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Some geography first…

• Lincoln?



What we have seen so far…

Learning state-based policies: 

• Policy depends on the state and on the parameters

• Represents a globally valid policy

• Complex non-linear representations are needed

Examples: Neural Networks, RBF Networks, Gaussian Processes, Locally 
Weighted Regression Models

Trajectory-based policies:

• Policy also depends on time

• For the same time step, the robot is often in similar states

• Simple local models (e.g. linear) are often sufficient! 

Examples: Variable stiffness controllers, Movement Primitives
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Parametrized trajectories:

• Mean movement

• Followed by trajectory tracking controllers

Properties:

• Compact parametrization

• Easy to learn

• Adaptable

• Learn the desired long term behavior!

Examples:

• Dynamic Movement Primitives (DMPs) [Ijspeert 2002]

• Probabilistic Movement Primitives (ProMPs) [Paraschos 2013]

Trajectory-Based Movement Primitives
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Outline

Dynamic Movement Primitives

Probabilistic Movement Primitives

• Introduction

• Learning ProMPs

• Case Study 1: Robot Table Tennis

• Case Study 2: Interaction Primitives

• Case Study 3: Prioritization of Primitives
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Dynamical systems can be used to 
represent trajectories

• Integrating the dynamical system 
results in a trajectory

• Mimics physical systems

• Build-in Smoothness

Linear differential equations:

• well-defined behavior 

• But: limited class of movements

First order linear 
dynamical system:

Second order linear 
dynamical system:

• … goal attractor
• … spring constant
• … damping

Dynamical Systems as Trajectory Generators
What movements can we encode?
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How can we make it more representative?

Use non-linear dynamical systems?

• Different behavior might emerge…

• Can represent more complex behavior

• Can also get unstable! 
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Dynamical movement primitives

• Use linear dynamical systems (2nd order)

• Introduce moving attractor

• The forcing function           encodes the desired 
additional acceleration profile

• … learnable function

[Ijspeert et. al., Dynamical movement primitives: learning attractor models for motor behaviors, Neurocomputing, 2013]
[Ijspeert et. al., Learning Attractor Landscapes for Learning Motor Primitives, NIPS, 2003]
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Temporal scaling

Modulate the speed of the movement:

• Introduce phase variable

• Simple first-order system

• temporal scaling coefficient

• Replace time with phase

• Every DoF shares the same phase variable
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• Linear model:

• Normalized RBF basis functions:

Forcing function

Asymptotic stability by construction:

• Forcing function vanishes for

• Then it is just a standard PD controller
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Imitation Learning for DMPs

Given:

• A desired trajectory and its derivatives 

• A goal attractor g (e.g. final position of trajectory)

• Parameters:                  (typically fixed) 

• Temporal Scaling      : Adjusted to movement duration

The weights w can be learned by linear regression:

• Compute target values for each time step

• Compute shape parameters      by linear (ridge) regression
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Adapting the meta-parameters…

Adapt goal attractor

• Can change end-point of the movement

• Shape of the movement is changes heuristically

Adapting the temporal scaling

• Larger tau result in faster movements

• Can also be modulated online
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57

Example: A Tennis Backhand

[Ijspeert et. al., Learning Attractor Landscapes for Learning Motor Primitives, NIPS, 2003]



Summary: DMPs

• Dynamical systems define smooth trajectory

• Learn acceleration profile

• Stable per construction

• Easy to modulate execution speed

• Adapt final positions

Extensions:

• Adapt final velocities [Kober et al., ICRA 2009]

• Perceptual coupling [Kober et al., IROS 2008]

• Obstacle avoidance [Pastor et al., ICRA 2009]

• Force profiles [Denisa et al, IEEE Transaction on Mechatronics 2016]

• Rhythmic Movements 

[Kober et al., ICRA 2010]

[Nakanishi et al., 2012] 14
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Probabilistic Movement Primitives

Parametrized trajectories:

• Mean movement

• Followed by trajectory tracking controllers

• Example: Dynamic Movement Primitives (DMPs) [Ijspeert 2002]

Parametrized trajectory distributions:

• Family of movements

• Gaussian: Mean and Variance

• Probabilistic Movement Primitives (ProMPs) [Paraschos 2013]

A. Paraschos, …, G. Neumann, Probabilistic Movement Primitives, NIPS, 2013 16



Trajectory Representation

Representation of a single trajectory

• Approximation in position instead of acceleration space

Phase-dependent basis:

• For example, normalized Gaussian basis functions

Probabilistic model for a single trajectory:
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Trajectory Distributions

Trajectory distribution: 

• Treat       as latent variable with distribution

• Integrate it out 

Establishes correlation 
between time points

mean

2 standard dev.
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Multiple DoFs

How can we encode a distribution over multiple DoFs?

• Use a concatenated weight and trajectory vector and block-diagonal basis matrix

• The same linear relation holds: 

• We use a distribution over the parameters of all DoFs

For a single time step:

Establishes correlation 
between joints
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Trajectory distributions for control

From ProMP:

• Compute derivative of mean and covariance using ProMP

From linear(ized) system model:

• Assume (stochastic) linear controller with time varying gains

• Compute derivative of mean and variance using this linear model

Match derivatives of mean and variance

• and        can be obtained in closed form

• Variable stiffness controller
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Adapt final/intermediate position/ of the movement

• Conditioning/Bayes Theorem

Adaptation of ProMPs

• For Gaussian Distributions:

DMPs Position DMPs Velocities ProMPs Position ProMPs Velocities ProMPs Joint Conditioning
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Learning ProMPs

For each trajectory         , obtain

Compute mean and variance

...

