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ABSTRACT
Prior art search or recommending citations for a patent ap-
plication is a challenging task. Many approaches have been
proposed and shown to be useful for prior art search. How-
ever, most of these methods do not consider the network
structure for integrating and diffusion of different kinds of
information present among tied patents in the citation net-
work. In this paper, we propose a method based on a time-
aware random walk on a weighted network of patent cita-
tions, the weights of which are characterized by contextual
similarity relations between two nodes on the network. The
goal of the random walker is to find influential documents in
the citation network of a query patent, which can serve as
candidates for drawing query terms and bigrams for query
refinement. The experimental results on CLEF-IP datasets
(CLEF-IP 2010 and CLEF-IP 2011) show the effectiveness
of encoding contextual similarities (common classification
codes, common inventor, and common applicant) between
nodes in the citation network. Our proposed approach can
achieve significantly better results in terms of recall and
Mean Average Precision rates compared to strong baselines
of prior art search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval
Models, Query Formulation

General Terms
Experimentation, Performance, Measurement

Keywords
Prior art Search; Citation Graph; Bibliographic Network

1. INTRODUCTION
Patent prior art search is the task of recommending patent
and non-patent documents which describe prior art work re-
lated to a patent application (referred to as query patent in
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this paper) and to provide a ranking of such relevant docu-
ments for the user. One of the main challenges in prior art
search is related to the overwhelming term-mismatch. This
problem originates from the frequent intentional obfuscation
of content by patent writers and it leads to low retrieval ef-
fectiveness of patent search systems [9]. For example one
patent document may contain few or no keywords in com-
mon with the query patent, while the idea conveyed in the
two patent documents is quite similar. The question we
try to answer in this paper is the following: given a time-
evolving patent citation network, can we use the context
of the query to overcome the term-mismatch problem and
provide a ranking of relevant documents for a given patent
application? We define the contextual information accord-
ing to the type of information available between two linked
patent documents on the citation network, namely: num-
ber of common applicants, number of common inventors,
number of common classification codes, lexical, and tem-
poral similarity. We exploit such similarities among linked
patents as complementary information to the initial query
in order to overcome the term-mismatch problem.

Recently, a few researchers [18, 22, 20, 12, 13] have stud-
ied the problem of recommending patent citations for prior
art search. The first group [18, 22, 20, 15] mines heteroge-
neous networks derived from interacting patent companies
and inventors. This group relies mainly on the link analy-
sis and prediction on the network structure and do not take
into account the term distribution of the patent documents.
The second group [12, 13] targets textual content analysis
through modeling the language of the query patent and in-
tegrating the proximity information into the query model.
However, none of the above works target simultaneously all
sources of available information, namely: the textual con-
tent of a query patent and the contextual relations available
among interacting patents on a time-evolving patent citation
network. The focus of the current paper is to perform query
refinement by taking advantage of the rich network structure
(node and edge attributes) as well as the term distribution
of the interacting patents.

We propose a graph-based representation for a query patent
according to the top ranked documents obtained from an
initial rank list and their citation links. This graph-based
framework takes into account the context-based relations be-
tween patent documents. This framework models the depen-
dency between node attributes through the network struc-
ture. Our proposed method selects the influential patent



documents from the query-specific citation network by run-
ning a random walker on a graph structure. The term distri-
bution of selected candidates is then used for drawing con-
cepts (unigram and word level bigrams) to formulate an ex-
pansion query model. We then provide a ranking model
to recommend patent citations according to a query patent
(i.e., a patent application submitted to the system).

In order to consider the dynamic nature of the network and
recognize the new influential nodes, which are added to the
network but have not stayed long enough to accumulate suf-
ficient links, we parameterize the random walk with a time
factor. We do this by considering the temporal order of
the nodes in the citation network. We discount the initial
probability of selecting a node as the seed of the Page Rank
algorithm according to some temporal decay factor.

We experimented with different types of edge strengths to
find out the effect of each similarity metric on the accu-
racy of citation recommendation. We find that using clas-
sification codes (topical similarity) has the highest perfor-
mance among the similarity functions when they are used
separately. The performance increases as the combination
of different node attributes is used together to denote the
strength of an edge. This shows the importance of leverag-
ing as many node attributes as possible.

At an abstract level, our proposed approach is composed of
three steps.

• Generation of the citation network: we extract
the potential set of citation documents by performing
similarity matching on lexical and topical levels for a
query patent.

• Network analysis: where a time-aware random walk
is used to identify the influential documents on the
citation network and calculate a score for them.

• Query refinement the term distribution of candi-
date influential documents is used for drawing concepts
(terms and word level bigrams). This query is used for
performing a query expansion in order to re-rank the
primary rank list.

Our contributions in this paper can be summarized as trying
to answer the following questions:

• Are the citation network structure and diffusion of the
contextual-based similarity between patent documents
derived from the network structure useful for distin-
guishing between relevant and non-relevant patent doc-
uments?

