IROS2018 Tutorial Mo-TUT-2 From Least Squares Regression to High-dimensional Motion Primitives

Freek Stulp, Sylvain Calinon, Gerhard Neumann

159 + 72 = ???

# 159 + 72 = (159+2) + (72-2)= 161 + 70

# 159 + 72 = (159+2) + (72-2)= 161 + 70 = 231 "generation"

# 159 + 72 = (9+2) + (150+70) = 11 + 220

# 159 + 72 = (9+2) + (150+70)= 11 + 220 = 231 "generation"

159 + 72 = ???

159 + 72 /= 231 "recall" -

# 159 + 72 = 231 "recall"

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

# 159 + 72 /= 231 "recall"

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

### **Motion Generation**





### Motion Recall





### Motion primitives in nature





Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005



### Motion primitives in nature





Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993 Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology. 2005

### Motion primitives for robots?

- · Couple degrees of freedom to deal with high-dimensional systems
- Sequencing and superpositioning of MPs for more complex task
- Low-dimensional parameterization of MP enables learning
- MPs can be bootstrapped with demonstrations
- Direct mappings between task parameters and MP parameters

### Motion primitives in nature





Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

### Motion primitives for robots!



Ijspeert, A. J.; Nakanishi, J. & Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. ICRA, 2002

## Schedule

|    | 0.00  | 1.114    | 0.45  |                             |
|----|-------|----------|-------|-----------------------------|
|    | 9:00  | -        | 9:15  | Introduction                |
|    | 9:15  | -        | 10:45 | Regression Tutorial         |
|    | 10:45 | -        | 11:00 | Motion Primitives 1         |
|    | 11:00 | <u>×</u> | 11:30 | Coffee Break                |
| k  | 11:30 | -        | 12:15 | Motion Primitives 1 (cont.) |
| 1  | 12:15 | -        | 13:15 | Motion Primitives 2         |
| () | 13:15 | -        | 13:30 | Wrap up                     |
|    |       |          |       |                             |

R

Freek Stulp Sylvain Calinon

Sylvain Calinon Gerhard Neumann Regression Tutorial IROS'18 Tutorial

Freek Stulp Institute of Robotics and Mechatronics, German Aerospace Center (DLR) Autonomous Systems and Robotics, ENSTA-ParisTech

01.10.2018

Estimating a relationship between input variables and continuous output variables from data



Estimating a relationship between input variables and continuous output variables from data



Estimating a relationship between input variables and continuous output variables from data



Estimating a relationship between input variables and continuous output variables from data



Application: Dynamic parameter estimation



An, C.; Atkeson, C. and Hollerbach, J. (1985).

Estimation of inertial parameters of rigid body links of manipulators [404] IEEE Conference on Decision and Control.

Estimating a relationship between input variables and continuous output variables from data



### Application: Programming by demonstration





Rozo, L.; Calinon, S.; Caldwell, D. G.; Jimenez, P. and Torras, C. (2016).

Learning Physical Collaborative Robot Behaviors from Human Demonstrations IEEE Trans. on Robotics.



Calinon, S.; Guenter, F. and Billard, A. (2007).

On Learning, Representing and Generalizing a Task in a Humanoid Robot [725] IEEE Transactions on Systems, Man and Cybernetics.

Estimating a relationship between input variables and continuous output variables from data



### **Application: Biosignal Processing**





Gijsberts, A., Bohra, R., Sierra Gonzlez, D., Werner, A., Nowak, M., Caputo, B., Roa, M. and Castellini, C. (2014) Stable myoelectric control of a hand prosthesis using non-linear incremental learning *Frontiers in Neurorobotics* 

### Training data

$$\{(\underbrace{\mathbf{x}_n}_{n,n}, \underbrace{\mathbf{y}_n}_{n=1})\}_{n=1}^N \quad \forall n, \mathbf{x}_n \in X \land \mathbf{y}_n \in Y$$
input target

Supervised Learning Regression Classification Reinforcement learning Unsupervised learning

targets available targets available targets available no targets, only rewards  $r_n \subseteq \mathbb{R}$ no targets at all