Demonstrated trajectories

Regression

correlation
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Bayesian Learning of ProMPs

• Maximum likelihood solution:
• Overfitting (large number of 

parameters)

• Needs a lot of data

• Numerical issues

• Stability can be improved by:
× Artificial noise (add inaccuracies)

× Reduce complexity (model joints as 
independent)

 Bayesian regularization

• Number of Trajectories approx. 
number of weights for MLE

• Otherwise conditioning infeasable
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Maximum A-Posteriori 

• Prior distribution over ProMP parameters

• Conjugate prior distribution

• Prior and posterior have the same form

• Encodes that DoFs are uncorrelated

• MAP estimate
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Training MAP ProMPs

• Closed form update solutions

We ignored that there is also uncertainty on    

• In particular if we have partial trajectories

• Uncertainty depends on 

• Training with EM (leads to better solutions)
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3 case studies

Robot Table Tennis Learning Interaction
Primitives

Prioritization of 
Movement Primitives
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Robot Table Tennis

• Learning:
• Demonstrate different table tennis strikes (6 demonstrations)

• Learn joint correlation using MAP estimate

• Testing:
• Predict incoming ball position (Kalman filtering)

• Condition on racket position (i.e. Inverse Kinematics)

• No need to specify orientation (learned from data)

• Test learning joint correlation vs. no correlation
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Conditioning in Task Space

• Desired end-effector position:

• Forward kinematics:

• Posterior:

Prior Racket Distribution Posterior Racket Distribution

Bayes Theorem

Dirac Delta
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Conditioning in Task Space

• Laplace approximation:

• Mean:

• Covariance:

• Use                to condition in joint space
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Results on Table Tennis

MoMP: State of the art approach for Table Tennis
ProMP MLE: DoFs are modelled independently
ProMP MAP: Correlation between DoFs is learned
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Results on Table Tennis

• Video

32

file://VBOXSVR/Dropbox/Vorträge/IROS_Tutorial/journal2.mp4


3 case studies

Robot Table Tennis Learning Interaction
Primitives

Prioritization of 
Movement Primitives
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Robot Companions

• Inherently safe

• Assisting humans

• Couple with / react to human movement

• Huge variability of tasks

• Simple to teach new interaction patterns
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Learning Collaborative Models

Correlating all robot and human DoFs

...

[Maeda, et al., AURO, IJRR]
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Learning Collaborative Models

• Learn joint distribution of trajectory         and robot trajectory        from demonstrations

Robot Human

Coupling between 
Human and Robot

Maeda, G. et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks, Autonomous Robots (AURO) 201636



Coordinating motions with the human

Human Robot

Initial joint distribution    P(Human,Robot) 

Observations

Conditional distribution P(Robot|Human) 

Condition on observation of human:

37



Training multiple interactions

Model/training by imitation learning

Human   Robot

Mixture of Interaction Primitives:

• Mixture coefficients: 

• Mixture components:

Can be learned by EMM for GMMs 
38



Multi-Modal Demonstrations

Mixture models also help to overcome Gaussian assumption

• Non-linear correlations

• Multi-modality
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Identify current interaction

Interaction Primitives (trained 
independently or with EM)

Identify task executed by the human

PriorLikelihoodPosterior

Task 1 Task 2 Task 3 40



Teaching a Robot Assistant

Box assembly task:

• Learn interaction patterns by kinesthetic teach in
Holding tool Screw handoverPlate handover

Maeda, G.; Neumann, G.; et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks,
Autonomous Robots (AURO)
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Teaching a Robot Assistant

Box assembly task:

• Learn interaction patterns by kinesthetic teach in

• Couple robot movement with human

Holding tool Screw handoverPlate handover

Maeda, G.; Neumann, G.; et al. Probabilistic Movement Primitives, for Coordination of Multiple Human-Robot Collaborative Tasks,
Autonomous Robots (AURO)

42



3 case studies

Robot Table Tennis Learning Interaction
Primitives

Prioritization of 
Movement Primitives
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Combination of Skills

Modularity:

• Learn individual skills to achieve certain tasks

• Combine skills to solve a combination of tasks

• In theory: much smaller skill library needed

How can we combine skills in a useful ways?
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Coactivation

Coactivate primitives to solve a combination of tasks

• Implemented as product of distributions

• Area, in which all distributions have high probability

• i-th movement primitive

activation factors
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Example: Robot Hockey

7-link KUKA robot arm, playing hockey

• Train 2 primitives with high variance in shooting angle or in distance

• Product of the primitives:  Combination of both tasks

Demonstration 1 Demonstration 2
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Combination in Controller Space

• ProMP provides stochastic variable stiffness controller

• Joint-space ProMP:

• Task-space ProMP: 

• Variance can be propagated in task space

• Bayes theorem 

Prioritized Combination of ProMPs

• Yields well known prioritized control laws

• Variances define soft-priorities between 
“tasks”

[Paraschos et al, Probabilistic Prioritization of Movement Primitives, RAL 2017]
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Illustration for learning multiple tasks

• Each end-effector has three tasks

• Nine task-combinations in total

• Using our approach, we can learn the tasks 
per end-effector

• Results in more sample efficient learning
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I-Cub experiments

• Robot executes multiple tasks concurrently

• Joint stabilization control law

• Upper-body control (torso, left and right arms)
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Conclusion

Trajectory distributions are a powerful representation:

• Conditioning

• Movement coupling

• Variable stiffness

• Joint correlations

However:

• We have to know execution time / phase

• Estimate phase online?

• Only local policy
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Important open issues

• Perceptual coupling (vision, tactile, etc)

• Forceful interactions

• Include online model learning

• Selection and switching of primitives
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