IROS2018 Tutorial Mo-TUT-2 From Least Squares Regression to High-dimensional Motion Primitives

Freek Stulp, Sylvain Calinon, Gerhard Neumann

159 + 72 = ???

159 + 72 = (159+2) + (72-2)= 161 + 70

159 + 72 = (159+2) + (72-2)= 161 + 70 = 231 "generation"

159 + 72 = (9+2) + (150+70) = 11 + 220

159 + 72 = (9+2) + (150+70)= 11 + 220 = 231 "generation"

159 + 72 = ???

159 + 72 /= 231 "recall" -

159 + 72 = 231 "recall"

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

159 + 72 /= 231 "recall"

Distinction between these two strategies important in cognitive science, artificial intelligence, robotics, teaching

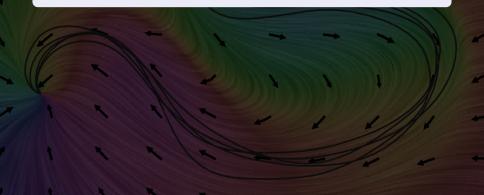
Motion Generation

Motion Recall

Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005



Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993 Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology. 2005

Motion primitives for robots?

- · Couple degrees of freedom to deal with high-dimensional systems
- Sequencing and superpositioning of MPs for more complex task
- Low-dimensional parameterization of MP enables learning
- MPs can be bootstrapped with demonstrations
- Direct mappings between task parameters and MP parameters

Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog's spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives for robots!

Ijspeert, A. J.; Nakanishi, J. & Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. ICRA, 2002

Schedule

	0.00	1.114	0.45	
	9:00	-	9:15	Introduction
	9:15	-	10:45	Regression Tutorial
	10:45	-	11:00	Motion Primitives 1
	11:00	<u>×</u>	11:30	Coffee Break
k	11:30	-	12:15	Motion Primitives 1 (cont.)
1	12:15	-	13:15	Motion Primitives 2
()	13:15	-	13:30	Wrap up

R

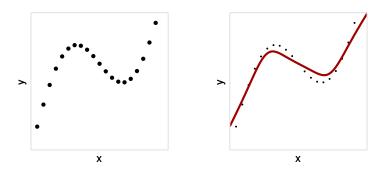
Freek Stulp Sylvain Calinon

Sylvain Calinon Gerhard Neumann Regression Tutorial IROS'18 Tutorial

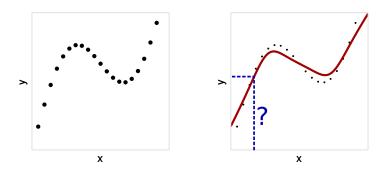
Freek Stulp Institute of Robotics and Mechatronics, German Aerospace Center (DLR) Autonomous Systems and Robotics, ENSTA-ParisTech

01.10.2018

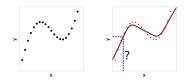
Estimating a relationship between input variables and continuous output variables from data



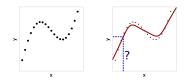
Estimating a relationship between input variables and continuous output variables from data



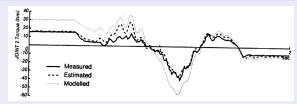
Estimating a relationship between input variables and continuous output variables from data



Estimating a relationship between input variables and continuous output variables from data



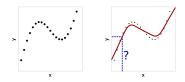
Application: Dynamic parameter estimation



An, C.; Atkeson, C. and Hollerbach, J. (1985).

Estimation of inertial parameters of rigid body links of manipulators [404] IEEE Conference on Decision and Control.

Estimating a relationship between input variables and continuous output variables from data



Application: Programming by demonstration

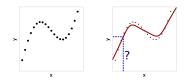
Rozo, L.; Calinon, S.; Caldwell, D. G.; Jimenez, P. and Torras, C. (2016).

Learning Physical Collaborative Robot Behaviors from Human Demonstrations IEEE Trans. on Robotics.

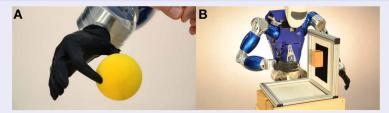
Calinon, S.; Guenter, F. and Billard, A. (2007).

On Learning, Representing and Generalizing a Task in a Humanoid Robot [725] IEEE Transactions on Systems, Man and Cybernetics.

Estimating a relationship between input variables and continuous output variables from data



Application: Biosignal Processing



Gijsberts, A., Bohra, R., Sierra Gonzlez, D., Werner, A., Nowak, M., Caputo, B., Roa, M. and Castellini, C. (2014) Stable myoelectric control of a hand prosthesis using non-linear incremental learning *Frontiers in Neurorobotics*

Training data

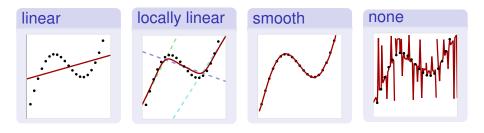
$$\{(\underbrace{\mathbf{x}_n}_{n,n}, \underbrace{\mathbf{y}_n}_{n=1})\}_{n=1}^N \quad \forall n, \mathbf{x}_n \in X \land \mathbf{y}_n \in Y$$
input target

Supervised Learning Regression Classification Reinforcement learning Unsupervised learning

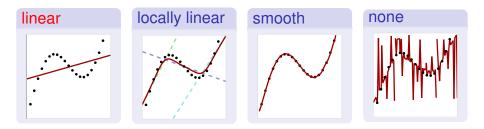
targets available targets available targets available no targets, only rewards $r_n \subseteq \mathbb{R}$ no targets at all

 $Y \subseteq \mathbb{R}^M$ $Y \subseteq 1, \ldots K$

Regression – Assumptions about the Function



Regression – Assumptions about the Function



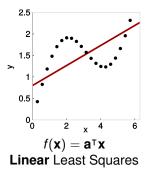
 \rightarrow Linear Least Squares

A.M. Legendre (1805).

Nouvelles méthodes pour la détermination des orbites des comtes [519] *Firmin Didot.*

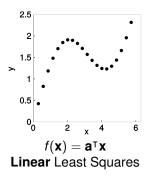
C.F. Gauss (1809).

Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum [943]

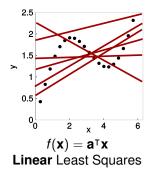


$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,D} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \cdots & x_{N,D} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

- X is the N × D "design matrix"
- Each row is a D-dim. data point



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

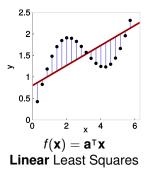


- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

• Define fitting criterion

Sum of squared residuals

$$S(\mathbf{a}) = \sum_{n=1}^{N} r_n^2$$
(1)
= $\sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2$ (2)



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

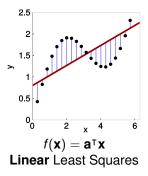
• Define fitting criterion

Sum of squared residuals

$$S(\mathbf{a}) = \sum_{n=1}^{N} r_n^2$$
(1)
= $\sum_{n=1}^{N} (y_n - f(\mathbf{x}_n))^2$ (2)

Applied to a linear model

$$S(\mathbf{a}) = \sum_{n=1}^{N} (y_n - \mathbf{a}^{\mathsf{T}} \mathbf{x}_n)^2 \qquad (3)$$
$$= (\mathbf{y} - \mathbf{X} \mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \mathbf{a}), \qquad (4)$$



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

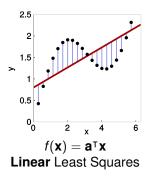
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y})$$
(3)

$$\mathbf{a}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}. \tag{4}$$



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

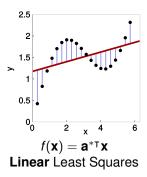
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y})$$
(3)

$$\mathbf{a}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}. \tag{4}$$



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

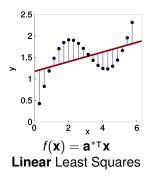
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a}) \quad (2)$$

Quadratic cost: when is its derivative 0?

$$S'(\mathbf{a}) = 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y}) \qquad (3)$$
$$\mathbf{a}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}. \qquad (4)$$

Nice! Closed form solution to find a*



- Which line fits the data best?
 - Define fitting criterion
 - Optimize a w.r.t. criterion

Optimize **a** w.r.t. criterion

Minimize sum of squared residuals S(a)

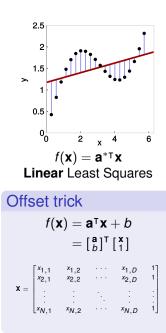
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} S(\mathbf{a})$$
 (1)

$$= \arg\min_{\mathbf{a}} (\mathbf{y} - \mathbf{X}\mathbf{a})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{a})$$
 (2

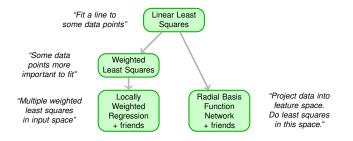
Quadratic cost: when is its derivative 0?

$$\begin{split} S'(\mathbf{a}) &= 2(\mathbf{a}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \mathbf{X}^{\mathsf{T}}\mathbf{y}) \qquad (3) \\ \mathbf{a}^* &= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}. \qquad (4) \end{split}$$

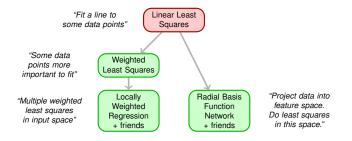
Nice! Closed form solution to find a*



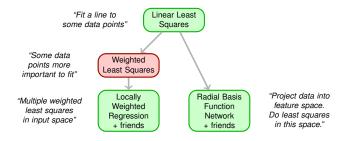
Outline

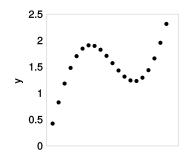


Outline



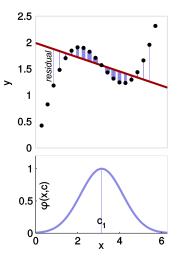
Outline

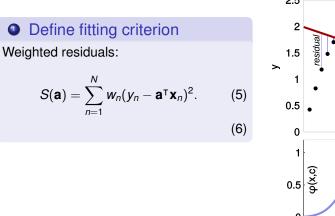


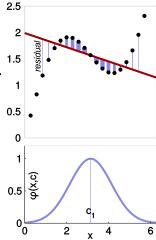


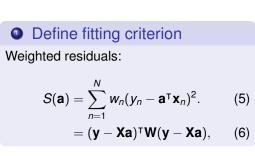
- Importance \equiv Weight w_n
- Example weighting
 - manual
 - boxcar function
 - Gaussian function

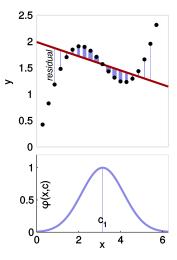
$$egin{aligned} & w_n = \phi(\mathbf{x}_n, m{ heta}) \ &= \exp\left(-rac{1}{2}(\mathbf{x} - \mathbf{c})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{c})
ight) \ & ext{ with } m{ heta} = (\mathbf{c}, \mathbf{\Sigma}) \end{aligned}$$



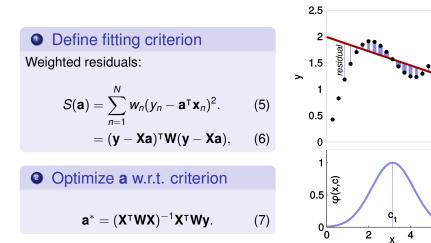






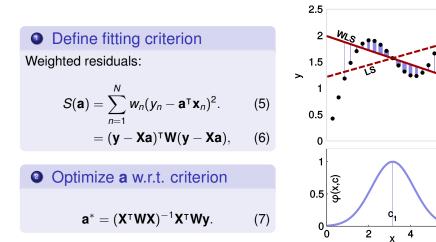


Idea: more important to fit some points than others.



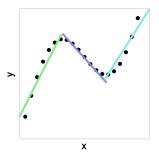
6

Idea: more important to fit some points than others.

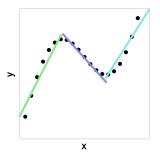


6

In robotics, functions usually non-linear. But often locally linear!