 $Y \subseteq \mathbb{R}^M$  $Y \subseteq 1, \ldots K$ 

### Regression – Assumptions about the Function



### Regression – Assumptions about the Function



 $\rightarrow$  Linear Least Squares



#### A.M. Legendre (1805).

Nouvelles méthodes pour la détermination des orbites des comtes [519] *Firmin Didot.* 



#### C.F. Gauss (1809).

Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum [943]



$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,D} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,D} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

- X is the N × D "design matrix"
- Each row is a D-dim. data point



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### • Define fitting criterion

Sum of squared residuals

$$S(\mathbf{a}) = \sum_{n=1}^{N} r_n^2$$
(1)  
=  $\sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2$ (2)



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### • Define fitting criterion

Sum of squared residuals

$$S(\mathbf{a}) = \sum_{n=1}^{N} r_n^2$$
(1)  
=  $\sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2$ (2)

Applied to a linear model

$$S(\mathbf{a}) = \sum_{n=1}^{N} (y_n - \mathbf{a}^{\mathsf{T}} \mathbf{x}_n)^2 \qquad (3)$$
$$= (\mathbf{y} - \mathbf{X} \mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \mathbf{a}), \qquad (4)$$



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y})$$
(3)

$$\mathbf{a}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}. \tag{4}$$



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y})$$
(3)

$$\mathbf{a}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}. \tag{4}$$



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y}) \qquad (3)$$
$$\mathbf{a}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}. \qquad (4)$$

Nice! Closed form solution to find a\*



- Which line fits the data best?
  - Define fitting criterion
  - Optimize a w.r.t. criterion

### Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a})$$
 (2

Quadratic cost: when is its derivative 0?

$$\begin{split} S'(\mathbf{a}) &= 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y}) \qquad (3) \\ \mathbf{a}^* &= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}. \qquad (4) \end{split}$$

Nice! Closed form solution to find a\*



### Outline



### Outline



### Outline





- Importance  $\equiv$  Weight  $w_n$
- Example weighting
  - manual
  - boxcar function
  - Gaussian function

$$egin{aligned} & w_n = \phi(\mathbf{x}_n, m{ heta}) \ &= \exp\left(-rac{1}{2}(\mathbf{x} - \mathbf{c})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{c})
ight) \ & ext{ with } m{ heta} = (\mathbf{c}, \mathbf{\Sigma}) \end{aligned}$$











Idea: more important to fit some points than others.



6

Idea: more important to fit some points than others.



6

In robotics, functions usually non-linear. But often locally linear!



In robotics, functions usually non-linear. But often locally linear!



Idea: Do multiple, independent, locally weighted least sq. regressions

In robotics, functions usually non-linear. But often locally linear!



Idea: Do multiple, independent, locally weighted least sq. regressions

William S. Cleveland; Susan J. Devlin (1988).

Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting [4074] *Journal of the American Statistical Association.* 

Atkeson, C. G.; Moore, A. W. and Schaal, S. (1997). Locally Weighted Learning for Control [2160] *Artificial Intelligence Review.* 

- Idea: multiple, independent, locally weighted least squares regressions
  - Locally: radial weighting function with different centers ("receptive field")

for 
$$e = 1 \dots E$$
  
for  $n = 1 \dots N$   
 $\mathbf{W}_{e}^{nn} = g(\mathbf{x}_{n}, \mathbf{c}_{e}, \Sigma)$   
 $\mathbf{a}_{e} = (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{y}.$  (8)

- Idea: multiple, independent, locally weighted least squares regressions
  - Locally: radial weighting function with different centers ("receptive field")

for 
$$e = 1 \dots E$$
  
for  $n = 1 \dots N$   
 $\mathbf{W}_{e}^{nn} = g(\mathbf{x}_{n}, \mathbf{c}_{e}, \Sigma)$   
 $\mathbf{a}_{e} = (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{y}.$  (8)

- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



6

- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
  - · Locally: radial weighting function with different centers ("receptive field")



# Variations of Locally Weighted Regressions

# **Receptive Field Weighted Regression**

- Incremental, not batch
- *E*, centers **c**<sub>1...*E*</sub> and widths Σ<sub>1...*E*</sub> determined automatically
- Disadvantage: many open parameters



Schaal, S. and Atkeson, C. G. (1997). Receptive Field Weighted Regression [34] Technical Report TR-H-209, ATR Human Information Processing Laboratories.

