IROS2018 Tutorial Mo-TUT-2
From Least Squares Regression to High-dimensional Motion Primitives

Freek Stulp, Sylvain Calinon, Gerhard Neumann

Generation vs. Recall
$159+72=? ? ?$

Generation vs. Recall

$$
\begin{aligned}
159+72 & =(159+2)+(72-2) \\
& =161+70
\end{aligned}
$$

Generation vs. Recall

$$
\begin{aligned}
159+72 & =(159+2)+(72-2) \\
& =161+70 \\
& =231 \text { "generation" }
\end{aligned}
$$

Generation vs. Recall

$$
\begin{aligned}
159+72 & =(9+2)+(150+70) \\
& =11+220
\end{aligned}
$$

Generation vs. Recall

$$
\begin{aligned}
159+72 & =(9+2)+(150+70) \\
& =11+220 \\
& =231 \text { "generation" }
\end{aligned}
$$

Generation vs. Recall
$159+72=? ? ?$

Generation vs. Recall
$159+72=231^{\text {"recall" }}$

Generation vs. Recall

$159+72=231^{\text {"recall" }}$

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

Generation vs. Recall

$159+72=231^{\text {"recall" }}$

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. \& Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993
Flash, T. \& Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. \& Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993
Flash, T. \& Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives for robots?

- Couple degrees of freedom to deal with high-dimensional systems
- Sequencing and superpositioning of MPs for more complex task
- Low-dimensional parameterization of MP enables learning
- MPs can be bootstrapped with demonstrations
- Direct mappings between task parameters and MP parameters

Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. \& Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993
Flash, T. \& Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives for robots!

ljspeert, A. J.; Nakanishi, J. \& Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. ICRA, 2002

Schedule

9:00	9:15	Introduction	
9:15	10:45	Regression Tutorial	Freek Stulp
10:45	11:00	Motion Primitives 1.	Sylvain Calinon
11:00	11:30	Coffee Break	
11:30	12:15	Motion Primitives 1 (cont.)	Sylvain Calinon
12:15	13:15	Motion Primitives 2	Gerhard Neumann
13:15	- 13:30	Wrap up	

Regression Tutorial

IROS'18 Tutorial

Freek Stulp
Institute of Robotics and Mechatronics, German Aerospace Center (DLR) Autonomous Systems and Robotics, ENSTA-ParisTech

01.10 .2018

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

Application: Dynamic parameter estimation

\square An, C.; Atkeson, C. and Hollerbach, J. (1985).
Estimation of inertial parameters of rigid body links of manipulators [404]

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

Application: Programming by demonstration

[^0]Learning Physical Collaborative Robot Behaviors from Human Demonstrations IEEE Trans. on Robotics.Calinon, S.; Guenter, F. and Billard, A. (2007).
On Learning, Representing and Generalizing a Task in a Humanoid Robot [725]
IEEE Transactions on Systems, Man and Cybernetics.

What Is Regression?

Estimating a relationship between input variables and continuous output variables from data

Application: Biosignal Processing

Gijsberts, A., Bohra, R., Sierra Gonzlez, D., Werner, A., Nowak, M., Caputo, B., Roa, M. and Castellini, C. (2014)
Stable myoelectric control of a hand prosthesis using non-linear incremental learning
Frontiers in Neurorobotics

What Is Not Regression?

Training data

$$
\{(\underbrace{\mathbf{x}_{n}}_{\text {input target }}, \underbrace{\mathbf{y}_{n}}_{n})\}_{n=1}^{N} \quad \forall n, \mathbf{x}_{n} \in X \wedge \mathbf{y}_{n} \in Y
$$

Supervised Learning	targets available	
Regression	targets available	$Y \subseteq \mathbb{R}^{M}$
Classification	targets available	$Y \subseteq 1, \ldots K$
Reinforcement learning	no targets, only rewards	$r_{n} \subseteq \mathbb{R}$
Unsupervised learning	no targets at all	

Regression - Assumptions about the Function

none

Regression - Assumptions about the Function

smooth

none

\rightarrow Linear Least Squares

A.M. Legendre (1805).

Nouvelles méthodes pour la détermination des orbites des comtes [519]
Firmin Didot.
三
C.F. Gauss (1809).

Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum [943]

Linear Least Squares

Linear Least Squares

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, D} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, D} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N, 1} & x_{N, 2} & \cdots & x_{N, D}
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

- \mathbf{X} is the $N \times D$ "design matrix"
- Each row is a D-dim. data point

Linear Least Squares

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

- Define fitting criterion

Sum of squared residuals

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N} r_{n}^{2} \tag{1}\\
& =\sum_{n=1}^{N}\left(y_{n}-f\left(\mathbf{x}_{n}\right)\right)^{2}
\end{align*}
$$

Linear Least Squares

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

- Define fitting criterion

Sum of squared residuals

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N} r_{n}^{2} \tag{1}\\
& =\sum_{n=1}^{N}\left(y_{n}-f\left(\mathbf{x}_{n}\right)\right)^{2}
\end{align*}
$$