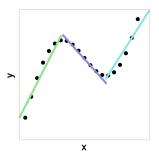


In robotics, functions usually non-linear. But often locally linear!



Idea: Do multiple, independent, locally weighted least sq. regressions

In robotics, functions usually non-linear. But often locally linear!



Idea: Do multiple, independent, locally weighted least sq. regressions

William S. Cleveland; Susan J. Devlin (1988).

Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting [4074] *Journal of the American Statistical Association.*

Atkeson, C. G.; Moore, A. W. and Schaal, S. (1997). Locally Weighted Learning for Control [2160] *Artificial Intelligence Review.*

- Idea: multiple, independent, locally weighted least squares regressions
 - Locally: radial weighting function with different centers ("receptive field")

for
$$e = 1 \dots E$$

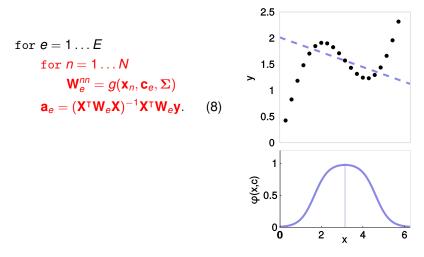
for $n = 1 \dots N$
 $\mathbf{W}_{e}^{nn} = g(\mathbf{x}_{n}, \mathbf{c}_{e}, \Sigma)$
 $\mathbf{a}_{e} = (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{y}.$ (8)

- Idea: multiple, independent, locally weighted least squares regressions
 - Locally: radial weighting function with different centers ("receptive field")

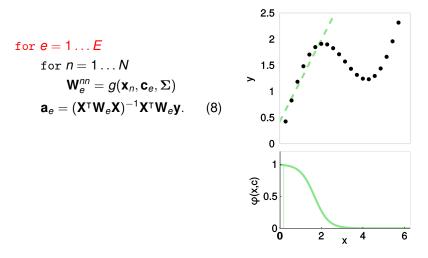
for
$$e = 1 \dots E$$

for $n = 1 \dots N$
 $\mathbf{W}_{e}^{nn} = g(\mathbf{x}_{n}, \mathbf{c}_{e}, \Sigma)$
 $\mathbf{a}_{e} = (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{W}_{e} \mathbf{y}.$ (8)

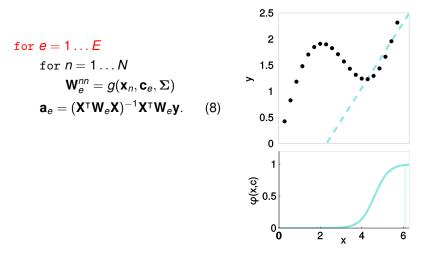
- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")



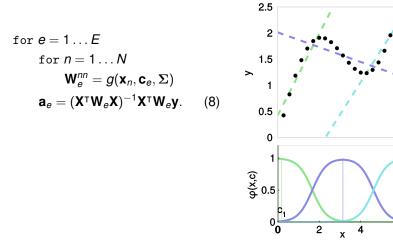
- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")

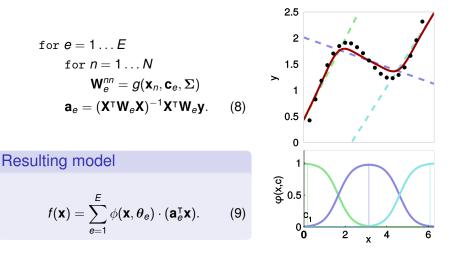


- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")

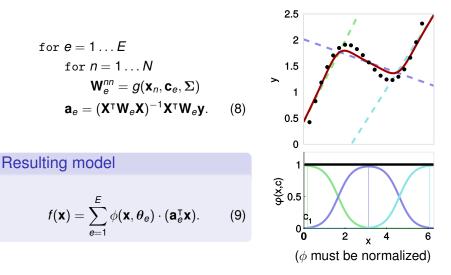


6

- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")



- Idea: multiple, independent, locally weighted least squares regressions
 - · Locally: radial weighting function with different centers ("receptive field")



Variations of Locally Weighted Regressions

Receptive Field Weighted Regression

- Incremental, not batch
- *E*, centers **c**_{1...*E*} and widths Σ_{1...*E*} determined automatically
- Disadvantage: many open parameters

Schaal, S. and Atkeson, C. G. (1997). Receptive Field Weighted Regression [34] Technical Report TR-H-209, ATR Human Information Processing Laboratories.

Variations of Locally Weighted Regressions

Receptive Field Weighted Regression

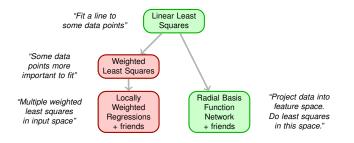
- Incremental, not batch
- *E*, centers $\mathbf{c}_{1...E}$ and widths $\Sigma_{1...E}$ determined automatically
- Disadvantage: many open parameters

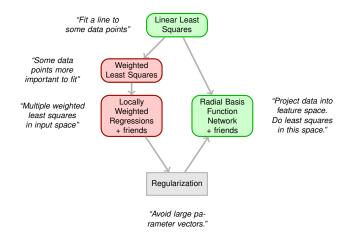
Schaal, S. and Atkeson, C. G. (1997). Receptive Field Weighted Regression [34] Technical Report TR-H-209, ATR Human Information Processing Laboratories.

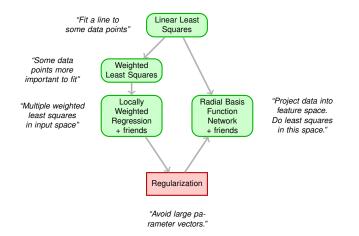
Locally Weighted Projection Regression

 As RFWR, but also performs dimensionality reduction within each receptive field

Vijayakumar, S. and Schaal, S. (2000). Locally Weighted Projection Regression . . . [208] International Conference on Machine Learning.