# Variations of Locally Weighted Regressions

# **Receptive Field Weighted Regression**

- Incremental, not batch
- *E*, centers  $\mathbf{c}_{1...E}$  and widths  $\Sigma_{1...E}$  determined automatically
- Disadvantage: many open parameters



Schaal, S. and Atkeson, C. G. (1997). Receptive Field Weighted Regression [34] Technical Report TR-H-209, ATR Human Information Processing Laboratories.

#### Locally Weighted Projection Regression

 As RFWR, but also performs dimensionality reduction within each receptive field



Vijayakumar, S. and Schaal, S. (2000). Locally Weighted Projection Regression . . . [208] International Conference on Machine Learning.







- Idea: penalize large parameter vectors to
  - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (10)$$

- Idea: penalize large parameter vectors to
  - · avoid overfitting / achieve sparse parameter vectors



"T "F

- Idea: penalize large parameter vectors to
  - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}} \left( \begin{array}{c} \frac{1}{2} \|\mathbf{y} - \mathbf{X}^{\mathsf{T}} \mathbf{a}\|^{2} \\ \text{fit data} \end{array} + \begin{array}{c} \frac{\lambda}{2} \|\mathbf{a}\|^{2} \\ \text{small parameters} \end{array} \right) \quad (10)$$

$$\operatorname{small parameters} \left( 1 - \frac{\lambda}{2} \right)^{2} = \frac{\lambda}{2} \left( 1 - \frac{\lambda}{2} \right)^{\frac{1}{2}} = \frac{\lambda}{2} \left( 1 - \frac{\lambda}{2} \right)^{\frac{1}$$

- Idea: penalize large parameter vectors to
  - · avoid overfitting / achieve sparse parameter vectors



Use combination of  $L^1$  and  $L^2$ : "Elastic Nets"

- Idea: penalize large parameter vectors to
  - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^* = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^2}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^2}_{\text{small parameters}}) \quad (10)$$

*L*<sup>2</sup>-norm for 
$$\|\mathbf{a}\|$$
  
 $\|\mathbf{a}\|_{2} = \left(\sum_{d=1}^{D} |a_{d}|^{2}\right)^{\frac{1}{2}}$   
Euclidean distance  
 $\mathbf{a}^{*} = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}.$ 

"Thikonov Regularization" "Ridge Regression"

$$L^1$$
-norm for  $\|\mathbf{a}\|$ 

$$\|\mathbf{a}\|_{1} = \left(\sum_{d=1}^{D} |a_{d}|^{1}\right)^{\frac{1}{1}} = \sum_{d=1}^{D} |a_{d}|$$

Manhattan distance no closed-form solution ...

"LASSO Regularization"

- Idea: penalize large parameter vectors to
  - avoid overfitting / achieve sparse parameter vectors



# Beyond squares

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (11)$$

Penalty on parameters **a** (regularization)



# **Beyond squares**

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (11)$$

# Penalty on residuals *r<sub>n</sub>* (fit data)

- $L_2$ : least squares  $L_1$ : least deviations
- $L_\epsilon:$  support vector regression



# Penalty on parameters **a** (regularization)



#### Linear Support Vector Regression



· No closed-form solution, but efficient optimizers exist







### Radial Basis Function Network

$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



### Radial Basis Function Network

$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

$$\boldsymbol{\Theta} = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

$$\Theta = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



Least squares solution

$$\mathbf{w}^* = (\mathbf{\Theta}^\mathsf{T} \mathbf{\Theta})^{-1} \mathbf{\Theta}^\mathsf{T} \mathbf{y}. \tag{15}$$

$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

$$\Theta = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



Least squares solution

$$\mathbf{w}^* = (\mathbf{\Theta}^{\mathsf{T}} \mathbf{\Theta})^{-1} \mathbf{\Theta}^{\mathsf{T}} \mathbf{y}.$$
(15)

## Kernel Ridge Regression

• Like a RBFN, but every data point is the center of a basis function

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n \cdot k(\mathbf{x}, \mathbf{x}_n).$$
(16)

"Gram matrix" (analogous to design matrix X)