Linear Least Squares

Applied to a linear model

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N}\left(y_{n}-\mathbf{a}^{\top} \mathbf{x}_{n}\right)^{2} \tag{3}\\
& =(\mathbf{y}-\mathbf{X} \mathbf{a})^{\top}(\mathbf{y}-\mathbf{X a}), \tag{4}
\end{align*}
$$

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

(2) Optimize a w.r.t. criterion

Minimize sum of squared residuals $S(\mathbf{a})$

$$
\begin{align*}
\mathbf{a}^{*} & =\arg \min _{\mathbf{a}} S(\mathbf{a}) \tag{1}\\
& =\arg \min _{\mathbf{a}}(\mathbf{y}-\mathbf{X a})^{\top}(\mathbf{y}-\mathbf{X a}) \tag{2}
\end{align*}
$$

Linear Least Squares

Quadratic cost: when is its derivative 0 ?

$$
\begin{align*}
S^{\prime}(\mathbf{a}) & =2\left(\mathbf{a}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{y}\right) \tag{3}\\
\mathbf{a}^{*} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} . \tag{4}
\end{align*}
$$

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

(2) Optimize a w.r.t. criterion

Minimize sum of squared residuals $S(\mathbf{a})$

$$
\begin{align*}
\mathbf{a}^{*} & =\arg \min _{\mathbf{a}} S(\mathbf{a}) \tag{1}\\
& =\arg \min _{\mathbf{a}}(\mathbf{y}-\mathbf{X a})^{\top}(\mathbf{y}-\mathbf{X a}) \tag{2}
\end{align*}
$$

Linear Least Squares

Quadratic cost: when is its derivative 0 ?

$$
\begin{align*}
S^{\prime}(\mathbf{a}) & =2\left(\mathbf{a}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{y}\right) \tag{3}\\
\mathbf{a}^{*} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} . \tag{4}
\end{align*}
$$

Linear Least Squares

- Which line fits the data best?
© Define fitting criterion
(2) Optimize a w.r.t. criterion

(2) Optimize a w.r.t. criterion

Minimize sum of squared residuals $S(\mathbf{a})$

$$
\begin{align*}
\mathbf{a}^{*} & =\arg \min _{\mathbf{a}} S(\mathbf{a}) \tag{1}\\
& =\arg \min _{\mathbf{a}}(\mathbf{y}-\mathbf{X a})^{\top}(\mathbf{y}-\mathbf{X a}) \tag{2}
\end{align*}
$$

Linear Least Squares

Quadratic cost: when is its derivative 0 ?

$$
\begin{align*}
S^{\prime}(\mathbf{a}) & =2\left(\mathbf{a}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{y}\right) \tag{3}\\
\mathbf{a}^{*} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} . \tag{4}
\end{align*}
$$

Nice! Closed form solution to find \mathbf{a}^{*}

Linear Least Squares

- Which line fits the data best?
(1) Define fitting criterion
(2) Optimize a w.r.t. criterion

(2) Optimize a w.r.t. criterion

Minimize sum of squared residuals $S(\mathbf{a})$

$$
\begin{align*}
\mathbf{a}^{*} & =\arg \min _{\mathbf{a}} S(\mathbf{a}) \tag{1}\\
& =\arg \min _{\mathbf{a}}(\mathbf{y}-\mathbf{X a})^{\top}(\mathbf{y}-\mathbf{X a}) \tag{2}
\end{align*}
$$

Quadratic cost: when is its derivative 0 ?

$$
\begin{align*}
S^{\prime}(\mathbf{a}) & =2\left(\mathbf{a}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{y}\right) \tag{3}\\
\mathbf{a}^{*} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} . \tag{4}
\end{align*}
$$

Nice! Closed form solution to find \mathbf{a}^{*}

Linear Least Squares

Offset trick

$$
\begin{gathered}
f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b \\
=\left[\begin{array}{l}
\mathbf{a} \\
b
\end{array}\right]^{\top}\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right] \\
\mathbf{x}=\left[\begin{array}{ccccc}
x_{1}, 1 & x_{1}, 2 \\
x_{2,1} & \cdots & x_{1, D} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{2}, D & 1 \\
x_{N, 1} & x_{N, 2} & \cdots & x_{N, D} & i
\end{array}\right]
\end{gathered}
$$

Weighted Linear Least Squares

Idea: more important to fit some points than others.

Weighted Linear Least Squares

Idea: more important to fit some points than others.

- Importance \equiv Weight w_{n}
- Example weighting
- manual
- boxcar function
- Gaussian function

$$
\begin{aligned}
& w_{n}=\phi\left(\mathbf{x}_{n}, \boldsymbol{\theta}\right) \\
&= \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{c})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mathbf{c})\right) \\
& \quad \quad \text { with } \boldsymbol{\theta}=(\mathbf{c}, \boldsymbol{\Sigma})
\end{aligned}
$$

Weighted Linear Least Squares

Idea: more important to fit some points than others.

