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Recap from 28/09 lecture (Jean-Marc)
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Recap: EM for GMM
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Recap: Local optima issue when using EM for GMM
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EM will improve the likelihood at each 
iteration, but it can get trapped into 

poor local optima in the solution space

 Parameters initialization is important!

Recap: Local optima issue when using EM for GMM



8

Parameter space

Lo
g-

lik
el

ih
o

o
d

Unknown 
solution space

The introduction of a regularization 
term can change the shape of the 

solution space

Recap: Local optima issue when using EM for GMM



Hidden Markov Model (HMM)
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Lattice representation of a sequence of observations

(with the possible associated hidden states)
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Dictionary of possible
observations

Observed sequence
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Options for the 
underlying
hidden states



GMM vs HMM
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→ You can think of an HMM either as:

• a Markov chain with stochastic measurements

• a GMM with transition between the Gaussians



Outline of today’s lecture
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• Markov models

• Hidden Markov model (HMM)

• Forward-backward algorithm

• Viterbi decoding (dynamic programming)

• Hidden semi-Markov model (HSMM)

• HMM with dynamic features (Trajectory-HMM)



Markov models
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Markov models - Parameters
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Example: language modeling
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Example: language modeling
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Example: language modeling
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Example of text generated from a 4-gram model, trained on a 
corpus of 400 million words. 

The first 4 words are specified by hand, the model generates the 
5th word, and then the results are fed back into the model. 

Source: http://www.fit.vutbr.cz/~imikolov/rnnlm/gen-4gram.txt 

SAYS IT’S NOT IN THE CARDS LEGENDARY RECONNAISSANCE BY 
ROLLIE DEMOCRACIES UNSUSTAINABLE COULD STRIKE 
REDLINING VISITS TO PROFIT BOOKING WAIT HERE AT 
MADISON SQUARE GARDEN COUNTY COURTHOUSE WHERE HE 
HAD BEEN DONE IN THREE ALREADY IN ANY WAY IN WHICH A 
TEACHER …



MLE of transition matrix in Markov models
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Hidden Markov model

(HMM)

Python notebook: 
demo_HMM.ipynb

Matlab code: 
demo_HMM01.m



Emission/output distributions in HMM
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Discrete tables
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Gaussian distribution Mixture of Gaussians



Transition matrix structures in HMM
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HMM - Examples of application
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HMM is used in many fields as a tool for time series or sequences analysis, and in 
fields where the goal is to recover a data sequence that is not immediately observable:

Speech recognition
Speech synthesis
Part-of-speech tagging
Natural language modeling
Machine translation
Gene prediction
Molecule kinetic analysis
DNA motif discovery
Alignment of bio-sequences (e.g., proteins)
Metamorphic virus detection
Document separation in scanning solutions

Cryptoanalysis
Activity recognition
Protein folding
Human motion science
Online handwriting recognition
Robotics



HMM parameters
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GMM

HMM

From now on, we will consider 
a single Gaussian as state output



Inference problems associated with HMMs
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Intermediary variables that we will require in HMM
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EM for HMM (Baum-Welch algorithm)
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K Gaussians
M sequences
Tm points per sequences

The update rules can be 
interpreted as normalized 
counts, with several types of 
weighted averages required 
in the computation.
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V3

V1

V2

V3



Useful intermediary variables in HMM
27

Forward variable

Backward variable

Smoothed node marginals

Smoothed edge marginals



Forward algorithm
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Forward algorithm
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Useful intermediary variables in HMM
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Forward variable

Backward variable

Smoothed node marginals

Smoothed edge marginals
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Backward algorithm
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Backward algorithm



Useful intermediary variables in HMM
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Forward variable

Backward variable

Smoothed node marginals

Smoothed edge marginals

These variable are sometimes called 
smoothed variables as they combine forward 

and backward probabilities in the computation.

You can think of their roles as passing 
"messages" from left to right, and from 

right to left, and then combining the 
information at each node.



Smoothed node marginals
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Useful intermediary variables in HMM
35

Forward variable

Backward variable

Smoothed node marginals

Smoothed edge marginals



Smoothed edge marginals
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EM for HMM (Baum-Welch algorithm)
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K Gaussians
M sequences
Tm points per sequences

The update rules can be 
interpreted as normalized 
counts, with several types of 
weighted averages required 
in the computation.
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Numerical underflow issue in HMM
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Numerical underflow issue in HMM
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This issue is sometimes not covered in 
textbooks, although it remains very 
important for practical implementation 
of HMM!



Why did we introduce these intermediary variables in HMM?
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Why did we introduce these intermediary variables in HMM?
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Viterbi decoding

(MAP vs MPE estimates)

Python notebook: 
demo_HMM.ipynb

Matlab code: 
demo_HMM_Viterbi01.m

Maximum a posteriori Most probable explanation



Viterbi decoding (MAP vs MPE estimates)
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Maximum a posteriori Most probable explanation



Viterbi decoding
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Forward algorithm:



Viterbi decoding - Example
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Figure adapted from Kevin P. Murphy (2012), Machine Learning: A Probabilistic Perspective
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Numerical underflow issue in Viterbi
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Numerical underflow issue in Viterbi
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Hidden semi-Markov model 

(HSMM)

Python notebook: 
demo_HSMM.ipynb

Matlab code: 
demo_HSMM01.m



State duration probability in standard HMM
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Naive approach: By artificially duplicating 
the number of states while keeping the 
same emission distribution, other state 
duration distributions can be modeled

The state duration follows a 
geometric distribution



Hidden semi-Markov model (HSMM)
50

Another approach is to provide 
an explicit model of the state 
duration instead of relying on 

self-transition probabilities



Hidden semi-Markov model (HSMM)
51

GMM

HMM

HSMM

Parametric duration 
distribution



HMM with dynamic features

(Trajectory-HMM)

Matlab code: 
demo_trajHSMM01.m



HMM with dynamic features
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HMM with dynamic features
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HMM with dynamic features
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HMM with dynamic features
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HMM with dynamic features
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(C=3 here)

D dimensions 
C derivatives
T time steps

Large sparse matrix



HMM with dynamic features
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HMM with dynamic features
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HMM with dynamic features
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Weighted 
least squares!



HMM with dynamic features
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HMM with dynamic features - Summary
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