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Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog’s spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005
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Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog’s spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives for robots?

• Couple degrees of freedom to deal with high-dimensional systems

• Sequencing and superpositioning of MPs for more complex task

• Low-dimensional parameterization of MP enables learning

• MPs can be bootstrapped with demonstrations

• Direct mappings between task parameters and MP parameters



Motion primitives in nature

Giszter, S.; Mussa-Ivaldi, F. & Bizzi, E. Convergent force fields organized in the frog’s spinal cord Journal of Neuroscience, 1993

Flash, T. & Hochner, B. Motor Primitives in Vertebrates and Invertebrates Current Opinion in Neurobiology, 2005

Motion primitives for robots!

Ijspeert, A. J.; Nakanishi, J. & Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. ICRA, 2002
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What Is Regression?

Estimating a relationship
between input variables
and continuous output variables
from data

Application: Dynamic parameter estimation

An, C.; Atkeson, C. and Hollerbach, J. (1985).

Estimation of inertial parameters of rigid body links of manipulators [404]
IEEE Conference on Decision and Control.



What Is Regression?

Estimating a relationship
between input variables
and continuous output variables
from data

Application: Programming by demonstration

Rozo, L.; Calinon, S.; Caldwell, D. G.; Jimenez, P. and Torras, C. (2016).

Learning Physical Collaborative Robot Behaviors from Human Demonstrations
IEEE Trans. on Robotics.

Calinon, S.; Guenter, F. and Billard, A. (2007).

On Learning, Representing and Generalizing a Task in a Humanoid Robot [725]
IEEE Transactions on Systems, Man and Cybernetics.



What Is Regression?

Estimating a relationship
between input variables
and continuous output variables
from data

Application: Biosignal Processing

Gijsberts, A., Bohra, R., Sierra Gonzlez, D., Werner, A., Nowak, M., Caputo, B., Roa, M. and Castellini, C. (2014)

Stable myoelectric control of a hand prosthesis using non-linear incremental learning
Frontiers in Neurorobotics



What Is Not Regression?

Training data
{( xn︸︷︷︸

input

, yn︸︷︷︸
target

)}N
n=1 ∀n,xn ∈ X ∧ yn ∈ Y

Supervised Learning targets available
Regression targets available Y ⊆ RM

Classification targets available Y ⊆ 1, . . .K
Reinforcement learning no targets, only rewards rn ⊆ R
Unsupervised learning no targets at all
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Regression – Assumptions about the Function

linear locally linear smooth none

→ Linear Least Squares

A.M. Legendre (1805).
Nouvelles méthodes pour la détermination des orbites des comtes [519]
Firmin Didot.

C.F. Gauss (1809).
Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum [943]



Linear Least Squares

X =
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• X is the N × D “design matrix”
• Each row is a D-dim. data point

f (x) = aᵀx
Linear Least Squares
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Linear Least Squares
• Which line fits the data best?

1 Define fitting criterion
2 Optimize a w.r.t. criterion
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1 Define fitting criterion
Sum of squared residuals

S(a) =
N∑

n=1

r2
n (1)

=
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n=1

(yn − f (xn))
2 (2)
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Function
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“Project data into
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Do least squares
in this space.”
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Weighted Linear Least Squares

Idea: more important to fit some points than others.

1 Define fitting criterion
Weighted residuals:

S(a) =
N∑

n=1

wn(yn − aᵀxn)
2. (5)

= (y− Xa)ᵀW(y− Xa),

(6)

2 Optimize a w.r.t. criterion

a∗ = (XᵀWX)−1XᵀWy. (7)



Weighted Linear Least Squares

Idea: more important to fit some points than others.

• Importance ≡Weight wn

• Example weighting
• manual
• boxcar function
• Gaussian function

wn = φ(xn,θ)

= exp
(
− 1

2 (x− c)ᵀΣ−1(x− c)
)

with θ = (c,Σ)

1 Define fitting criterion
Weighted residuals:
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Locally Weighted Regressions
In robotics, functions usually non-linear. But often locally linear!

Idea: Do multiple, independent, locally weighted least sq. regressions

William S. Cleveland; Susan J. Devlin (1988).
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting [4074]
Journal of the American Statistical Association.

Atkeson, C. G.; Moore, A. W. and Schaal, S. (1997).
Locally Weighted Learning for Control [2160]
Artificial Intelligence Review.
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Locally Weighted Regressions

• Idea: multiple, independent, locally weighted least squares regressions
• Locally: radial weighting function with different centers (“receptive field”)

for e = 1 . . .E
for n = 1 . . .N

Wnn
e = g(xn,ce,Σ)

ae = (XᵀWeX)−1XᵀWey. (8)

Resulting model

f (x) =
E∑

e=1

φ(x,θe) · (aᵀ
ex). (9)

(φ must be normalized)
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Variations of Locally Weighted Regressions

Receptive Field Weighted Regression
• Incremental, not batch
• E , centers c1...E and widths Σ1...E determined automatically
• Disadvantage: many open parameters

Schaal, S. and Atkeson, C. G. (1997).
Receptive Field Weighted Regression [34]
Technical Report TR-H-209, ATR Human Information Processing Laboratories.

