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Abstract— Collaborative robots (cobots) have been increas-
ingly used in the industry in recent years. The cobots are
often 7-axis kinematically redundant manipulators. Exploiting
these redundancies in industrial tasks is still a challenge as the
change in the robot joint configuration can be unnecessarily
large from one task to another depending on the initialization of
the numerical inverse kinematics. In this article, we address this
challenge in a particularly important under-explored industrial
task: percussive riveting. The load exerted on the rivet for
its plastic deformation can be dangerous for the robot if the
natural frequency of the robot coincides with the frequency of
the impact forces. In this work, we propose to take into account
the vibrational characteristics of the manipulator to determine
the robot joint configurations that minimize the overall end-
effector’s displacement. We also propose to exploit these safe
joint configurations for each rivet hole in a task and motion
planning algorithm called RoboTSP to generate the optimal
trajectory visiting all target holes. We demonstrate our method
with a Franka Emika Panda robot in a simulated environment.

I. INTRODUCTION

Riveting is the mechanical process of joining metallic
(or composite) parts together by means of an additional
metallic part called rivet, serving to join the parts through
adjacent surfaces. In principle, there are two riveting methods
depending on the type of forces applied on the rivets:
squeezing (or one-shot) and percussive (or hammering). The
squeezing method can only be performed in an automatized
way as it requires a large upsetting force to be applied to
deform the rivet instantly on large components. On the other
hand, the percussive method is usually performed manually
with a smaller impulsive force applied to deform a rivet
cumulatively by a series of hits.

The manual percussive riveting typically requires two
people. One person uses an air hammer (pneumatic riveting
hammer) to deform the rivet (the operator Op.1 in Fig. 1),
while the other uses a metal bar, called a bucking bar pressed
against the rivet on the opposite side of the assembly in order
to hold it in place and counteract the force (the operator
Op.2 in Fig. 1). The regions where this counteractive force
needs to be applied are difficult to reach. As a consequence,
the workers who perform this job need to have strong and
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Fig. 1: Simulated rendering of the setup in the aircraft
construction facility. The assembly structure to be riveted by
two operators (the photo of the real setup cannot be shown
due to confidentiality). The operator Op.1 applies the forces
with the pneumatic gun while the other operator Op.2 applies
a counteractive force on the rivet hole.

long arms. They need to work for long periods of time in
uncomfortable poses and are subject to vibrations induced by
the pneumatic hammer that can cause issues in ergonomic,
health and safety of the workers. The assembly process
thus becomes time-inefficient and generates high physical
stress on the workers performing it. Another disadvantage
of the manual riveting is that for an aircraft, there are
many structures to be riveted. Therefore the development of
adaptive robot controllers and planners for cobots helping in
the riveting process has a huge potential.

As the riveting is a kinematically redundant task even for
6-axis robots as explained in Section IV, there are infinitely
many solutions to reach these rivets. In this article, we ex-
ploit the kinematic redundancy of the proposed collaborative
robotic riveting system in the vibrational response when the
robot end-effector is subject to percussive forces, and also
in the planning of the whole task. The structure to test the
proposed robotic solution is shown in Fig. 2.

Our contributions are as follows. First, we propose to com-
bine the vibrational characteristics of a 7-axis collaborative
robot, Franka Emika Panda for the percussive force loading,
with its kinematic redundancy. We investigate how to de-
termine joint configurations that minimize the displacement
of the end-effector during the riveting process for the robot
safety and the good quality riveting. Second, we propose to
exploit these well-behaved joint configurations in a task and
motion planning algorithm to estimate the optimal path in
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the configuration space given the rivet hole sequence.
The paper is organized as follows. Section II gives related

work on vibration analysis and motion planning for this
kind of applications. Section III gives a background on the
vibration analysis of flexible joint robots. In Section IV, we
first present the detailed methodology of the optimization
procedure to determine vibration resistant configurations and
then explain how these will be incorporated and exploited
in an optimal task and motion planning algorithm. We
discuss the results of our proposed approach on the envisaged
riveting structure using a Franka Emika Panda robot in
Section V, and we conclude our work with Section VI.

II. RELATED WORK

A. Vibration analysis for percussive riveting

The focus of the work presented in [1] is to develop
a numerical analysis of the robot vibration during the
percussive riveting for fatigue life analysis of the robot.
In [2], the authors build on the previous work to find a
preferable workspace for fatigue life improvement of robots
with flexible joints subject to percussive loading. In [3], the
authors propose to optimize the process parameters such as
the end-effector pose and the force impact frequency in order
to minimize the tool misalignment caused by percussive
loading. The work in [4] proposes new displacement-force
frequency response ratio indices to describe the vibration
characteristics of flexible joint robots when subject to per-
cussive loading. However, these works do not consider the
redundancy in the robot kinematics as proposed by this work.