- Define fitting criterion

Weighted residuals:

$$
\begin{equation*}
S(\mathbf{a})=\sum_{n=1}^{N} w_{n}\left(y_{n}-\mathbf{a}^{\top} \mathbf{x}_{n}\right)^{2} \tag{5}
\end{equation*}
$$

(6)

Weighted Linear Least Squares

Idea: more important to fit some points than others.

- Define fitting criterion

Weighted residuals:

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N} w_{n}\left(y_{n}-\mathbf{a}^{\top} \mathbf{x}_{n}\right)^{2} \tag{5}\\
& =(\mathbf{y}-\mathbf{X a})^{\top} \mathbf{W}(\mathbf{y}-\mathbf{X} \mathbf{a}) \tag{6}
\end{align*}
$$

Weighted Linear Least Squares

Idea: more important to fit some points than others.

- Define fitting criterion

Weighted residuals:

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N} w_{n}\left(y_{n}-\mathbf{a}^{\top} \mathbf{x}_{n}\right)^{2} . \tag{5}\\
& =(\mathbf{y}-\mathbf{X a})^{\top} \mathbf{W}(\mathbf{y}-\mathbf{X a}), \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{a}^{*}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{y} . \tag{7}
\end{equation*}
$$

Weighted Linear Least Squares

Idea: more important to fit some points than others.

- Define fitting criterion

Weighted residuals:

$$
\begin{align*}
S(\mathbf{a}) & =\sum_{n=1}^{N} w_{n}\left(y_{n}-\mathbf{a}^{\top} \mathbf{x}_{n}\right)^{2} \tag{5}\\
& =(\mathbf{y}-\mathbf{X} \mathbf{a})^{\top} \mathbf{W}(\mathbf{y}-\mathbf{X} \mathbf{a})
\end{align*}
$$

$$
\begin{equation*}
\mathbf{a}^{*}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{y} . \tag{7}
\end{equation*}
$$

Locally Weighted Regressions

In robotics, functions usually non-linear. But often locally linear!

Locally Weighted Regressions
In robotics, functions usually non-linear. But often locally linear!

Idea: Do multiple, independent, locally weighted least sq. regressions

Locally Weighted Regressions

In robotics, functions usually non-linear. But often locally linear!

Idea: Do multiple, independent, locally weighted least sq. regressions
\square William S. Cleveland; Susan J. Devlin (1988).
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting [4074] Journal of the American Statistical Association.
T
Atkeson, C. G.; Moore, A. W. and Schaal, S. (1997).
Locally Weighted Learning for Control [2160]
Artificial Intelligence Review.

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \qquad \begin{aligned}
& \text { for } n=1 \ldots N \\
& \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \mathbf{\Sigma}\right) \\
\mathbf{a}_{e}= & \left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} .
\end{aligned}
\end{align*}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \qquad \begin{aligned}
& \text { for } n=1 \ldots N \\
& \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \mathbf{\Sigma}\right) \\
\mathbf{a}_{e}= & \left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} .
\end{aligned}
\end{align*}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{aligned}
& \text { for } \boldsymbol{e}=1 \ldots \mathbf{E} \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \boldsymbol{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} .
\end{aligned}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{aligned}
& \text { for } e=1 \ldots E \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \boldsymbol{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} .
\end{aligned}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \mathbf{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} . \tag{8}
\end{align*}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \mathbf{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} . \tag{8}
\end{align*}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \boldsymbol{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} . \tag{8}
\end{align*}
$$

Resulting model

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(\mathbf{a}_{e}^{\top} \mathbf{x}\right) \tag{9}
\end{equation*}
$$

Locally Weighted Regressions

- Idea: multiple, independent, locally weighted least squares regressions
- Locally: radial weighting function with different centers ("receptive field")

$$
\begin{align*}
& \text { for } e=1 \ldots E \\
& \quad \text { for } n=1 \ldots N \\
& \quad \mathbf{W}_{e}^{n n}=g\left(\mathbf{x}_{n}, \mathbf{c}_{e}, \boldsymbol{\Sigma}\right) \\
& \mathbf{a}_{e}=\left(\mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}_{e} \mathbf{y} . \tag{8}
\end{align*}
$$

Resulting model

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(\mathbf{a}_{e}^{\top} \mathbf{x}\right) \tag{9}
\end{equation*}
$$

(ϕ must be normalized)

Variations of Locally Weighted Regressions

Receptive Field Weighted Regression

- Incremental, not batch
- E, centers $\mathbf{c}_{1 \ldots E}$ and widths $\boldsymbol{\Sigma}_{1 \ldots E}$ determined automatically
- Disadvantage: many open parametersSchaal, S. and Atkeson, C. G. (1997).
Receptive Field Weighted Regression [34]
Technical Report TR-H-209, ATR Human Information Processing Laboratories.

Variations of Locally Weighted Regressions

Receptive Field Weighted Regression

- Incremental, not batch
- E, centers $\mathbf{c}_{1 \ldots E}$ and widths $\Sigma_{1 \ldots E}$ determined automatically
- Disadvantage: many open parametersSchaal, S. and Atkeson, C. G. (1997).
Receptive Field Weighted Regression [34]
Technical Report TR-H-209, ATR Human Information Processing Laboratories.