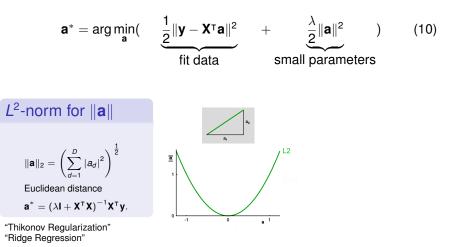




- Idea: penalize large parameter vectors to
 - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (10)$$

- Idea: penalize large parameter vectors to
 - · avoid overfitting / achieve sparse parameter vectors



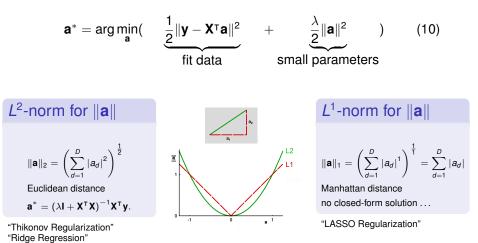
"T "F

- Idea: penalize large parameter vectors to
 - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}} \left(\begin{array}{c} \frac{1}{2} \|\mathbf{y} - \mathbf{X}^{\mathsf{T}} \mathbf{a}\|^{2} \\ \text{fit data} \end{array} + \begin{array}{c} \frac{\lambda}{2} \|\mathbf{a}\|^{2} \\ \text{small parameters} \end{array} \right) \quad (10)$$

$$\operatorname{small parameters} \left(1 - \frac{\lambda}{2} \right)^{2} = \frac{\lambda}{2} \left(1 - \frac{\lambda}{2} \right)^{\frac{1}{2}} = \frac{\lambda}{2} \left(1 - \frac{\lambda}{2} \right)^{\frac{1}$$

- Idea: penalize large parameter vectors to
 - · avoid overfitting / achieve sparse parameter vectors



Use combination of L^1 and L^2 : "Elastic Nets"

- Idea: penalize large parameter vectors to
 - · avoid overfitting / achieve sparse parameter vectors

$$\mathbf{a}^* = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^2}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^2}_{\text{small parameters}}) \quad (10)$$

*L*²-norm for
$$\|\mathbf{a}\|$$

 $\|\mathbf{a}\|_{2} = \left(\sum_{d=1}^{D} |a_{d}|^{2}\right)^{\frac{1}{2}}$
Euclidean distance
 $\mathbf{a}^{*} = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}.$

"Thikonov Regularization" "Ridge Regression"

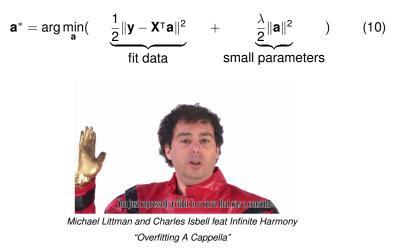
$$L^1$$
-norm for $\|\mathbf{a}\|$

$$\|\mathbf{a}\|_{1} = \left(\sum_{d=1}^{D} |a_{d}|^{1}\right)^{\frac{1}{1}} = \sum_{d=1}^{D} |a_{d}|$$

Manhattan distance no closed-form solution ...

"LASSO Regularization"

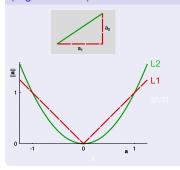
- Idea: penalize large parameter vectors to
 - avoid overfitting / achieve sparse parameter vectors



Beyond squares

$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (11)$$

Penalty on parameters **a** (regularization)

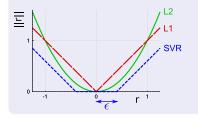


Beyond squares

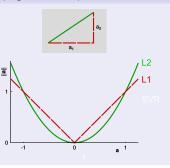
$$\mathbf{a}^{*} = \arg\min_{\mathbf{a}}(\underbrace{\frac{1}{2}\|\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{a}\|^{2}}_{\text{fit data}} + \underbrace{\frac{\lambda}{2}\|\mathbf{a}\|^{2}}_{\text{small parameters}}) \quad (11)$$

Penalty on residuals *r_n* (fit data)

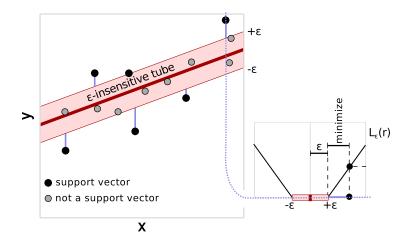
- L_2 : least squares L_1 : least deviations
- $L_\epsilon:$ support vector regression



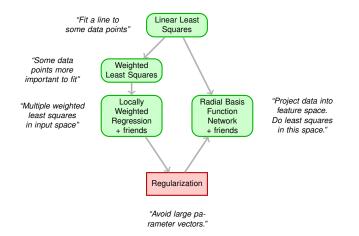
Penalty on parameters **a** (regularization)

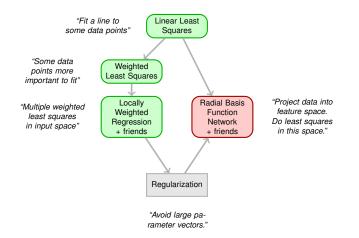


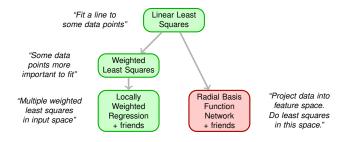
Linear Support Vector Regression



· No closed-form solution, but efficient optimizers exist

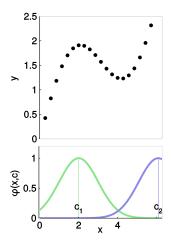






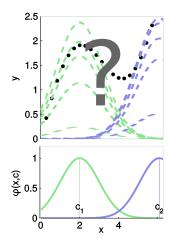
Radial Basis Function Network

$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)

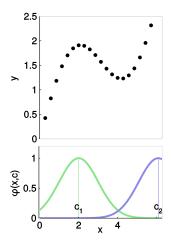


Radial Basis Function Network

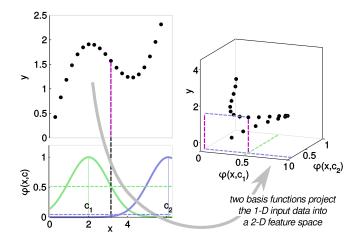
$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



