ® me * .

[ljspeert et. al., Learning Attractor Landscapes for Learning Motor Primitives, NIPS, 2003]

Temporal scaling

Modulate the speed of the movement:
* Introduce phase variable
Z = —TOQ,Z

* Simple first-order system
 T... temporal scaling coefficient

* Replace time with phase
j=1"a(B(g—y) —9/7) +7° fuw(2)

* Every DoF shares the same phase variable

Phase

Trajectory

Different Taus

0 20 40 60 80 100 120 140
time

Ditferant Taus

1.2

0.8

0.6

0.4}

0.2

_D'QD 20 40 60 80 100 120
time 9

Forcing function

Linear model: fo(2) = ¥’ (2)w

Normalized RBF basis functions:
0;(2)z

zj=1 ¢j (Z) « Thenitis just a standard PD controller

bi(2) = exp(—0.5(z — ¢;)?/h;)

Asymptotic stability by construction:

Forcing function vanishes for ¢ — o0

120

100

= 0.5f

0.2
0.1} v -60
: 10
0 80 100 120 _800 20 40 60 80 100 120 0'20 20 40 60 80 100
ime time time

Trajectory

1.2

Imitation Learning for DMPs

Given:

° Adesired trajectory and its derivatives qi1.7,q1.7,q1.T

_0'20 20 40 60 80 100

®* Agoal attractor g (e.g. final position of trajectory) time
®* Temporal Scaling T : Adjusted to movement duration Forcn Funcion
The weights w can be learned by linear regression: N
®* Compute target values for each time step _ :Z
Y 2 . 0
ft =G/ —a(B(g —at) — q/7)
®* Compute shape parameters W by linear (ridge) regression 4;2

20 40 60 80 100 120
time

!

l

!

l

!

|

!

l

!

l

!

l

!

° Parameters: @, (3, a, (typically fixed) l
! ‘

|

!

l

!

l

!

l

!

l

!

|

w = (\IIT\II—FUQI)ml\IITf :

!

l

!

1w 11

Adapting the meta-parameters...

Adapt goal attractor ¢

Can change end-point of the movement

Shape of the movement is changes heuristically

Adapting the temporal scaling T

Larger tau result in faster movements

Can also be modulated online

Trajegto ry

y

Trajectory

Different Goals

1.5

20 40 60 80 100
time

S
~

20 40 60 80 100 120
time

12

Example: A Tennis Backhand

57

[ljspeert et. al., Learning Attractor Landscapes for Learning Motor Primitives, NIPS, 2003]

Summary: DMPs

Dynamical systems define smooth trajectory

Learn acceleration profile

Stable per construction

Easy to modulate execution speed

Adapt final positions

Extensions:

« Adapt final velocities [kober et al., ICRA 2009]

» Perceptual coupling [kober et al., IROS 2008]

* Obstacle avoidance [pastor et al., ICRA 2009]

* Force profiles [Denisa et al, IEEE Transaction on Mechatronics 2016]

* Rhythmic Movements

[Kober et al., ICRA 2010]

[Nakanishi et al., 2012]

14

Outline

Dynamic Movement Primitives

Probabilistic Movement Primitives

* Introduction

* Learning ProMPs

* Case Study 1: Robot Table Tennis

e Case Study 2: Interaction Primitives

15

Probabilistic Movement Primitives

1

Parametrized trajectories:
T =y = [(0)
« Mean movement
- Followed by trajectory tracking controllers

« Example: Dynamic Movement Primitives (DMPS) pjspeert 2002]

Parametrized trajectory distributions:

T ~p(T) = 60~ p(0)
« Family of movements
- @Gaussian: Mean and Variance

« Probabilistic Movement Primitives (ProMPS) [paraschos 2013]

A. Paraschos, ..., G. Neumann, Probabilistic Movement Primitives, NIPS, 2013

16

Trajectory Representation

Representation of a single trajectory
T 2
Yt = 'lpt W + € €y ™~ N(Ov o) S Yur

- Approximation in position instead of acceleration space . .,
Phase-dependent basis: ¥t = (2t /»J\
- For example, normalized Gaussian basis functions
¢i(2)
Zfﬂ ¢;(2) |
Probabilistic model for a single trajectory:
p(T|w) HN yi|) w,0?) = N(1|®w, 0*1),

with @ = [, . bg]T 17

Yi(z) = bi(2) = exp(—0.5(z — ¢;)?/h;) w = [w we ws ... wg|"