A similar work in [5] deals with the vibration analysis
of a semi-autonomous robotic riveting system considering
the end-effector as point mass. The authors find the natural
frequency of the robot given a fixed configuration and design
a controller to cope with the vibration. In contrast, our
work copes with the previous step, i.e., to find good robot
configurations to plan an optimal reaching the riveting holes.

Although applicable to a broader range of robots, [1], [2],
[3], [4] present results only on a 3 degrees-of-freedom (DoF)
robot that can hardly reach the desired riveting position
with a single configuration. In contrast, our work focuses
on the optimization of joint configurations of a 7-DoF robot
by exploiting the redundancy of the robot with respect to
the desired task. Besides extending to higher DoF systems,
with the proposed optimization procedure and the planning
strategy, our work is an extension of [4], as we optimize the
equilibrium joint configuration to minimize the end-effector
displacements at different rivet hole positions.

The robotic system proposed in these works also differ
from the proposed solution in two major aspects. First, the
collaborative system considered here is a semi-automatized
platform envisaged as a collaborative solution with a hu-
man partner holding the gun and applying the percussive
forces. This allows the solution to be more adaptable and
flexible, which can be applied to more diverse structures
and reprogrammed on the execution by the help of the
operator. Second, we exploit the kinematic redundancies to
minimize the end-effector displacement of the robot holding

Fig. 2: Simplified riveting structure simulated in PyBullet,
showing the Franka Emika Panda robot holding the bucking
bar at a rivet hole, the placement of the rivet holes in this
structure, and the chosen 64 rivet hole positions (represented
by top (green), middle (red) and bottom (blue) blocks) used
to showcase the capability of our approach.

the bucking bar due to the vibrations involved in the riveting
process, in order to avoid dangerous robot configurations.

B. Task and Motion Planning

Riveting tasks involve a large number of holes to be vis-
ited. At each hole, there can be multiple robot configurations
that can satisfy the task (a redundant 7-DoF robot with 6-DoF
task would have infinite number of possible configurations).
Naively choosing the configurations and the hole sequence
would result in long trajectories between one configuration
and the next. This motivates the need for task and motion
planning algorithms that can choose the visiting order of
the holes, to select the optimal robot configuration at each
hole, and to plan the trajectory between any two consecutive
configurations. Many algorithms have been proposed, e.g.,
using group spanning trees ([6], [7]), genetic algorithms ([8],
[9]), or multi objective constraint optimization [10], but most
of them require substantial planning times when the number
of tasks is large. RoboTSP is proposed in [11] as a way
to solve the task and motion planning for a large number
of holes in a drilling task. The computation time is much
faster than the previously proposed approaches, while still
maintaining the quality of the solutions.

III. BACKGROUND

For the vibrational analysis of the robot arm subject
to percussive forces, we follow the work in [4]. Classical
dynamic modeling of robotic manipulators assumes that the
links of the robot are rigid and the equations of motion of a
n-DoF manipulator can be written as

M(q)q̈+C(q, q̇)q̇+g(q) = τm+τext, (1)

where M(q) is the generalized mass matrix, C(q, q̇) is
coriolis and centrifugal forces matrix, g(q) is the gravity



Fig. 3: Overview of the proposed method. Given a set of target poses {pi}Ni=1 and a force signal F with a frequency ω,
we use optimization to find robot configurations that reach these poses while minimizing vibrations. For each pose pi, M
robot configurations {qij}Mj=1 are found. RoboTSP determines the best configuration among the M choices for each hole,
and finally plans the optimal joint angle trajectories visiting all these configurations.

vector, τm is the robot torque commands and τext is the
external torques applied to the robot. For riveting applica-
tions, the robot needs to reach a desired configuration qd
from which any deflection is undesired. In other words, the
desired joint velocities and accelerations are zero, q̇d=q̈d=0.
The controller to achieve this task is designed as

τm = Kd(qd−q)+Cd(q̇d−q̇)+C(q, q̇)q̇+g(q), (2)

where Kd and Cd are the desired stiffness and damping
matrices, respectively. Letting δ=q−qd be the perturbations
or deflections in joint angles from the desired configuration,
one can express the forced vibration equation of the manip-
ulator when it is subject to external percussive forces F (t),
by substituting (2) into (1) as