Locally Weighted Projection Regression

- As RFWR, but also performs dimensionality reduction within each receptive field
\square Vijayakumar, S. and Schaal, S. (2000).
Locally Weighted Projection Regression
[208]
International Conference on Machine Learning.

"Avoid large parameter vectors."

"Avoid large parameter vectors."

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

L^{2}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{2}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{2}\right)^{\frac{1}{2}}
$$

Euclidean distance
$\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
"Thikonov Regularization"
"Ridge Regression"

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

L^{2}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{2}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{2}\right)^{\frac{1}{2}}
$$

Euclidean distance
$\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
"Thikonov Regularization"
"Ridge Regression"

L^{1}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{1}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{1}\right)^{\frac{1}{1}}=\sum_{d=1}^{D}\left|a_{d}\right|
$$

Manhattan distance no closed-form solution...
"LASSO Regularization"

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

L^{2}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{2}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{2}\right)^{\frac{1}{2}}
$$

Euclidean distance

$$
\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} .
$$

"Thikonov Regularization" "Ridge Regression"

L^{1}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{1}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{1}\right)^{\frac{1}{1}}=\sum_{d=1}^{D}\left|a_{d}\right|
$$

Manhattan distance no closed-form solution...
"LASSO Regularization"

Use combination of L^{1} and L^{2} : "Elastic Nets"

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

L^{2}-norm for $\|\mathbf{a}\|$

$$
\|\mathbf{a}\|_{2}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{2}\right)^{\frac{1}{2}}
$$

Euclidean distance
$\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
"Thikonov Regularization"
"Ridge Regression"

$$
\begin{aligned}
& L^{1} \text {-norm for }\|\mathbf{a}\| \\
& \|\mathbf{a}\|_{1}=\left(\sum_{d=1}^{D}\left|a_{d}\right|^{1}\right)^{\frac{1}{1}}=\sum_{d=1}^{D}\left|a_{d}\right| \\
& \text { Manhattan distance } \\
& \text { no closed-form solution... } \\
& \text { "LASSO Regularization" }
\end{aligned}
$$

Use combination of L^{1} and L^{2} : "Elastic Nets"

Regularization

- Idea: penalize large parameter vectors to
- avoid overfitting / achieve sparse parameter vectors

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{10}
\end{equation*}
$$

Michael Littman and Charles Isbell feat Infinite Harmony
"Overfitting A Cappella"

Beyond squares

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{11}
\end{equation*}
$$

Penalty on parameters a (regularization)

Beyond squares

$$
\begin{equation*}
\mathbf{a}^{*}=\arg \min _{\mathbf{a}}(\underbrace{\frac{1}{2}\left\|\mathbf{y}-\mathbf{X}^{\top} \mathbf{a}\right\|^{2}}_{\text {fit data }}+\underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text {small parameters }}) \tag{11}
\end{equation*}
$$

Penalty on residuals r_{n}
(fit data)
L_{2} : least squares
L_{1} : least deviations
L_{ε} : support vector regression

Penalty on parameters a (regularization)

- No closed-form solution, but efficient optimizers exist

"Avoid large parameter vectors."

"Avoid large parameter vectors."

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \mathbf{c}_{e}\right) \tag{12}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) . \tag{13}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \tag{13}
\end{equation*}
$$

Feature matrix (analogous to design matrix \mathbf{x})

$$
\boldsymbol{\Theta}=\left[\begin{array}{cccc}
\phi\left(\mathbf{x}_{1}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{E}\right) \tag{14}\\
\phi\left(\mathbf{x}_{2}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{E}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\mathbf{x}_{N}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{E}\right)
\end{array}\right]
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \tag{13}
\end{equation*}
$$

Feature matrix (analogous to design matrix \mathbf{x})

$$
\boldsymbol{\Theta}=\left[\begin{array}{cccc}
\phi\left(\mathbf{x}_{1}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{E}\right) \tag{14}\\
\phi\left(\mathbf{x}_{2}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{E}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\mathbf{x}_{N}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{E}\right)
\end{array}\right]
$$

Least squares solution

$$
\begin{equation*}
\mathbf{w}^{*}=\left(\boldsymbol{\Theta}^{\top} \boldsymbol{\Theta}\right)^{-1} \boldsymbol{\Theta}^{\top} \mathbf{y} \tag{15}
\end{equation*}
$$

Radial Basis Function Network

$$
\begin{equation*}
f(\mathbf{x})=\sum_{e=1}^{E} w_{e} \cdot \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \tag{13}
\end{equation*}
$$

Feature matrix (analogous to design matrix \mathbf{x})

$$
\boldsymbol{\Theta}=\left[\begin{array}{cccc}
\phi\left(\mathbf{x}_{1}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{1}, \mathbf{c}_{E}\right) \tag{14}\\
\phi\left(\mathbf{x}_{2}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{2}, \mathbf{c}_{E}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\mathbf{x}_{N}, \mathbf{c}_{1}\right) & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{2}\right) & \cdots & \phi\left(\mathbf{x}_{N}, \mathbf{c}_{E}\right)
\end{array}\right]
$$