Locally Weighted Projection Regression
• As RFWR, but also performs dimensionality reduction within

each receptive field

Vijayakumar, S. and Schaal, S. (2000).
Locally Weighted Projection Regression . . . [208]
International Conference on Machine Learning.
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Regularization
• Idea: penalize large parameter vectors to

• avoid overfitting / achieve sparse parameter vectors

a∗ = arg min
a
(

1
2
‖y− Xᵀa‖2︸ ︷︷ ︸

fit data

+
λ

2
‖a‖2︸ ︷︷ ︸

small parameters

) (10)

Use combination of L1 and L2: “Elastic Nets”



Regularization
• Idea: penalize large parameter vectors to

• avoid overfitting / achieve sparse parameter vectors

a∗ = arg min
a
(

1
2
‖y− Xᵀa‖2︸ ︷︷ ︸

fit data

+
λ

2
‖a‖2︸ ︷︷ ︸

small parameters

) (10)

L2-norm for ‖a‖
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D∑
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|ad |2
) 1

2

Euclidean distance

a∗ = (λI + XᵀX)−1Xᵀy.

“Thikonov Regularization”
“Ridge Regression”

L1-norm for ‖a‖

‖a‖1 =

(
D∑

d=1

|ad |1
) 1

1

=
D∑

d=1

|ad |

Manhattan distance

no closed-form solution . . .

“LASSO Regularization”

Use combination of L1 and L2: “Elastic Nets”
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Linear Support Vector Regression

• No closed-form solution, but efficient optimizers exist
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f (x) =
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w∗ = (ΘᵀΘ)−1Θᵀy. (15)
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Kernel Ridge Regression

• Like a RBFN, but every data point is the center of a basis function

• Uses L2 regularization

f (x) =
N∑

n=1

wn · k(x,xn). (16)

“Gram matrix”(analogous to design matrix X)

K(X,X) =
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(17)

w∗ = (KᵀK)−1Kᵀy (18)

= K−1y, (19)

w∗ = (λI + K)−1y with L2 regularization

(20)
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(Radial) Basis Function Networks

Beyond radial basis functions
• Cosines: Ridge Regression with Random Fourier Features
• Sigmoids: Extreme Learning Machines (MLFF with 1 hidden)
• Boxcars: model trees (as decision trees, but for regression)
• Kernels: every data point is the center of a radial basis function

• Since least squares is at the heart of all of these
• incremental versions← recursive least squares
• apply L2 regularization (still closed form)
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• Deep learning great when you
• do not know the features
• know the features to be hierarchically organized
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Freek, aren’t you being a bit shallow?

• Deep learning great when you
• do not know the features
• know the features to be hierarchically organized

Rajeswaran A, Lowrey K, Todorov E and Kakade S. (2017).
Towards generalization and simplicity in continuous control
Neural Information Processing Systems (NIPS).



A neural network perspective

All these models can be considered (degenerate) neural networks!

Backpropagation can be used in all these models!
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Linear model
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Figure: Network representation of a linear model. Activation is. . . linear!
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Regression trees
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Extreme learning machine
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φ(x,θe)



Extreme Learning Machine vs. (Deep) Neural Networks

• ELM: sigmoid act. function, no hidden layer, random features
• ANN: sigmoid act. function, hidden layers, learned features



KRR and GPR
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Figure: The function model used in KRR and GPR, as a network.



Locally weighted regression
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Figure: Function model in Locally Weighted Regressions, represented as a
feedforward neural network. The functions φe(x) generate the weights we

from the hidden nodes – which contain linear sub-models (aᵀ
e x + be) – to the

output node. Here, φe is an abbreviation of φ(x,θe)



Conclusion

Linear Least
Squares

“Fit a line to
some data points”

Weighted
Least Squares

“Some data
points more

important to fit”

Locally
Weighted

Regression
+ friends

“Multiple weighted
least squares

in input space”

Radial Basis
Function
Network
+ friends

“Project data into
feature space.

Do least squares
in this space.”

Weighted
Sum of Basis

Functions

Weighted
Sum of Linear

Models



Conclusion: Generic batch regression flow-chart

Algorithm
least squares: a∗ = (λI + XᵀX)−1Xᵀy

Model
linear model: f (x) = aᵀx

Meta parameters
regularization: λ

Model parameters
slopes: a

Regression
algorithm

.