M(q)δ̈+Cdδ̇+Kdδ = J>F (t), (3)

where J is the Jacobian matrix. We then perform the
vibration analysis with a simple harmonic force F (t)=F̄ ejωt

which results in the steady-state response of the joint de-
flections δ(t) = δ̄ejωt for the forced vibration problem
in (3) where δ̄=(−ω2M+jωC+K)−1J>F̄ . The mass
matrix and the Jacobian are evaluated at the equilibrium
configuration assuming small deflections. Note that this
analysis can easily be extended to other periodic forces
such as square signal produced by the percussive riveting
using the superposition principle and Fourier expansion of
the force signal. Using δ̄, we can express the end-effector
displacement amplitude as

∆x = J>δ̄ = H(ω)F̄ , (4)

where H(ω)=J>(−ω2M+jωC+K)−1J> is the
displacement-force frequency response.

IV. METHODS

In percussive riveting applications, periodic forces can
cause large end-effector displacements if the natural fre-
quency of the manipulator is close to the frequency of the
force profile. The displacement amplitude defined in (4) can
inform us on how large the end-effector displacements would
be if such forces were to be applied. These displacements

are undesirable as the accuracy of the end-effector position
is important for a good quality riveting and very large
displacements can break the robot or reduce its lifespan. Our
work thus aims to minimize the end-effector displacements
when the robot tool is subject to percussive forces.

The task to hold the bucking bar at the desired riveting
hole requires accurate positioning in all 3 DoF in the
Cartesian space and only 2 DoF for orientation (see Fig. 2).
This one DoF allows for more than 6-axis robots to admit
infinitely many configurations for a given hole, such as for
Franka Emika Panda used in this work. We therefore would
like to find the minimum-displacement robot configurations
given each rivet hole pose. Even though finding one well-
behaved joint configuration may be enough for just one
rivet hole, the transitions from one hole to another may
not be optimal if the motion planner is provided with only
one configuration for each hole. We would like therefore
to find an ensemble of configurations for each hole, where
each configuration minimizes the end-effector displacements.
Figure 3 shows the overview of the proposed approach.

A. Optimal Joint Configurations

Our problem is to find joint configurations that correspond
to given 5-DoF rivet hole poses, but also that minimize
the displacement amplitude ∆x of the end-effector resulting
from the vibrational forces. We cast this optimization prob-
lem as the minimization of several cost functions. Given a
force frequency ω, the overall cost to optimize is therefore

c(q) = cpos(q)+corn(q)+βcdisp(q, ω), (5)

where β defines the weight of the cost on the displacement
of the end-effector cdisp(q, ω) relative to the costs on the
position of the end-effector cpos(q) and to the cost on the
orientation of the end-effector corn(q). We implemented this
cost function in Tensorflow and used the Adam optimizer
with its default parameters to determine M solutions for each
of the 64 rivet holes. Note that we initialize the problem
from random configurations that are within the joint limits.
We first chose β to be a very small number such as 10−5 and
gradually increased it such that we do not see big deflections
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Fig. 4: Determining the sequence of optimal configurations
using RoboTSP [11]. Each node in the graph is associated to
a robot configuration at a particular target/hole. A Dijkstra
algorithm is then used to compute the optimal path that
minimizes the total weight of the traversed edges.

for the cost on the position and the orientation. Such an
approach is standard in Lagrangian optimization methods.

Cost on the end-effector pose: The end-effector position
relative to the rivet hole position is denoted as µp ∈ R3.
Along with a precision matrix or weighting matrix Qp, used
in this work as an isotropic diagonal matrix, we can represent
the precision of positioning and construct a quadratic cost as
cpos(q) = µ>

pQpµp. The configuration q also needs to keep
2 degrees of orientation of the end-effector fixed relative to
the rivet hole surface normal, as the bucking bar should not
lose contact with the surface. Rotation around the surface
normal axis is allowed as they do not interfere with the
riveting process. We denote the desired relative orientation
as the unit quaternion µq ∈ S3, where S3 denotes a sphere
manifold. Using Riemannian manifold properties, we define
the orientation cost as corn(q) = µ>

qQqµq as explained
in [12], where Qq describes the precisions which allows
rotations around the surface normal axis.

Handling joint limits: We use a sigmoid function to
squash the optimization variable q in between its joint limits
with q̂ = sigmoid(q)(qu−ql)+ql, where ql and qu represent
the lower and the upper limits, respectively.