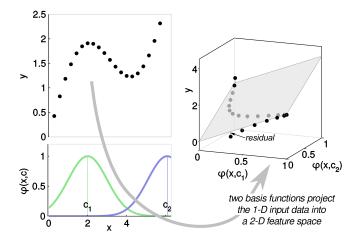
$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



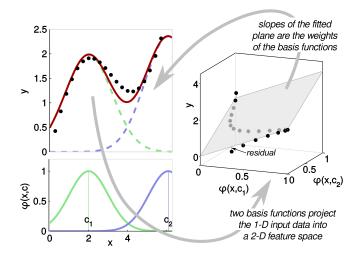
$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



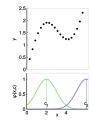
$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \mathbf{c}_e).$$
(12)



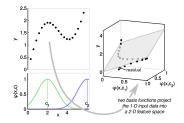
$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

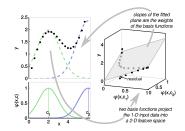
$$\boldsymbol{\Theta} = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

$$\Theta = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



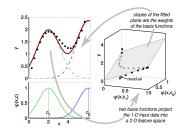
Least squares solution

$$\mathbf{w}^* = (\mathbf{\Theta}^\mathsf{T} \mathbf{\Theta})^{-1} \mathbf{\Theta}^\mathsf{T} \mathbf{y}. \tag{15}$$

$$f(\mathbf{x}) = \sum_{e=1}^{E} w_e \cdot \phi(\mathbf{x}, \theta_e).$$
(13)

Feature matrix (analogous to design matrix x)

$$\Theta = \begin{bmatrix} \phi(\mathbf{x}_1, \mathbf{c}_1) & \phi(\mathbf{x}_1, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_1, \mathbf{c}_E) \\ \phi(\mathbf{x}_2, \mathbf{c}_1) & \phi(\mathbf{x}_2, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_2, \mathbf{c}_E) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N, \mathbf{c}_1) & \phi(\mathbf{x}_N, \mathbf{c}_2) & \cdots & \phi(\mathbf{x}_N, \mathbf{c}_E) \end{bmatrix}$$
(14)



Least squares solution

$$\mathbf{w}^* = (\mathbf{\Theta}^{\mathsf{T}} \mathbf{\Theta})^{-1} \mathbf{\Theta}^{\mathsf{T}} \mathbf{y}.$$
(15)

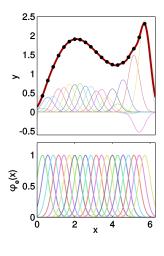
Kernel Ridge Regression

• Like a RBFN, but every data point is the center of a basis function

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n \cdot k(\mathbf{x}, \mathbf{x}_n).$$
(16)

"Gram matrix" (analogous to design matrix X)

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{1}, \mathbf{x}_{N}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{2}, \mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_{N}, \mathbf{x}_{1}) & k(\mathbf{x}_{N}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{N}, \mathbf{x}_{N}) \end{bmatrix}$$
(17)
$$\mathbf{w}^{*} = (\mathbf{K}^{\mathsf{T}}\mathbf{K})^{-1}\mathbf{K}^{\mathsf{T}}\mathbf{y}$$
(18)
$$= \mathbf{K}^{-1}\mathbf{y},$$
(19)
(20)



Kernel Ridge Regression

- Like a RBFN, but every data point is the center of a basis function
- Uses L² regularization

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n \cdot k(\mathbf{x}, \mathbf{x}_n).$$
(16)

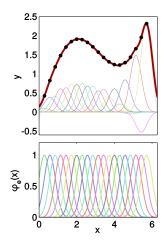
"Gram matrix" (analogous to design matrix X)

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & k(\mathbf{x}_N, \mathbf{x}_2) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$
(17)

$$\mathbf{w}^* = (\mathbf{K}^\mathsf{T} \mathbf{K})^{-1} \mathbf{K}^\mathsf{T} \mathbf{y} \tag{18}$$

$$=\mathbf{K}^{-1}\mathbf{y},\tag{19}$$

 $\mathbf{w}^* = (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$ with L^2 regularization (20)



Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function

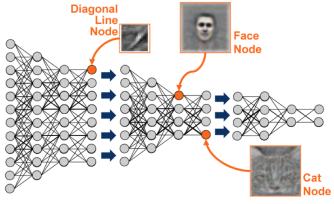
Beyond radial basis functions

- Cosines: Ridge Regression with Random Fourier Features
- Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
- Boxcars: model trees (as decision trees, but for regression)
- Kernels: every data point is the center of a radial basis function

- Since least squares is at the heart of all of these
 - incremental versions ← recursive least squares
 - apply *L*² regularization (still closed form)

Freek, aren't you being a bit shallow?

- Deep learning great when you
 - do not know the features
 - · know the features to be hierarchically organized



John Smart

Freek, aren't you being a bit shallow?

- Deep learning great when you
 - do not know the features
 - know the features to be hierarchically organized

Rajeswaran A, Lowrey K, Todorov E and Kakade S. (2017). Towards generalization and simplicity in continuous control *Neural Information Processing Systems (NIPS).*

Table 1: Final	performances of	the policies
----------------	-----------------	--------------

Table 2: Number of episodes to achieve threshold

Task	Linear		RBF		NN	Task	Th.	Linear	RBF	TRPO+NN
	stoc	mean	stoc	mean	TRPO					
Swimmer	362	366	361	365	131	Swimmer	325	1450	1550	N-A
Hopper	3466	3651	3590	3810	3668	Hopper	3120	13920	8640	10000
Cheetah	3810	4149	6477	6620	4800	Cheetah	3430	11250	6000	4250
Walker	4881	5234	5631	5867	5594	Walker	4390	36840	25680	14250
Ant	3980	4607	4297	4816	5007	Ant	3580	39240	30000	73500
Humanoid	5873	6440	6237	6849	6482	Humanoid	5280	79800	96720	87000

A neural network perspective

All these models can be considered (degenerate) neural networks!

A neural network perspective

All these models can be considered (degenerate) neural networks!