.

training data
(inputs/targets)

model

model
params

meta-params Evaluate

input
(novel)

output
(prediction)



Conclusion: Generic batch regression flow-chart

Algorithm
least squares: a∗ = (λI + XᵀX)−1Xᵀy

Model
linear model: f (x) = aᵀx

Meta parameters
regularization: λ

Model parameters
slopes: a

Regression
algorithm

.

.

training data
(inputs/targets)

model

model
params

meta-params Evaluate

input
(novel)

output
(prediction)



Conclusion: Generic batch regression flow-chart

Algorithm
least squares: a∗ = (λI + XᵀX)−1Xᵀy

Model
linear model: f (x) = aᵀx

Meta parameters
regularization: λ

Model parameters
slopes: a

Regression
algorithm

.

.

training data
(inputs/targets)

model

model
params

meta-params Evaluate

input
(novel)

output
(prediction)



Conclusion: Generic batch regression flow-chart

Algorithm
least squares: a∗ = (λI + XᵀX)−1Xᵀy

Model
linear model: f (x) = aᵀx

Meta parameters
regularization: λ

Model parameters
slopes: a

Regression
algorithm

.

.

training data
(inputs/targets)

model

model
params

meta-params

Evaluate

input
(novel)

output
(prediction)



Conclusion: Generic batch regression flow-chart

Algorithm
least squares: a∗ = (λI + XᵀX)−1Xᵀy

Model
linear model: f (x) = aᵀx

Meta parameters
regularization: λ

Model parameters
slopes: a

Regression
algorithm

.

.

training data
(inputs/targets)

model

model
params

meta-params Evaluate

input
(novel)

output
(prediction)



Conclusion
Linear Least

Squares
“Fit a line to

some data points”

Weighted
Least Squares

“Some data
points more

important to fit”

Locally
Weighted

Regression
+ friends

“Multiple weighted
least squares

in input space”

Radial Basis
Function
Network
+ friends

“Project data into
feature space.

Do least squares
in this space.”

Weighted
Sum of Basis

Functions

Weighted
Sum of Linear

Models

Unified Model

f (x) =
∑E

e=1
φ(x,θe)·(be + aᵀ

e x) Weighted sum of linear models (21)

f (x) =
∑E

e=1
φ(x,θe)· we Weighted sum of basis functions (22)



Conclusion
Linear Least

Squares
“Fit a line to

some data points”

Weighted
Least Squares

“Some data
points more

important to fit”

Locally
Weighted

Regression
+ friends

“Multiple weighted
least squares

in input space”

Radial Basis
Function
Network
+ friends

“Project data into
feature space.

Do least squares
in this space.”

Weighted
Sum of Basis

Functions

Weighted
Sum of Linear

Models

Unified Model

f (x) =
∑E

e=1
φ(x,θe)·(be + aᵀ

e x) Weighted sum of linear models (21)

f (x) =
∑E

e=1
φ(x,θe)· we Weighted sum of basis functions (22)

(22) is a special case of (21) with ae = 0 and be ≡ we



Conclusion
Linear Least

Squares
“Fit a line to

some data points”

Weighted
Least Squares

“Some data
points more

important to fit”

Locally
Weighted

Regression
+ friends

“Multiple weighted
least squares

in input space”

Radial Basis
Function
Network
+ friends

“Project data into
feature space.

Do least squares
in this space.”

Weighted
Sum of Basis

Functions

Weighted
Sum of Linear

Models

Unified Model

f (x) =
∑E

e=1
φ(x,θe)·(be + aᵀ

e x) Weighted sum of linear models (21)

f (x) =
∑E

e=1
φ(x,θe)· we Weighted sum of basis functions (22)

(22) is a special case of (21) with ae = 0 and be ≡ we



Conclusion
Linear Least

Squares
“Fit a line to

some data points”

Weighted
Least Squares

“Some data
points more

important to fit”

Locally
Weighted

Regression
+ friends

“Multiple weighted
least squares

in input space”

Radial Basis
Function
Network
+ friends

“Project data into
feature space.

Do least squares
in this space.”

Weighted
Sum of Basis

Functions

Weighted
Sum of Linear

Models

Unified Model

Freek Stulp and Olivier Sigaud (2015).
Many regression algorithms, one unified model - A review.
Neural Networks.

f (x) =
∑E

e=1
φ(x,θe)·(be + aᵀ

e x) Weighted sum of linear models (21)

f (x) =
∑E

e=1
φ(x,θe)· we Weighted sum of basis functions (22)

(22) is a special case of (21) with ae = 0 and be ≡ we



Conclusion

Mixture of linear models
(unified model)

f (x) =
∑E

e=1 φ(x,θe) · (aᵀ
ex+be)

sub-models: aᵀ
ex + be

weights: φ(x,θe)

GMR (Gaussian Mixture R.)

Gaussian BFs
LWR (Locally Weighted R.)