Cost on the displacement: The end-effector displacement
∆x ∈ (R3,S3) defined in (4) depends on the frequency,
amplitude and direction of the force applied to the end-
effector, but also on the configuration of the robot. Our goal
is to find configurations which minimize ∆x. However, the
computation of such cost requires differentiable model of the
mass matrix M(q) and the Jacobian J(q). We implemented,
in Python, the Tensorflow version of the Kinematic and
Dynamics Library (KDL) written in C++. This allows us
to access all the differentiable Tensorflow functions with op-
timization tools and differentiable KDL functions. The cost
of displacement becomes d2 = cdisp(q, ω) = ‖∆x(q, ω)‖2.

B. Task and Motion Planning

The above optimization outputs M configurations for each
riveting hole pi, and we need to plan the robot motion to
reach all holes. One configuration needs to be chosen at each
hole, and then the trajectory visiting the two consecutive
configurations needs to be computed. One naive way is
to choose the configuration with the smallest displacement

d=∆x at each hole, but it will result in relatively long
trajectories between subsequent riveting holes because the
selected configurations will likely be far apart.

We propose to use an optimal task and motion planner
called RoboTSP [11]. The planner can select the optimal
configuration at each position/hole such that it minimizes
the desired optimality criteria. In [11], the criterion is to
minimize the total length of the trajectory. For the riveting
task, we add another criterion corresponding to the total
displacement d of the selected configurations.

The planner works in two stages, starting from the task
space and then the configuration space. First, it finds the
optimal sequence of rivet holes by formulating it as a
Travelling Salesman Problem (TSP), where the objective is
to minimize the travel distance in the task space. Given
the visiting order, the planner then determines the optimal
configuration at each hole. In our case, since the riveting task
is a collaborative task with another human operator, we prefer
the hole order to be specified manually by the operator and
skip the first step of RoboTSP. When the human operator can
follow the robot motion easily, RoboTSP can determine the
visiting order, further improving the final trajectory quality.

The second step is to determine the optimal configuration
at each hole. The planner builds a graph connecting the
configurations at the consecutive holes (Fig. 4). Each config-
uration is associated to a node in the graph. Configurations
from one hole are connected to the configurations from the
next hole. The edge of the graph is assigned a weight that
consists of both the configuration space distance and the
average displacement wij = ||qi−qj ||2+ 1

2λ(d(qi)+d(qj)),
where λ is the relative weight of the displacement cost. We
then use Dijkstra algorithm to find the optimal path from the
first to the last node that minimizes the total weight of the
traversed edges, giving us the optimal configuration for each
hole. Given the sequence of configurations, we then use the
bi-directional RRT algorithm, i.e. RRT-Connect [13] to plan
the joint angle trajectory visiting these configurations.

V. RESULTS AND DISCUSSION

To evaluate the proposed approach, we consider the struc-
ture in Fig. 2 with a total of N=64 rivet holes separated
into three parts (top, middle and bottom) for better visual-
ization of the vibration analysis results. For each hole, we
determine M=500 configurations that reach the hole with
the corresponding positions and orientations. In order the
determine the Jacobian and the mass matrix of the robot, we
used the URDF file of the Panda robot with the parameters
estimated in [14]. We used a Tensorflow implementation of
the Adam optimizer with a learning rate of 0.01.

A. Optimal Joint Configuration Results

We conducted 3 different experiments where the per-
cussive forces are square signals with a frequency of 70,
100 and 150 rad/s. We first found 500 inverse kinematics
solutions which do not take into account the vibrational
effects, that we call Before, and we further optimized those
with the displacement cost included, that we call After,



Fig. 5: The median-variance plot of the displacement distance d of the end-effector when it is subject to a square signal with
frequencies ω = 70,100 and 150 rad/s at the chosen 64 rivet holes for 500 configurations of the Franka Emika Panda robot.
Before refers to case where the configurations correspond to the rivet hole poses, but not yet optimized for the displacement,
and After refers to the proposed optimization procedure.

TABLE I: Reduction of the median displacement in %

Frequency (rad/s) Top Middle Bottom
70 82.9 67.79 78.17
100 51.8 54.94 56.4
150 62.52 50.98 50.74

referring to the results shown before or after the inclusion
of the displacement cost. We show the results of these
experiments in Fig. 5, denoting the three parts of the rivets
separately to understand better the scale and the reduction in
the displacements after the proposed optimization scheme.
For the top and bottom rivet holes, Before solutions have
significantly larger median and variance in the displacements
than the middle rivet holes for each of the frequencies.
This may be explained by the bad postures that the robot
needs to take in order to reach the given top and bottom
positions and orientations. Before solutions may be the
easiest configurations that the inverse kinematics algorithm
can find. However, they are not the good solutions in terms
of undesired vibrational effects. This can be seen by the
After solutions which have much lower median and variances
in the displacement. Here, with the proposed optimization
framework, we exploited the kinematic redundancy of the
robot and of the task in order to determine the configurations
that result in lower displacements and that are not easily
found by inverse kinematics.