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{1}, \mathbf{x}_{N}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{2}, \mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_{N}, \mathbf{x}_{1}) & k(\mathbf{x}_{N}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{N}, \mathbf{x}_{N}) \end{bmatrix}$$
(17)  
$$\mathbf{w}^{*} = (\mathbf{K}^{\mathsf{T}}\mathbf{K})^{-1}\mathbf{K}^{\mathsf{T}}\mathbf{y}$$
(18)  
$$= \mathbf{K}^{-1}\mathbf{y},$$
(19)  
(20)



## Kernel Ridge Regression

- Like a RBFN, but every data point is the center of a basis function
- Uses L<sup>2</sup> regularization

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n \cdot k(\mathbf{x}, \mathbf{x}_n).$$
(16)

"Gram matrix" (analogous to design matrix X)

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & k(\mathbf{x}_N, \mathbf{x}_2) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$
(17)

$$\mathbf{w}^* = (\mathbf{K}^\mathsf{T} \mathbf{K})^{-1} \mathbf{K}^\mathsf{T} \mathbf{y} \tag{18}$$

$$=\mathbf{K}^{-1}\mathbf{y},\tag{19}$$

 $\mathbf{w}^* = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$  with  $L^2$  regularization (20)



#### Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function

#### Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function

- Since least squares is at the heart of all of these
  - incremental versions ← recursive least squares
  - apply *L*<sup>2</sup> regularization (still closed form)



## Freek, aren't you being a bit shallow?

- Deep learning great when you
  - do not know the features
  - · know the features to be hierarchically organized



John Smart

#### Freek, aren't you being a bit shallow?

- Deep learning great when you
  - do not know the features
  - know the features to be hierarchically organized



Rajeswaran A, Lowrey K, Todorov E and Kakade S. (2017). Towards generalization and simplicity in continuous control *Neural Information Processing Systems (NIPS).* 

| Table 1: Final | performances of | the policies |
|----------------|-----------------|--------------|
|----------------|-----------------|--------------|

Table 2: Number of episodes to achieve threshold

| Task     | Linear |      | RBF  |      | NN   | Task     | Th.  | Linear | RBF   | TRPO+NN |
|----------|--------|------|------|------|------|----------|------|--------|-------|---------|
|          | stoc   | mean | stoc | mean | TRPO |          |      |        |       |         |
| Swimmer  | 362    | 366  | 361  | 365  | 131  | Swimmer  | 325  | 1450   | 1550  | N-A     |
| Hopper   | 3466   | 3651 | 3590 | 3810 | 3668 | Hopper   | 3120 | 13920  | 8640  | 10000   |
| Cheetah  | 3810   | 4149 | 6477 | 6620 | 4800 | Cheetah  | 3430 | 11250  | 6000  | 4250    |
| Walker   | 4881   | 5234 | 5631 | 5867 | 5594 | Walker   | 4390 | 36840  | 25680 | 14250   |
| Ant      | 3980   | 4607 | 4297 | 4816 | 5007 | Ant      | 3580 | 39240  | 30000 | 73500   |
| Humanoid | 5873   | 6440 | 6237 | 6849 | 6482 | Humanoid | 5280 | 79800  | 96720 | 87000   |

## A neural network perspective

All these models can be considered (degenerate) neural networks!

## A neural network perspective

All these models can be considered (degenerate) neural networks!

Backpropagation can be used in all these models!

## Linear model



Figure: Network representation of a linear model. Activation is... linear!

#### RBFN



Figure: The RBFN model.  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 

#### RRRFF



Figure: The RRRFF model.  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 

#### SVR



Figure: The SVR model.  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 

#### Regression trees



Figure: The regression trees model.  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 

#### Extreme learning machine



Figure: The extreme learning machine model.  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 

## Extreme Learning Machine vs. (Deep) Neural Networks

- ELM: sigmoid act. function, no hidden layer, random features
- ANN: sigmoid act. function, hidden layers, learned features

#### KRR and GPR



Figure: The function model used in KRR and GPR, as a network.