Backpropagation can be used in all these models!

Linear model

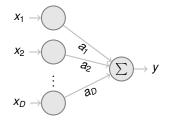


Figure: Network representation of a linear model. Activation is... linear!

RBFN

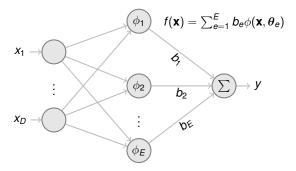


Figure: The RBFN model. ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$

RRRFF

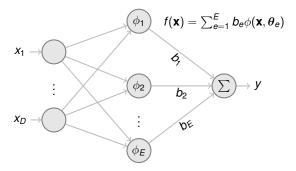


Figure: The RRRFF model. ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$

SVR

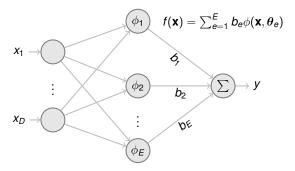


Figure: The SVR model. ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$

Regression trees

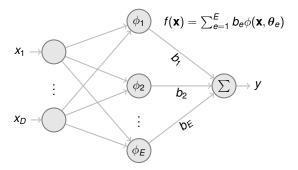


Figure: The regression trees model. ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$

Extreme learning machine

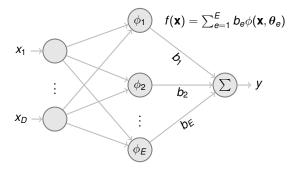


Figure: The extreme learning machine model. ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$

Extreme Learning Machine vs. (Deep) Neural Networks

- ELM: sigmoid act. function, no hidden layer, random features
- ANN: sigmoid act. function, hidden layers, learned features

KRR and GPR

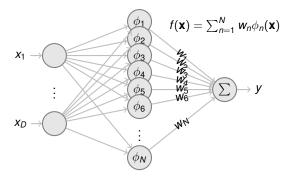


Figure: The function model used in KRR and GPR, as a network.

Locally weighted regression

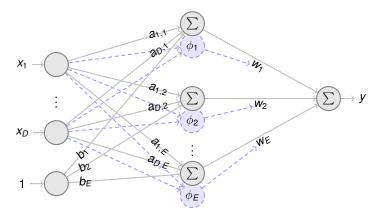
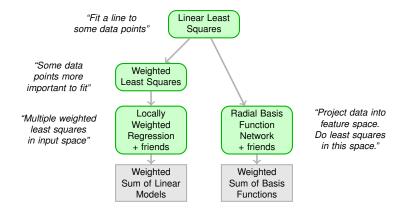


Figure: Function model in Locally Weighted Regressions, represented as a feedforward neural network. The functions $\phi_e(\mathbf{x})$ generate the weights w_e from the hidden nodes – which contain linear sub-models $(\mathbf{a}_e^T\mathbf{x} + b_e)$ – to the output node. Here, ϕ_e is an abbreviation of $\phi(\mathbf{x}, \theta_e)$



Algorithm

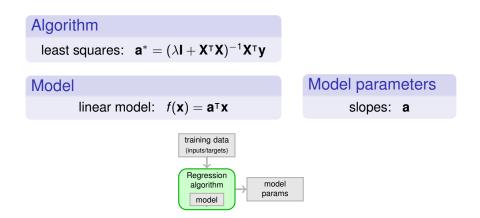
least squares: $\mathbf{a}^* = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

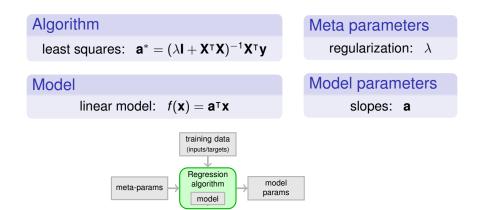
Algorithm

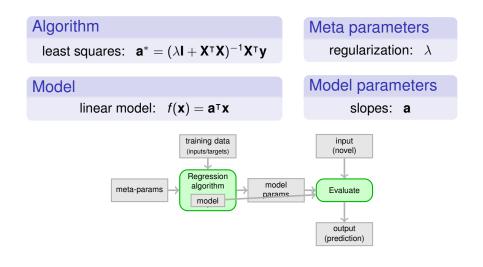
least squares: $\mathbf{a}^* = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

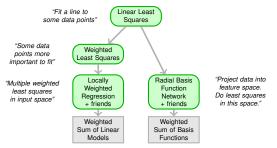
Model

linear model: $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}\mathbf{x}$



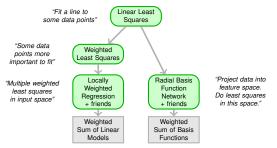






$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)



$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x}) \qquad \text{Weighted sum of linear models}$$
(21)
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e \qquad \text{Weighted sum of basis functions}$$
(22)

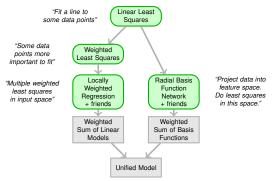
(22) is a special case of (21) with $\mathbf{a}_e = \mathbf{0}$ and $b_e \equiv w_e$



$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)

(22) is a special case of (21) with $\mathbf{a}_e = \mathbf{0}$ and $b_e \equiv w_e$



Freek Stulp and Olivier Sigaud (2015).

Many regression algorithms, one unified model - A review. *Neural Networks*.

$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot (b_e + \mathbf{a}_e^{\mathsf{T}} \mathbf{x})$$
$$f(\mathbf{x}) = \sum_{e=1}^{E} \phi(\mathbf{x}, \theta_e) \cdot w_e$$

Weighted sum of linear models (21)

Weighted sum of basis functions (22)

(22) is a special case of (21) with $\mathbf{a}_e = \mathbf{0}$ and $b_e \equiv w_e$

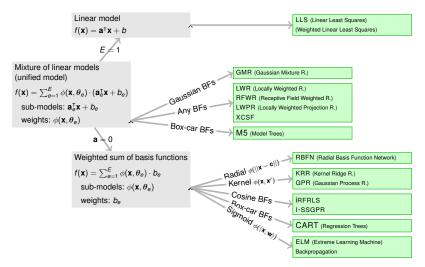


Figure: Classification of regression algorithms, based only on the model used to represent the underlying function.