The reduction percentage of the median for each case is
given in Table I. Note that a choice in the frequency value
of the force means a choice in the riveting gun used in
the process. One can decide which riveting operations and
what kind of riveting gun to use with the available robot by
conducting the proposed analysis.

B. Motion Planning Results

Having computed M configurations per hole, we then
apply the RoboTSP algorithm to select the optimal configu-

(a) (b)

Fig. 6: Comparing (a) the trajectory length and (b) the
average displacement d̄.

rations per hole and plan the trajectories using RRT-Connect
(see the attached multimedia content). We compare against a
baseline algorithm, where for each hole we select the optimal
configuration as the one that has the smallest d. We use
λ = 10 to balance the trajectory and the displacement cost,
making sure that the trajectory is short but the end-effector
displacement is still small. For this experiment, we choose
the frequency value of 70 rad/s, but the method does not
depend on this parameter.

Fig. 6 shows the comparison in terms of the total trajectory
length (

∑T−1
i=0 ‖qi−qi+1‖) and the average displacement d̄ =

1
T+1

∑T
i=0 d(qi). As expected, RoboTSP produces trajecto-

ries with smaller length. It finds consecutive configurations
that are close to one another, while still keeping the average
displacement d̄ small. In comparison, the baseline achieves
the lowest d̄, at the cost of much longer trajectories (∼ 10
times longer). Indeed, simply selecting configurations that
minimize d̄ will likely result in configurations that are far
apart. This means longer trajectory and hence longer plan-
ning time. This is especially true for the planning with the
structure in Fig. 2. When the two consecutive configurations



Fig. 7: Breakdown of the computational time.

are far apart, the robot often has to move in and out of the
curved structure, which is a difficult planning problem as the
path is very narrow. On the other hand, the configurations
chosen by RoboTSP are very close to one another, and the
only large movement necessary is when the robot moves
from the right to the left cluster of the holes.

The planning time of both planners is shown in Fig. 7,
which is divided into three parts: 1) The configuration
selection step, to select the optimal configuration at each
hole; 2) The motion planning step, to plan the trajectory
between two consecutive configurations using RRT-connect;
and 3) The post-processing step, to shorten the trajectory
using the standard shortcut algorithm.

RoboTSP and the baseline only differ in the way the
configuration at each hole is selected, while the remaining
two steps are the same. The first step is crucial, however, as
it affects the next two steps. Due to shorter configuration dis-
tances between consecutive configurations, RoboTSP results
in much shorter planning time as compared to the baseline
for M > 1. However, as M increases, the configuration
graph becomes larger, and the configuration selection time
increases. A good compromise is obtained at around ∼ 100
configurations per hole, where the computation time is kept
low while the trajectory length is small. Note that the
configuration selection time even at M = 200 is only ∼ 2
s, which is still negligible compared to the other planning
times, and hence cannot be visualized easily in Fig. 7.

Finally, in the context of collaborative work with a human
operator, the fast computation enables us to make a real time
change and replanning of the remaining part of the task. For
example, the operator may decide during the operation that
the hole order should be changed. Computing a new set of
optimal configurations when M = 100 only takes less than
2 seconds, while the planning time to reach one hole is on
average less than 1 second, so this can be done online without
requiring the operator to wait. We demonstrate an example
of this real-time hole re-ordering in the supplementary video.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we addressed two major challenges in
the automatization of industrial riveting with a collaborative
robot. First, we proposed a principled way of exploiting the

kinematic redundancies in these flexible joint robots for mini-
mizing the forced vibration of the end-effector. We optimized
redundant joint configurations for each rivet hole to result in
minimal displacements of the end-effector while it is subject
to percussive loading. Second, we exploit our optimized joint
configurations in an optimal motion planning algorithm for
a faster execution of the riveting task. We showed that our
method can achieve a short total trajectory length while still
minimizing the average end-effector displacement at each
hole.

Future work will focus on a real industrial setup. Further-
more, in our current optimization formulation, the random
initial guesses may still result in the same configurations
after optimization, as there is no specific cost to force them
to be different. We will investigate in future work if better
optimization costs could be employed to address this issue.
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