Least squares solution

$$
\begin{equation*}
\mathbf{w}^{*}=\left(\boldsymbol{\Theta}^{\top} \boldsymbol{\Theta}\right)^{-1} \boldsymbol{\Theta}^{\top} \mathbf{y} \tag{15}
\end{equation*}
$$

Kernel Ridge Regression

- Like a RBFN, but every data point is the center of a basis function

$$
\begin{equation*}
f(\mathbf{x})=\sum_{n=1}^{N} w_{n} \cdot k\left(\mathbf{x}, \mathbf{x}_{n}\right) \tag{16}
\end{equation*}
$$

"Gram matrix"(analogous to design matrix \mathbf{X})

$$
\begin{align*}
\mathbf{K}(\mathbf{X}, \mathbf{X}) & =\left[\begin{array}{cccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\
k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{2}, \mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{N}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}\right] \tag{17}\\
\mathbf{w}^{*} & =\left(\mathbf{K}^{\top} \mathbf{K}\right)^{-1} \mathbf{K}^{\top} \mathbf{y} \tag{18}\\
& =\mathbf{K}^{-1} \mathbf{y}, \tag{19}
\end{align*}
$$

Kernel Ridge Regression

- Like a RBFN, but every data point is the center of a basis function
- Uses L^{2} regularization

$$
\begin{equation*}
f(\mathbf{x})=\sum_{n=1}^{N} w_{n} \cdot k\left(\mathbf{x}, \mathbf{x}_{n}\right) \tag{16}
\end{equation*}
$$

"Gram matrix"(analogous to design matrix \mathbf{X})

$$
\begin{align*}
\mathbf{K}(\mathbf{X}, \mathbf{X}) & =\left[\begin{array}{cccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\
k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{2}, \mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{N}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}\right] \tag{17}\\
\mathbf{w}^{*} & =\left(\mathbf{K}^{\top} \mathbf{K}\right)^{-1} \mathbf{K}^{\top} \mathbf{y} \tag{18}\\
& =\mathbf{K}^{-1} \mathbf{y}, \tag{19}\\
\mathbf{w}^{*} & =(\lambda \mathbf{I}+\mathbf{K})^{-1} \mathbf{y} \quad \text { with } L^{2} \text { regularization } \tag{20}
\end{align*}
$$

Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function

Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function
- Since least squares is at the heart of all of these
- incremental versions \leftarrow recursive least squares
- apply L^{2} regularization (still closed form)

Freek, aren't you being a bit shallow?

- Deep learning great when you
- do not know the features
- know the features to be hierarchically organized

Freek, aren't you being a bit shallow?

- Deep learning great when you
- do not know the features
- know the features to be hierarchically organizedRajeswaran A, Lowrey K, Todorov E and Kakade S. (2017).
Towards generalization and simplicity in continuous control
Neural Information Processing Systems (NIPS).

Table 1: Final performances of the policies Table 2: Number of episodes to achieve thre shold

Task	Linear		RBF		NN	Task	Th.	Linear	RBF	TRPO+NN
	stoc	mean	stoc	mean	TRPO					
Swimmer	362	366	361	365	131	Swimmer	325	1450	1550	N-A
Hopper	3466	3651	3590	3810	3668	Hopper	3120	13920	8640	10000
Cheetah	3810	4149	6477	6620	4800	Cheetah	3430	11250	6000	4250
Walker	4881	5234	5631	5867	5594	Walker	4390	36840	25680	14250
Ant	3980	4607	4297	4816	5007	Ant	3580	39240	30000	73500
Humanoid	5873	6440	6237	6849	6482	Humanoid	5280	79800	96720	87000

A neural network perspective

All these models can be considered (degenerate) neural networks!

A neural network perspective

All these models can be considered (degenerate) neural networks!
Backpropagation can be used in all these models!

Figure: Network representation of a linear model. Activation is. . . linear!

Figure: The RBFN model. ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{\boldsymbol{e}}\right)$

Figure: The RRRFF model. ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right)$

Figure: The SVR model. ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right)$

Figure: The regression trees model. ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right)$

Extreme learning machine

Figure: The extreme learning machine model. ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right)$

- ELM: sigmoid act. function, no hidden layer, random features
- ANN: sigmoid act. function, hidden layers, learned features

KRR and GPR

Figure: The function model used in KRR and GPR, as a network.