## Locally weighted regression



Figure: Function model in Locally Weighted Regressions, represented as a feedforward neural network. The functions  $\phi_e(\mathbf{x})$  generate the weights  $w_e$  from the hidden nodes – which contain linear sub-models  $(\mathbf{a}_e^T\mathbf{x} + b_e)$  – to the output node. Here,  $\phi_e$  is an abbreviation of  $\phi(\mathbf{x}, \theta_e)$ 



#### Algorithm

least squares:  $\mathbf{a}^* = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ 



## Algorithm

least squares:  $\mathbf{a}^* = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$ 

#### Model

linear model:  $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}\mathbf{x}$ 











$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)



$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x}) \qquad \text{Weighted sum of linear models}$$
(21)  
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e \qquad \text{Weighted sum of basis functions}$$
(22)

(22) is a special case of (21) with  $\mathbf{a}_e = \mathbf{0}$  and  $b_e \equiv w_e$ 



$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)

(22) is a special case of (21) with  $\mathbf{a}_e = \mathbf{0}$  and  $b_e \equiv w_e$ 



#### Freek Stulp and Olivier Sigaud (2015).

Many regression algorithms, one unified model - A review. *Neural Networks*.

$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)

Weighted sum of basis functions (22)

(22) is a special case of (21) with  $\mathbf{a}_e = \mathbf{0}$  and  $b_e \equiv w_e$ 



Figure: Classification of regression algorithms, based only on the model used to represent the underlying function.

# Many toolkits available

- Python
  - scikit-learn: http://scikit-learn.org
  - StatsModels: http://www.statsmodels.org/
  - PbDlib: http://calinon.ch/codes.htm
  - dmpbbo: https://github.com/stulp/dmpbbo
- Matlab
  - CUIVefit: https://www.mathworks.com/help/curvefit/ linear-and-nonlinear-regression.html
  - PbDlib: http://calinon.ch/codes.htm
- C++
  - PbDlib: http://calinon.ch/codes.htm
  - dmpbbo: https://github.com/stulp/dmpbbo

# **Personal Favourites**

#### Gaussian process regression

- + Very few assumptions
- + Meta-parameters estimated from data itself
- + Estimates variance also
- + Works in high dimensions
- Training/query times increase with amount of data
- Not easy to make incremental

#### Gaussian mixture regression

- + Estimates variance also
- + Algorithm is inherently incremental
- + Some meta-parameters, but easy to tune
- + Fast training times
- Training only stable for low input dimensions

#### Locally Weighted Regressions

- + Fast query times, fast training
- + Few meta-parameters, and easy to set
- + Stable learning results (batch)
- Not incremental
- No variance estimate

#### **Deep Learning**

+ Automatic extraction of (hierarhical) features

# Conclusion

- Don't think about these regression algorithms as being unique
  - · Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

# Conclusion

- Don't think about these regression algorithms as being unique
  - · Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

# Thank you for your attention!

# Appendix

"Given a Gaussian process on some topological space T, with a continuous covariance kernel  $C(\cdot, \cdot) : T \times T \rightarrow R$ , we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

"Given a Gaussian process on some topological space T, with a continuous covariance kernel  $C(\cdot, \cdot) : T \times T \rightarrow R$ , we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."



"Given a Gaussian process on some topological space T, with a continuous covariance kernel  $C(\cdot, \cdot) : T \times T \rightarrow R$ , we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."



Instead of screaming, let's talk about what it means to be smooth.



- Points that are close in the input space should be close in the output space.
  - Cities that are close geographically have similar temperatures (on average)
  - Taller people have larger shoe sizes (on average)
- Shoe size covaries with height

covariance function



covariance function







covariance matrix (Gram matrix)