Many toolkits available

- Python
 - scikit-learn: http://scikit-learn.org
 - StatsModels: http://www.statsmodels.org/
 - PbDlib: http://calinon.ch/codes.htm
 - dmpbbo: https://github.com/stulp/dmpbbo
- Matlab
 - CUIVefit: https://www.mathworks.com/help/curvefit/ linear-and-nonlinear-regression.html
 - PbDlib: http://calinon.ch/codes.htm
- C++
 - PbDlib: http://calinon.ch/codes.htm
 - dmpbbo: https://github.com/stulp/dmpbbo

Personal Favourites

Gaussian process regression

- + Very few assumptions
- + Meta-parameters estimated from data itself
- + Estimates variance also
- + Works in high dimensions
- Training/query times increase with amount of data
- Not easy to make incremental

Gaussian mixture regression

- + Estimates variance also
- + Algorithm is inherently incremental
- + Some meta-parameters, but easy to tune
- + Fast training times
- Training only stable for low input dimensions

Locally Weighted Regressions

- + Fast query times, fast training
- + Few meta-parameters, and easy to set
- + Stable learning results (batch)
- Not incremental
- No variance estimate

Deep Learning

+ Automatic extraction of (hierarhical) features

Conclusion

- Don't think about these regression algorithms as being unique
 - · Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

Conclusion

- Don't think about these regression algorithms as being unique
 - · Similar algorithms that use different subsets of algorithmic features
- All these models are essentially shallow neural networks with different basis functions

Thank you for your attention!

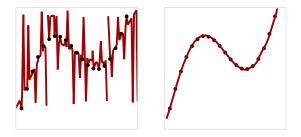
Appendix

"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot) : T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot) : T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

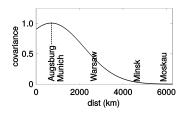
"Given a Gaussian process on some topological space T, with a continuous covariance kernel $C(\cdot, \cdot) : T \times T \rightarrow R$, we can associate a Hilbert space, which is the reproducing kernel Hilbert space of real-valued functions on T, with C as kernel function."

Instead of screaming, let's talk about what it means to be smooth.

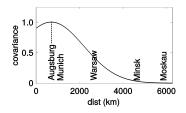


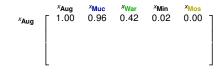
- Points that are close in the input space should be close in the output space.
 - Cities that are close geographically have similar temperatures (on average)
 - Taller people have larger shoe sizes (on average)
- Shoe size covaries with height

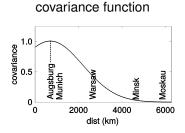
covariance function



covariance function

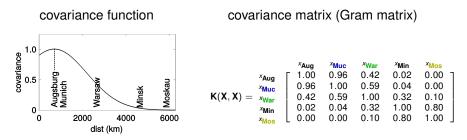




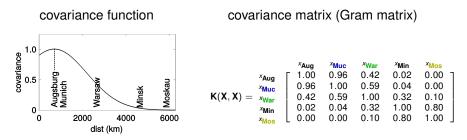


covariance matrix (Gram matrix)

^x Aug	^x Muc	^x War	^x Min	XMos
Γ 1.00	0.96	0.42	0.02	0.00 J
0.96	1.00	0.59	0.04	0.00
0.42	0.59	1.00	0.32	0.10
0.02	0.04	0.32	1.00	0.80
L 0.00	0.00	0.10	0.80	1.00]
	^x Aug 1.00 0.96 0.42 0.02 0.00	$\begin{bmatrix} x_{\text{Aug}} & x_{\text{Muc}} \\ 1.00 & 0.96 \\ 0.96 & 1.00 \\ 0.42 & 0.59 \\ 0.02 & 0.04 \\ 0.00 & 0.00 \end{bmatrix}$	$\begin{bmatrix} x_{\text{Aug}} & x_{\text{Muc}} & x_{\text{War}} \\ 1.00 & 0.96 & 0.42 \\ 0.96 & 1.00 & 0.59 \\ 0.42 & 0.59 & 1.00 \\ 0.02 & 0.04 & 0.32 \\ 0.00 & 0.00 & 0.10 \end{bmatrix}$	$\begin{bmatrix} x_{Aug} & x_{Muc} & x_{War} & x_{Min} \\ 1.00 & 0.96 & 0.42 & 0.02 \\ 0.96 & 1.00 & 0.59 & 0.04 \\ 0.42 & 0.59 & 1.00 & 0.32 \\ 0.02 & 0.04 & 0.32 & 1.00 \\ 0.00 & 0.00 & 0.10 & 0.80 \end{bmatrix}$



- Remarks
 - Basis function has very specific interpretation: covariance
 - No temperature measurements y have been made yet
 - Prior: assume temperature is 0°C

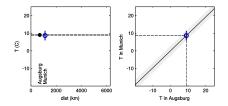


- Remarks
 - · Basis function has very specific interpretation: covariance
 - No temperature measurements y have been made yet
 - Prior: assume temperature is 0°C

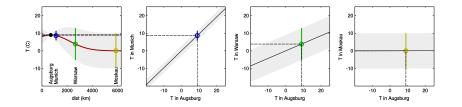
Question

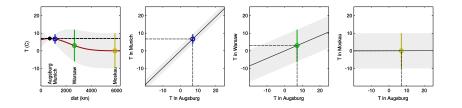
Expected temperature in Munich, given 9°C in Augsburg?