Locally weighted regression

Figure: Function model in Locally Weighted Regressions, represented as a feedforward neural network. The functions $\phi_{e}(\mathbf{x})$ generate the weights w_{e} from the hidden nodes - which contain linear sub-models $\left(\mathbf{a}_{e}^{\top} \mathbf{x}+b_{e}\right)$ - to the output node. Here, ϕ_{e} is an abbreviation of $\phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right)$

Conclusion: Generic batch regression flow-chart

Algorithm

least squares: $\mathbf{a}^{*}=\left(\boldsymbol{\lambda} \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Conclusion: Generic batch regression flow-chart

Algorithm

least squares: $\mathbf{a}^{*}=\left(\boldsymbol{\lambda} \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Model

linear model: $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$

```
training data
(inputs/targets)
Regression
algorithm
model
```

Conclusion: Generic batch regression flow-chart

Algorithm

least squares: $\mathbf{a}^{*}=\left(\boldsymbol{\lambda} \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$

Model
linear model: $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$

Model parameters slopes: a

Conclusion: Generic batch regression flow-chart

Algorithm

least squares: $\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
Model
linear model: $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$

Meta parameters

 regularization: λModel parameters slopes: a

Conclusion: Generic batch regression flow-chart

Algorithm

least squares: $\mathbf{a}^{*}=\left(\lambda \mathbf{I}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
Model
linear model: $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$

Meta parameters

 regularization: λModel parameters slopes: a

Conclusion

$$
\begin{array}{ll}
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(b_{e}+\mathbf{a}_{e}^{\top} \mathbf{x}\right) & \text { Weighted sum of linear models } \\
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot w_{e} & \text { Weighted sum of basis functions } \tag{22}
\end{array}
$$

Conclusion

$$
\begin{array}{ll}
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(b_{e}+\mathbf{a}_{e}^{\top} \mathbf{x}\right) & \text { Weighted sum of linear models } \\
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot w_{e} & \text { Weighted sum of basis functions } \tag{22}
\end{array}
$$

(22) is a special case of (21) with $\mathbf{a}_{e}=0$ and $b_{e} \equiv w_{e}$

Conclusion

$$
\begin{array}{ll}
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(b_{e}+\mathbf{a}_{e}^{\top} \mathbf{x}\right) & \text { Weighted sum of linear models } \\
f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot w_{e} & \text { Weighted sum of basis functions } \tag{22}
\end{array}
$$

(22) is a special case of (21) with $\mathbf{a}_{e}=\mathbf{0}$ and $b_{e} \equiv w_{e}$

Conclusion

Freek Stulp and Olivier Sigaud (2015).
Many regression algorithms, one unified model - A review.
Neural Networks.
$\begin{array}{lr}f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot\left(b_{e}+\mathbf{a}_{e}^{\top} \mathbf{x}\right) & \text { Weighted sum of linear models } \\ f(\mathbf{x})=\sum_{e=1}^{E} \phi\left(\mathbf{x}, \boldsymbol{\theta}_{e}\right) \cdot w_{e} & \text { Weighted sum of basis functions }\end{array}$
(22) is a special case of (21) with $\mathbf{a}_{e}=\mathbf{0}$ and $b_{e} \equiv w_{e}$

Conclusion

Figure: Classification of regression algorithms, based only on the model used to represent the underlying function.

Many toolkits available

- Python
- scikit-learn: http://scikit-learn.org
- StatsModels: http://www.statsmodels.org/
- PbDlib: http://calinon.ch/codes.htm
- dmpbbo: https://github.com/stulp/dmpbbo
- Matlab
- curvefit: https://www.mathworks.com/help/curvefit/ linear-and-nonlinear-regression.html
- PbDlib: http://calinon.ch/codes.htm
- C++
- PbDlib: http://calinon.ch/codes.htm
- dmpbbo: https://github.com/stulp/dmpbbo

Personal Favourites

Gaussian process regression

+ Very few assumptions
+ Meta-parameters estimated from data itself
+ Estimates variance also
+ Works in high dimensions
- Training/query times increase with amount of data
- Not easy to make incremental

Gaussian mixture regression

+ Estimates variance also
+ Algorithm is inherently incremental
+ Some meta-parameters, but easy to tune
+ Fast training times
- Training only stable for low input dimensions

Locally Weighted Regressions

+ Fast query times, fast training
+ Few meta-parameters, and easy to set
+ Stable learning results (batch)
- Not incremental
- No variance estimate

Deep Learning

+ Automatic extraction of (hierarhical) features

Conclusion

- Don't think about these regression algorithms as being unique
- Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

Conclusion

- Don't think about these regression algorithms as being unique
- Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

Thank you for your attention!

Appendix

Gaussian Process Regression

"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot): T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

Gaussian Process Regression

"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot): T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

Gaussian Process Regression

"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot): T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

Instead of screaming, let's talk about what it means to be smooth.