| <sup>x</sup> Aug | <sup>x</sup> Muc                                         | <sup>x</sup> War                                                                                                                           | <sup>x</sup> Min                                                                                                                                                                               | XMos                                                                                                                                                                                                                   |
|------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Γ 1.00           | 0.96                                                     | 0.42                                                                                                                                       | 0.02                                                                                                                                                                                           | 0.00 J                                                                                                                                                                                                                 |
| 0.96             | 1.00                                                     | 0.59                                                                                                                                       | 0.04                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                   |
| 0.42             | 0.59                                                     | 1.00                                                                                                                                       | 0.32                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                   |
| 0.02             | 0.04                                                     | 0.32                                                                                                                                       | 1.00                                                                                                                                                                                           | 0.80                                                                                                                                                                                                                   |
| L 0.00           | 0.00                                                     | 0.10                                                                                                                                       | 0.80                                                                                                                                                                                           | 1.00 ]                                                                                                                                                                                                                 |
|                  | <sup>x</sup> Aug<br>1.00<br>0.96<br>0.42<br>0.02<br>0.00 | $\begin{bmatrix} x_{\text{Aug}} & x_{\text{Muc}} \\ 1.00 & 0.96 \\ 0.96 & 1.00 \\ 0.42 & 0.59 \\ 0.02 & 0.04 \\ 0.00 & 0.00 \end{bmatrix}$ | $\begin{bmatrix} x_{\text{Aug}} & x_{\text{Muc}} & x_{\text{War}} \\ 1.00 & 0.96 & 0.42 \\ 0.96 & 1.00 & 0.59 \\ 0.42 & 0.59 & 1.00 \\ 0.02 & 0.04 & 0.32 \\ 0.00 & 0.00 & 0.10 \end{bmatrix}$ | $\begin{bmatrix} x_{Aug} & x_{Muc} & x_{War} & x_{Min} \\ 1.00 & 0.96 & 0.42 & 0.02 \\ 0.96 & 1.00 & 0.59 & 0.04 \\ 0.42 & 0.59 & 1.00 & 0.32 \\ 0.02 & 0.04 & 0.32 & 1.00 \\ 0.00 & 0.00 & 0.10 & 0.80 \end{bmatrix}$ |



- Remarks
  - Basis function has very specific interpretation: covariance
  - No temperature measurements y have been made yet
  - Prior: assume temperature is 0°C



- Remarks
  - · Basis function has very specific interpretation: covariance
  - No temperature measurements y have been made yet
  - Prior: assume temperature is 0°C

#### Question

Expected temperature in Munich, given 9°C in Augsburg?

(condition on  $T_{Aug} = 9$ , i.e.  $E[T_{Muc} | T_{Aug} = 9]$ )



 $k(x_{Muc}, x_{Aug}) = 0.96$ 



















 $k(x_{Muc}, x_{Aug}) = 0.96$   $k(x_{War}, x_{Aug}) = 0.42$   $k(x_{Mos}, x_{Aug}) = 0.00$ 



 $k(x_{Muc}, x_{Aug}) = 0.96$   $k(x_{War}, x_{Aug}) = 0.42$   $k(x_{Mos}, x_{Aug}) = 0.00$ 



 $k(x_{Muc}, x_{Aug}) = 0.96$   $k(x_{War}, x_{Aug}) = 0.42$   $k(x_{Mos}, x_{Aug}) = 0.00$ 



 $k(x_{Muc}, x_{Aug}) = 0.96$   $k(x_{War}, x_{Aug}) = 0.42$   $k(x_{Mos}, x_{Aug}) = 0.00$ 





















$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$



$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$



$$\begin{array}{lll} \mathsf{k}(x_{\mathsf{Muc}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = & \mathsf{k}(x_{\mathsf{War}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = & \mathsf{k}(x_{\mathsf{Mos}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$

# What are the plane slopes? $\overline{y}_q = \overbrace{\mathbf{k}(\mathbf{x}_q, \mathbf{X})}^{\text{see above}} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}}_{(23)}$

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \frac{{}^{x_{\mathbf{A}\mathbf{u}\mathbf{g}}}_{\mathbf{X}\mathbf{Min}} \left[ \begin{array}{c} {}^{x_{\mathbf{A}\mathbf{u}\mathbf{g}}}_{\mathbf{0},\mathbf{02}} & {}^{x_{\mathbf{Min}}}_{\mathbf{0},\mathbf{02}} \\ {}^{0.02}_{\mathbf{0},\mathbf{02}} & 1.00 \end{array} \right]$$



$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$

# What are the plane slopes? $\overline{y}_{q} = \underbrace{\mathbf{k}(\mathbf{x}_{q}, \mathbf{X})}_{\text{Least squares!}} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1}\mathbf{y}}_{\text{Least squares!}} (23)$

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{smallmatrix} x_{\mathbf{Aug}} & x_{\mathbf{Min}} \\ x_{\mathbf{Min}} & \begin{bmatrix} 1.00 & 0.02 \\ 0.02 & 1.00 \end{bmatrix}$$



Least squares!

