RFWR (Receptive Field Weighted R.)

LWPR (Locally Weighted Projection R.)

XCSF
Any BFs

M5 (Model Trees)
Box-car BFs

Linear model
f (x) = aᵀx + b

E = 1

LLS (Linear Least Squares)

(Weighted Linear Least Squares)

Weighted sum of basis functions

f (x) =
∑E

e=1 φ(x,θe) · be

sub-models: φ(x,θe)

weights: be

a = 0

RBFN (Radial Basis Function Network)

Radial φ(||x
− c||)

KRR (Kernel Ridge R.)

GPR (Gaussian Process R.)Kernel φ(x, x′)

iRFRLS
I-SSGPR

Cosine BFs

CART (Regression Trees)

Box-car BFs

ELM (Extreme Learning Machine)

Backpropagation

Sigmoid
φ(〈x,w〉)

Figure: Classification of regression algorithms, based only on the model
used to represent the underlying function.



Many toolkits available

• Python
• scikit-learn: http://scikit-learn.org
• StatsModels: http://www.statsmodels.org/
• PbDlib: http://calinon.ch/codes.htm
• dmpbbo: https://github.com/stulp/dmpbbo

• Matlab
• curvefit: https://www.mathworks.com/help/curvefit/
linear-and-nonlinear-regression.html

• PbDlib: http://calinon.ch/codes.htm
• C++

• PbDlib: http://calinon.ch/codes.htm
• dmpbbo: https://github.com/stulp/dmpbbo

http://scikit-learn.org
http://www.statsmodels.org/
http://calinon.ch/codes.htm
https://github.com/stulp/dmpbbo
https://www.mathworks.com/help/curvefit/linear-and-nonlinear-regression.html
https://www.mathworks.com/help/curvefit/linear-and-nonlinear-regression.html
http://calinon.ch/codes.htm
http://calinon.ch/codes.htm
https://github.com/stulp/dmpbbo


Personal Favourites
Gaussian process regression

+ Very few assumptions
+ Meta-parameters estimated from data itself
+ Estimates variance also
+ Works in high dimensions
- Training/query times increase with amount of data
- Not easy to make incremental

Gaussian mixture regression
+ Estimates variance also
+ Algorithm is inherently incremental
+ Some meta-parameters, but easy to tune
+ Fast training times
- Training only stable for low input dimensions

Locally Weighted Regressions
+ Fast query times, fast training
+ Few meta-parameters, and easy to set
+ Stable learning results (batch)
- Not incremental
- No variance estimate

Deep Learning
+ Automatic extraction of (hierarhical) features



Conclusion

• Don’t think about these regression algorithms as being unique
• Similar algorithms that use different subsets of algorithmic features

• All these models are essentially shallow neural networks with
different basis functions

Thank you for your attention!
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Model: (Locally) Linear Regularization Model: Sum of Basis Functions ConclusionUnified Model

Appendix

Regression Tutorial – Freek Stulp



Gaussian Process Regression

“Given a Gaussian process on some topological space T , with a
continuous covariance kernel C(·, ·) : T × T → R, we can associate a
Hilbert space, which is the reproducing kernel Hilbert space of
real-valued functions on T , with C as kernel function.”

Instead of screaming, let’s talk about what it means to be smooth.
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Gaussian Process Regression

• Points that are close in the input space should be close in the
output space.
• Cities that are close geographically have similar temperatures (on

average)
• Taller people have larger shoe sizes (on average)

• Shoe size covaries with height



Gaussian Process Regression – Covariance Function

covariance function

covariance matrix (Gram matrix)

K(X,X) =


xAug xMuc xWar xMin xMos

xAug 1.00 0.96 0.42 0.02 0.00

xMuc 0.96 1.00 0.59 0.04 0.00
xWar 0.42 0.59 1.00 0.32 0.10
xMin 0.02 0.04 0.32 1.00 0.80
xMos 0.00 0.00 0.10 0.80 1.00



• Remarks
• Basis function has very specific interpretation: covariance
• No temperature measurements y have been made yet
• Prior: assume temperature is 0◦C

Question
Expected temperature in Munich, given 9◦C in Augsburg?

(condition on TAug = 9, i.e. E [TMuc | TAug = 9])
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• No temperature measurements y have been made yet
• Prior: assume temperature is 0◦C

Question
Expected temperature in Munich, given 9◦C in Augsburg?

(condition on TAug = 9, i.e. E [TMuc | TAug = 9])
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Gaussian Process Regression – Example

k(xMuc, xAug) = 0.96

What are the plane slopes?

yq =

see above︷ ︸︸ ︷
k(xq ,X) K(X,X)−1y︸ ︷︷ ︸

Least squares!

(23)
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Kernel Regression

f (x) =
∑N

n=1
wn · k(x,xn)

w∗ = K(X,X)−1y
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