Gaussian Process Regression

- Points that are close in the input space should be close in the output space.
- Cities that are close geographically have similar temperatures (on average)
- Taller people have larger shoe sizes (on average)
- Shoe size covaries with height

Gaussian Process Regression - Covariance Function

covariance function

Gaussian Process Regression - Covariance Function

covariance function

$x_{\text {Aug }}\left[\begin{array}{ccccc}x_{\text {Aug }} & x_{\text {Muc }} & x_{\text {War }} & x_{\text {Min }} & x_{\text {Mos }} \\ 1.00 & 0.96 & 0.42 & 0.02 & 0.00 \\ & & & & \end{array}\right]$

Gaussian Process Regression - Covariance Function

covariance function

covariance matrix (Gram matrix)

$\mathbf{K}(\mathbf{X}, \mathbf{X})=$| |
| :--- |
| $x_{\text {Aug }}$
 $x_{\text {Aug }}$
 $x_{\text {Muc }}$
 $x_{\text {War }}$
 $x_{\text {Min }}$
 $x_{\text {Mos }}$ |\(\left[\begin{array}{lllll}1.00 \& 0.96 \& x_{Muc} \& x_{War} \& x_{Min}

x_{Mos}

0.96 \& 1.00 \& 0.59 \& 0.02 \& 0.00

0.42 \& 0.59 \& 1.00 \& 0.32 \& 0.00

0.02 \& 0.04 \& 0.32 \& 1.00 \& 0.10

0.00 \& 0.00 \& 0.10 \& 0.80 \& 1.00\end{array}\right]\)

Gaussian Process Regression - Covariance Function

covariance function

covariance matrix (Gram matrix)

		${ }^{\text {Augg }}$	${ }^{\text {M Muc }}$	${ }^{\text {War }}$	${ }^{\text {M }}$ Min	$x_{\text {Mos }}$
	${ }^{\text {Aug }}$	1.00	0.96	0.42	0.02	0.00
	${ }^{\text {M Muc }}$	0.96	1.00	0.59	0.04	0.00
$\mathbf{K}(\mathbf{X}, \mathbf{X})=$	$x_{\text {War }}$	0.42	0.59	1.00	0.32	0.10
	$x_{\text {Min }}$	0.02	0.04	0.32	1.00	0.80
	$x_{\text {Mos }}$	0.00	0.00	0.10	0.80	1.00

- Remarks
- Basis function has very specific interpretation: covariance
- No temperature measurements y have been made yet
- Prior: assume temperature is $0^{\circ} \mathrm{C}$

Gaussian Process Regression - Covariance Function

covariance function

covariance matrix (Gram matrix)

		${ }^{\text {Augg }}$	${ }^{\text {M Muc }}$	${ }^{\text {War }}$	${ }^{\text {M }}$ Min	$x_{\text {Mos }}$
	${ }^{\text {Aug }}$	1.00	0.96	0.42	0.02	0.00
	${ }^{\text {M Muc }}$	0.96	1.00	0.59	0.04	0.00
$\mathbf{K}(\mathbf{X}, \mathbf{X})=$	$x_{\text {War }}$	0.42	0.59	1.00	0.32	0.10
	$x_{\text {Min }}$	0.02	0.04	0.32	1.00	0.80
	$x_{\text {Mos }}$	0.00	0.00	0.10	0.80	1.00

- Remarks
- Basis function has very specific interpretation: covariance
- No temperature measurements y have been made yet
- Prior: assume temperature is $0^{\circ} \mathrm{C}$

Question

Expected temperature in Munich, given $9^{\circ} \mathrm{C}$ in Augsburg?

$$
\text { (condition on } T_{\text {Aug }}=9 \text {, i.e. } E\left[T_{\text {Muc }} \mid T_{\text {Aug }}=9\right] \text {) }
$$

Gaussian Process Regression - Example

$$
k\left(x_{\text {Muc }}, x_{\text {Aug }}\right)=0.96
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
K\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
K\left(x_{\text {Muc }}, x_{\text {Aug }}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
K\left(x_{\text {Muc }}, x_{\text {Aug }}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

$$
k\left(x_{\mathrm{Muc}}, x_{\mathrm{Aug}}\right)=0.96
$$

$$
k\left(X_{\mathrm{War}}, x_{\mathrm{Aug}}\right)=0.42
$$

$$
k\left(x_{\text {Mos }}, x_{\text {Aug }}\right)=0.00
$$

Gaussian Process Regression - Example

Gaussian Process Regression - Example

Gaussian Process Regression - Example

$$
\left.\begin{array}{ccc}
\mathbf{k}\left(X_{\text {Muc }},\left[\begin{array}{l}
X_{\text {Aug }} \\
\left.\left[\begin{array}{l}
\text { Min }
\end{array}\right]\right) \\
0.96 \\
0.04]
\end{array}\right.\right. & \mathbf{k}\left(X_{\text {War }},\left[\begin{array}{ll}
X_{\text {Aug }} & \left.X_{\text {Min }}\right]
\end{array}\right]\right) & \mathbf{k}\left(X_{\text {Mos }},\left[\begin{array}{l}
X_{\text {Aug }} \\
0.42
\end{array} X_{\text {Min }}\right]\right.
\end{array}\right]=
$$