Trajectory Distributions

Trajectory distribution:

* Treat w as latent variable with distribution
p(w) — N(w’u’wa Ew)

* Integrate it out
p(r) = [p(riw)p(w)du
_ / N (7| ®w, o2 DN (W] Sop) daw

= N(t|¥u,,, oI+ ¥, T")

VY a

Establishes correlation
between time points

position

o
(V)

©
~

/ _ Za
\ \ 7,
§% 2 standard dev.

18

Multiple DoFs

How can we encode a distribution over multiple DoFs?

* Use a concatenated weight and trajectory vector and block-diagonal basis matrix

—7'1,- -’w1,- v 0 ... O
o v ... O

T = w = (ﬁ:
| D | wp _ 0 ... 0 W@

 The same linear relation holds: 7 = ®Pw
e We use a distribution p(’w|ﬂw7 Zw) over the parameters of all DoFs

For a single time step:

p(Y|0) = N (y;|®ipry, 0°I + 2,3, @})

V a

Establishes correlation
between joints

19

Trajectory distributions for control

From ProMP:
- Compute derivative of mean and covariance using ProMP

_ T
[, =®p,, % =3,8 +&3,,

Demonstration

From linear(ized) system model:
¥y, = Ay, + Bu+b

« Assume (stochastic) linear controller with time varying gains
u = Ky, + ki +€, € ~N(0,X%;)

- Compute derivative of mean and variance using this linear model

Reproduction ProMP

Match derivatives of mean and variance
K; and k: can be obtained in closed form
« Variable stiffness controller

Reproduction DMP

20

Adaptation of ProMPs

Adapt final/intermediate position/ of the movement

- Conditioning/Bayes Theorem - For Gaussian Distributions:
T _ T |
Swly, — y7) - PR Py = Moy, + L (y;“ -, uw) L = 3, ¥y (Ey + Wy B, Wy
t — Jt) — *
DMPs Position DMPs Velocities ProMPs Position ProMPs Velocities ~ ProMPs Joint Conditioning

a (rad)

g (rad/s)

| | | | | | 1 1 |
0.25 0.5 0.TH 1 0 0.25 0.5 0.75 1 0.25 0.5 Di& 1

=]

1) 0.25 0.5 075 1 O 025 05 075 1 L

=]

time(s) time(s) time(s) time(s) time(s)

Outline

Dynamic Movement Primitives

Probabilistic Movement Primitives

e |ntroduction

Learning ProMPs
Case Study 1: Robot Table Tennis

Case Study 2: Interaction Primitives

Case Study 3: Prioritization of Primitives

Learning ProMPs

For each trajectory T ;, obtain W;

w; — (‘PT(I) —+ 0'21)_1(I)T'T7;

Compute mean and variance

1
Hw =7 Z Wi Regression

N -1 wl!] p(w[0) =
N(w|py,, Xop)

b]

~ /M x K] correlation

23

Bayesian Learning of ProMPs

* Maximum likelihood solution:
e Overfitting (large number of

Log Condition Number of 2,

parameters) 30 -
* Needs a lot of data = — MAP
* Numerical issues Ei 20 - —— MLE
« Stability can be improved by: "
x Artificial noise (add inaccuracies) 2 10 |
x Reduce complexity (model joints as lwﬁ“m“"
independent) 0 50 100

v’ Bayesian regularization Number of trials

* Number of Trajectories approx.
number of weights for MLLE
* Otherwise conditioning infeasable

24

Maximum A-Posteriori

* Prior distribution over ProMP parameters
p("l"wﬂ Zw) — NIW("L’I,UJ 2]’w |k07 my, UOSO)

1
=N (u,w|m0, k—oz()) W_1(2w|?)0, So)

e Conjugate prior distribution
* Prior and posterior have the same form
* Encodes that DoFs are uncorrelated

* MAP estimate

!‘l’fw JE'IU

arg max (Hp(ww,zw>) Plhty, S

\ _ Prior
"