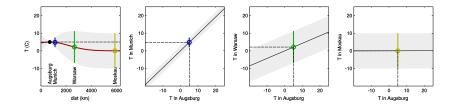
(condition on $T_{Aug} = 9$, i.e. $E[T_{Muc} | T_{Aug} = 9]$)

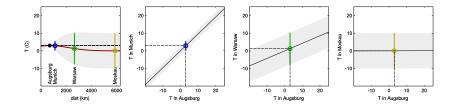


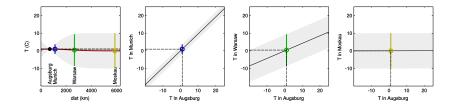
 $k(x_{Muc}, x_{Aug}) = 0.96$



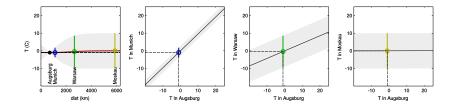




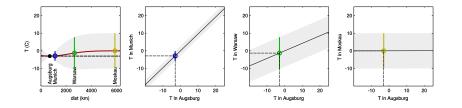




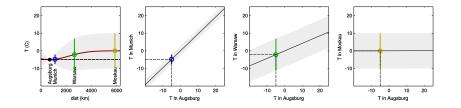
 $k(x_{Muc}, x_{Aug}) = 0.96$ $k(x_{War}, x_{Aug}) = 0.42$ $k(x_{Mos}, x_{Aug}) = 0.00$



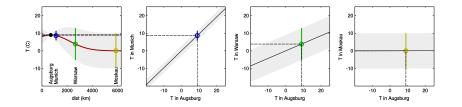
 $k(x_{Muc}, x_{Aug}) = 0.96$ $k(x_{War}, x_{Aug}) = 0.42$ $k(x_{Mos}, x_{Aug}) = 0.00$

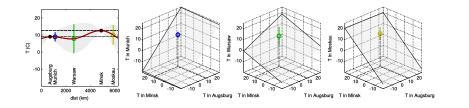


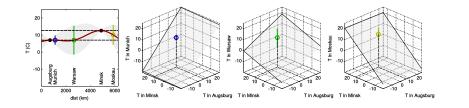
 $k(x_{Muc}, x_{Aug}) = 0.96$ $k(x_{War}, x_{Aug}) = 0.42$ $k(x_{Mos}, x_{Aug}) = 0.00$

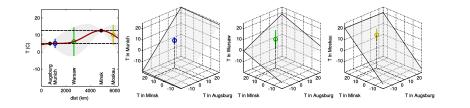


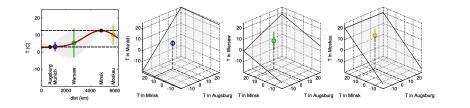
 $k(x_{Muc}, x_{Aug}) = 0.96$ $k(x_{War}, x_{Aug}) = 0.42$ $k(x_{Mos}, x_{Aug}) = 0.00$

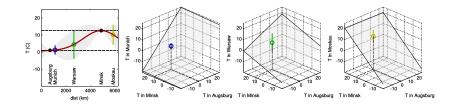


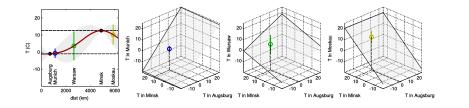


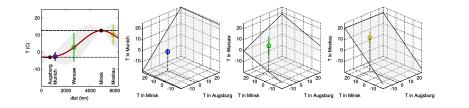


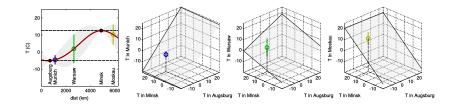




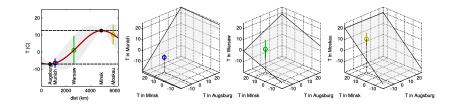




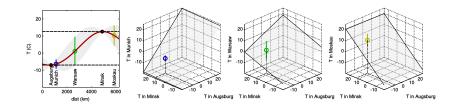




$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$



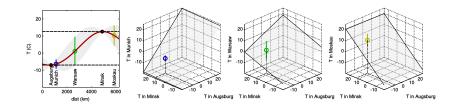
$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$



$$\begin{array}{lll} \mathsf{k}(x_{\mathsf{Muc}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = & \mathsf{k}(x_{\mathsf{War}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = & \mathsf{k}(x_{\mathsf{Mos}}, [x_{\mathsf{Aug}} \; x_{\mathsf{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$

What are the plane slopes? $\overline{y}_q = \overbrace{\mathbf{k}(\mathbf{x}_q, \mathbf{X})}^{\text{see above}} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}}_{(23)}$

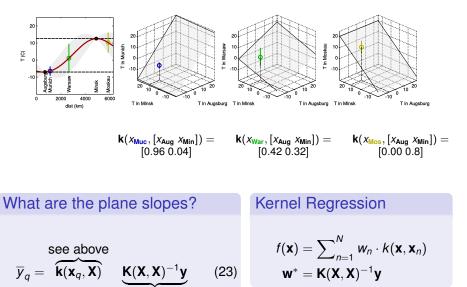
$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \frac{{}^{x_{\mathbf{A}\mathbf{u}\mathbf{g}}}_{\mathbf{X}\mathbf{Min}} \left[\begin{array}{c} {}^{x_{\mathbf{A}\mathbf{u}\mathbf{g}}}_{\mathbf{0},\mathbf{02}} & {}^{x_{\mathbf{Min}}}_{\mathbf{0},\mathbf{02}} \\ {}^{0.02}_{\mathbf{0},\mathbf{02}} & 1.00 \end{array} \right]$$



$$\begin{array}{lll} \mathbf{k}(x_{\text{Muc}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{War}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = & \mathbf{k}(x_{\text{Mos}}, [x_{\text{Aug}} \; x_{\text{Min}}]) = \\ & [0.96 \; 0.04] & [0.42 \; 0.32] & [0.00 \; 0.8] \end{array}$$

What are the plane slopes? $\overline{y}_{q} = \underbrace{\mathbf{k}(\mathbf{x}_{q}, \mathbf{X})}_{\text{Least squares!}} \underbrace{\mathbf{K}(\mathbf{X}, \mathbf{X})^{-1}\mathbf{y}}_{\text{Least squares!}} (23)$

$$\mathbf{K}(\mathbf{X}, \mathbf{X}) = \begin{smallmatrix} x_{\mathbf{Aug}} & x_{\mathbf{Min}} \\ x_{\mathbf{Min}} & \begin{bmatrix} 1.00 & 0.02 \\ 0.02 & 1.00 \end{bmatrix}$$



Least squares!