Gaussian Process Regression - Example

$$
\left.\begin{array}{ccc}
\mathbf{k}\left(X_{\text {Muc }},\left[\begin{array}{l}
X_{\text {Aug }} \\
\left.\left[\begin{array}{l}
\text { Min }
\end{array}\right]\right) \\
0.96 \\
0.04]
\end{array}\right.\right. & \mathbf{k}\left(X_{\text {War }},\left[\begin{array}{ll}
X_{\text {Aug }} & \left.X_{\text {Min }}\right]
\end{array}\right]\right) & \mathbf{k}\left(X_{\text {Mos }},\left[\begin{array}{l}
X_{\text {Aug }} \\
0.42
\end{array} X_{\text {Min }}\right]\right.
\end{array}\right]=
$$

Gaussian Process Regression - Example

$$
\left.\begin{array}{ccc}
\mathbf{k}\left(X_{\text {Muc }},\left[\begin{array}{l}
X_{\text {Aug }} \\
\left.\left[\begin{array}{l}
\text { Min }
\end{array}\right]\right) \\
0.96 \\
0.04]
\end{array}\right.\right. & \mathbf{k}\left(X_{\text {War }},\left[\begin{array}{ll}
X_{\text {Aug }} & \left.X_{\text {Min }}\right]
\end{array}\right]\right) & \mathbf{k}\left(X_{\text {Mos }},\left[\begin{array}{l}
X_{\text {Aug }} \\
0.42
\end{array} X_{\text {Min }}\right]\right.
\end{array}\right]=
$$

Gaussian Process Regression - Example

$$
\left.\begin{array}{ccc}
\mathbf{k}\left(X_{\text {Muc }},\left[\begin{array}{l}
X_{\text {Aug }} \\
\left.\left[\begin{array}{l}
\text { Min }
\end{array}\right]\right) \\
0.96 \\
0.04]
\end{array}\right.\right. & \mathbf{k}\left(X_{\text {War }},\left[\begin{array}{ll}
X_{\text {Aug }} & \left.X_{\text {Min }}\right]
\end{array}\right]\right) & \mathbf{k}\left(X_{\text {Mos }},\left[\begin{array}{l}
X_{\text {Aug }} \\
0.42
\end{array} X_{\text {Min }}\right]\right.
\end{array}\right]=
$$

Gaussian Process Regression - Example

$$
\begin{aligned}
& \mathbf{k}\left(x_{\text {Muc }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(X_{\text {War }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(x_{\text {Mos }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)= \\
& \text { [0.96 0.04] } \\
& \text { [0.42 0.32] } \\
& \text { [0.00 0.8] }
\end{aligned}
$$

What are the plane slopes?

$$
\mathbf{K}(\mathbf{X}, \mathbf{X})={ }^{x_{\text {Aug }}}{ }_{x_{\text {Min }}}\left[\begin{array}{cc}
x_{\text {Aug }} & x_{\text {Min }} \\
1.00 & 0.02 \\
0.02 & 1.00
\end{array}\right]
$$

$$
\bar{y}_{q}=\overbrace{\mathbf{k}\left(\mathbf{x}_{q}, \mathbf{X}\right)}^{\text {see above }} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}}
$$

Gaussian Process Regression - Example

$$
\begin{aligned}
& \mathbf{k}\left(X_{\text {Muc }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(X_{\text {War }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(X_{\text {Mos }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)= \\
& \text { [0.96 0.04] } \\
& \text { [0.42 0.32] } \\
& \text { [0.00 0.8] }
\end{aligned}
$$

What are the plane slopes?

$$
\bar{y}_{q}=\overbrace{\mathbf{k}\left(\mathbf{x}_{q}, \mathbf{X}\right)}^{\text {see above }} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}}_{\text {Least squares! }}
$$

$$
\mathbf{K}(\mathbf{X}, \mathbf{X})={ }^{x_{\text {Aug }}}{ }_{x_{\text {Min }}}\left[\begin{array}{cc}
x_{\text {Aug }} & x_{\text {Min }} \\
1.00 & 0.02 \\
0.02 & 1.00
\end{array}\right]
$$

Gaussian Process Regression - Example

$$
\begin{align*}
& \mathbf{k}\left(X_{\text {Muc }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(X_{\text {War }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)=\mathbf{k}\left(X_{\text {Mos }},\left[x_{\text {Aug }} X_{\text {Min }}\right]\right)= \\
& \text { [0.96 0.04] } \tag{0.420.32}\\
& \text { [0.00 0.8] }
\end{align*}
$$

What are the plane slopes?

$$
\bar{y}_{q}=\overbrace{\mathbf{k}\left(\mathbf{x}_{q}, \mathbf{X}\right)}^{\text {see above }} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}}_{\text {Least squares! }}
$$

Kernel Regression

$$
\begin{aligned}
f(\mathbf{x}) & =\sum_{n=1}^{N} w_{n} \cdot k\left(\mathbf{x}, \mathbf{x}_{n}\right) \\
\mathbf{w}^{*} & =\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}
\end{aligned}
$$

Gaussian Process Regression - Example

Gaussian Process Regression - Example

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

Gaussian Process Regression - Example

The more measurements become available, the more certain we become

[^0]: Rozo, L.; Calinon, S.; Caldwell, D. G.; Jimenez, P. and Torras, C. (2016).