Likelihood

Training MAP ProMPs

* Closed form update solutions

B koo + 30 w;
N N + ko

Hoy

VoS + Ziv(’wi —) (Wi — p)t

Y =
N + vy +1

We ignored that there is also uncertainty on w

* In particular if we have partial trajectories

« Uncertainty depends on p(w)

* Training with EM (leads to better solutions)

3 case studies

Prioritization of
Movement Primitives

Robot Table Tennis Learning Interaction
Primitives

27

Robot Table Tennis

* Learning:
* Demonstrate different table tennis strikes (6 demonstrations)
e Learn joint correlation using MAP estimate

* Testing:
* Predict incoming ball position (Kalman filtering)
» Condition on racket position (i.e. Inverse Kinematics)
* No need to specify orientation (learned from data)
e Test learning joint correlation vs. no correlation

28

Conditioning in Task Space

* Desired end-effector position: p(x;) = N(um,E)
* Forward kinematics: a:t|yt =0 (x Y:))

* Posterior: P(Yelpy, yt|wt (| oy, D) dey

\

Bayes Theorem

x p(s) f (el Sa)plelyy)daee -
X p(Y)N (f(yy) |1y, Ba)

Dirac Delta

Conditioning in Task Space

* Laplace approximation: p(y, |1, Xz) < p(y)N (f (y,) |14,)

~ N(“yﬂ Ey)
* Mean: py + argmaxlog p(y,|p,, 3)
t
 Covariance: Ey — vytyt 1ng(yt|um 3.)

yt:!‘l’y
* Use), >, to condition in joint space

Py = oy + L (uy - ‘I’tTuw) L= 2, Wy (Ey + ‘I’fzw‘I’t)

> =3, - L¥'s,

Results on Table Tennis

|
100

MoMP
09 - wem ProMP MLE
ProMP MAP
-
E
o3
el
S 0.1- ||||
m |
0 T - ‘ T T
0 20 40 60 80

Success rate %

MoMP: State of the art approach for Table Tennis
ProMP MLE: DoFs are modelled independently
ProMP MAP: Correlation between DoFs is learned

Probability

80

MoMP
0.2 -| mmm ProMP MLE
ProMP MAP
0.1
0 T T T T
0 20 40 60
Hit rate %

100

31

Results on Table Tennis

e Video

32

file://VBOXSVR/Dropbox/Vorträge/IROS_Tutorial/journal2.mp4

3 case studies

Prioritization of
Movement Primitives

Robot Table Tennis Learning Interaction
Primitives

33

Robot Companions

Inherently safe

Assisting humans

Couple with / react to human movement
* Huge variability of tasks

e Simple to teach new interaction patterns

34

Learning Collaborative Models

Correlating all robot and human DoFs

[M x K(P+ Q)]

[Maeda, et al., AURO, IJRR]

35

Learning Collaborative Models

e Learn joint distribution of trajectory 7, and robot trajectory 7, from demonstrations

Robot | Human

Maeda, G. et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks, Autonomous Robots (AURO) 206

Coordinating motions with the human

Condition on observation of human:
p(wlhyi) = N (g™, 205)

prer =, + K(hl:t — ‘Plztl-l'w)
e =3, — K(¥,:3,)

K=X,9],(Z,+%,,2,¥],)"!

] Initial joint distribution P(Human,Robot) Conditional distribution P(Robot|Human)
O Observations

YH YR

Human

Training multiple interactions

Model/training by imitation learning

Human Robot

V

Mixture of Interaction Primitives:

p(t) =) owp(7|6k)

* Mixture coefficients: &k

* Mixture components: p(7|0x) = N (p,, i)
02 a

» Ok

0,
7}

01, 05, .0

Can be learned by EMM for GMMs

38

Multi-Modal Demonstrations

Mixture models also help to overcome Gaussian assumption
* Non-linear correlations

* Multi-modality

— ground truth
— prediction

}H /

0
Y

39

|[dentify current interaction

Interaction Primitives (trained
independently or with EM)

91 = {’J‘wazw}l
} 0, = {)u'w:zw}Q

Identify task executed by the human

p(Crly®) o< p(y°|0r) p(Ck)

Posterior Likelihood Prior

>

YH Yy

Teaching a Robot Assistant

Box assembly task:

* Learn interaction patterns by kinesthetic teach in

Plate handover

Screw handover

Holding tool

e

Maeda, G.; Neumann, G.; et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks,
Autonomous Robots (AURO)

Teaching a Robot Assistant

Box assembly task:

* Learn interaction patterns by kinesthetic teach in

Plate handover Screw handover

Holding tool

{48

P g &
Full box agﬁmbly\"
- Y
ra
* Couple robot movement with human G‘

.\\\\

Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J. & Maeda, G.

Maeda, G.; Neumann, G.; et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks,
Autonomous Robots (AURO)

3 case studies

Prioritization of
Movement Primitives

Robot Table Tennis Learning Interaction
Primitives

43

Combination of Skills

Modularity:
* Learn individual skills to achieve certain tasks
 Combine skills to solve a combination of tasks

* In theory: much smaller skill library needed

How can we combine skills in a useful ways?

44

Coactivation

0 0.25 0.5 0.7 1

I
I
! [
: £%
. e ... S £
Coactivate primitives to solve a combination of tasks :] T
(o]
* Implemented as product of distributions i ©o
e Area, in which all distributions have high probability : 0 0.25 05 075 1
N |
o (t S
peo(ar) | [pilq)* ™" S
| 5
« pi(q:)... i-th movement primitive] ©
«;(t)... activation factors : 0 025 05 075 1
|
LS
| o B
I a g
I S
I
|

45

Example: Robot Hockey

7-link KUKA robot arm, playing hockey

* Train 2 primitives with high variance in shooting angle or in distance

; \ Y / = T oy

Demonstration 1

* Product of the primitives: Combination of both tasks

o
Distance
Distance

b -
- Combination

Demonstration 2

46

Combination in Controller Space

* ProMP provides stochastic variable stiffness controller

« Joint-space ProMP: p(q) = N (Kt [g } —|—kt,2q-) :N(M(E,Eq)

* Task-space ProMP: p(&) = N (p;, 2z)

* Variance can be propagated in task space Prioritized Combination of ProMPs
P('T’CI: E:’r}) =N (Jq + Jq, 2:‘&) * Yields well known prioritized control laws
* Bayes theorem * Variances define soft-priorities between

.. “tasks”
p(& = py|q, Xz)p(q)

p(&)

p(qle) =

[Paraschos et al, Probabilistic Prioritization of Movement Primitives, RAL 2017]

llustration for learning multi

 Each end-effector has three tasks

* Nine task-combinations in total

per end-effector

I, PR
4 -2 0 2 4
x-axis [m]

Using our approach, we can learn the tasks

Results in more sample efficient learning

S S

0

Reward |
1

104

ole tasks

0.5 ¢

/
/
/

—x<— Individual ProMP per task

Probabilistic Prioritization

5 10 15
Demonstrations per task

W I S S

4 -2 0 2 4
x-axis [m]

—4

—2 0 2 4
x-axis [m]

20

I-Cub experiments

* Robot executes multiple tasks concurrently
* Joint stabilization control law

e Upper-body control (torso, left and right arms)

Left Task Err. (cm)

Right Task Err. (cm)

Blue — Marker 2.38 + 0.91 3.09 + 1.22
Blue — Ball 2.34 + 0.96 3.18 + 1.10
Blue — Cake 2.05 + 0.71 3.56 + 1.45
Green — Marker 2.21 + 0.64 1.70 + 0.81
Green — Ball 2.47 + 0.89 2.28 + 1.26
Green — Cake 2.97 + 0.84 3.85 4+ 1.02
Red — Marker 3.67 + 0.76 2.89 + 1.66
Red — Ball 2.82 + 0.75 2434113
Red — Cake 3.31 4+ 1.26 4234 1.62

Conclusion

Trajectory distributions are a powerful representation:
* Conditioning

* Movement coupling

* Variable stiffness

* Joint correlations

However:
* We have to know execution time / phase
e Estimate phase online?

* Only local policy

Important open issues

Perceptual coupling (vision, tactile, etc)

Forceful interactions

Include online model learning

Selection and switching of primitives