• Can we use the network structure and the node at-
tributes to better estimate a query model for perform-
ing patent retrieval?

• Does the combination of different node attributes for
calculating edge weights improve over the result of us-
ing only a single node attribute?

We evaluate our framework on two large patent datasets,
CLEF-IP 2010 and CLEF-IP 2011. We use the importance
values associated to the nodes on the network to guide the
query formulation process. This resembles pseudo relevance
feedback and we perform such a task in a language mod-
eling framework. We compare our proposed framework to
the state of the art prior art search methods. We quan-
tify the accuracy of our method in terms of the final rank-
ing produced for recommending citations for a given patent
application. Overall, our method achieves a significant im-
provement, 8− 10% in terms of recall@1000 and 8− 20% in
terms of Mean Average Precision (MAP)@1000, over base-
line methods on both datasets. We add different types of
information to denote the strength of edges in the network
such as similarity in terms of applicant, inventor, classifi-
cation codes, lexical, and temporal information. We find
that combining these weights increases the performance of
the method. Our proposed framework is able to successfully
use different types of nodes and edge attributes in order to
recommend citations for a patent application.

Our paper is organized as follows: Section 2 reviews some
related works. Section 3 describes the patent citation net-
work and introduces one of the data sets and reports some
observations we discovered while extracting different types
of information from this dataset which motivates the usage
of node information and edge attributes on the patent cita-
tion network. Section 4 introduces our initial query model
estimated from the patent query. Section 5 explains our pro-
posed model for time-aware network analysis and describes
the algorithm for calculating node importance on the cita-
tion network. Section 6 explains the way we formulate a
query by combining the information derived from the cita-
tion network with our initial query model. Section 7 re-
ports our experiments that validate the effectiveness of our
methodology, including its setup, baseline methods and eval-
uation results. Finally, Section 8 concludes this work.

2. RELATED WORK
We summarize the related work to this paper and arrange it
along the two following dimensions. First, we focus on the
proposed methods for prior art search. Second, we consider
methods that take into account graph structure and model
the dependency between nodes for patent citation recom-
mendation.

Patent examiners apply term proximity heuristics in their
searches in order to reward a document where matched query
terms occur close to each other. This shows that proxim-
ity information plays an important role in real scenarios of
patent searching. A few work [4, 12, 13, 2] studied the
importance of proximity heuristics and phrases on patent
search and classification. The work reported in [4] uses bi-
grams for patent classification. They obtained significant
improvements by adding phrases. They concluded that bi-
grams are the most informative type of phrases for patent
classification.

A recent study [13] builds a lexicon based on the patent clas-
sification code definitions1. This lexicon is used as a domain
dependent resource for extracting specific terms to the topic

1See http://web2.wipo.int/ipcpub/
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of the query. Proximity information is used to calculate re-
liable importance weights for the expansion concepts.

Another study on improving the retrievability of patent doc-
uments [2], combined term proximity heuristics with other
features to select good terms for query expansion. In this
work different distance functions were considered using prox-
imity heuristics in comparison to standard query expansion.

A different approach is introduced in [20] which considers
the co-invention relationships between inventors on the en-
terprise social network for recommending patent partners.
They used a ranking factor graph model to predict future
collaborators according to a user’s profile and provide a rec-
ommendation list. They found that factors like, comple-
mentary research interests, and geographical proximity have
positive effects on forming collaborations among inventors.
The co-invention relationship is considered as an attribute
in our patent citation network.

A recent work on patent citation recommendation [18], stud-
ies a heterogeneous network of patents including different
type of objects such as companies, inventors and the techni-
cal content of patent documents. They identify the topical
evolution of such objects on the patent network and provide
a variety of micro level statistics to simplify the decision
making of the user. For example, the system identifies ac-
tive companies in the area and finds company’s competitors
according to their trend of technology development.

A different work [15] uses different type of features on a
patent citation-bibliographic network and uses the RankSVM
model to provide a rank list of citations for a given query
patent. They achieve improvements at both precision and
recall levels. In addition to the features used in this work,
our current model also includes temporal information on the
network.

Another related work [22] identifies competitive relation-
ships among companies by learning across multiple hetero-
geneous networks. Authors study competitive relationship
patterns on a company network, derived from a patent dataset
and augmented by social networking information extracted
from Twitter. They use topic modeling and build the topic
model of each company, associating each company to a topic
distribution. Their intuition is that entities with similar
topic distributions are more likely to be competitors. They
model the competitive relationship as a latent topic and use
a factor graph model to infer the competitive label of each re-
lationship among companies on the network. Experimental
results show that their model is able to extract complemen-
tary competition patterns over these two sources, namely,
the patent data set and the social network of Twitter.

It is worth mentioning that a number of researchers, [14]
and [19], have looked into the problem of paper reviewers
recommendation that is classified as expert finding. Patent
citation finding and recommendation can also be seen as an
instance of expert finding.

3. PATENT CITATION NETWORK
In this section we provide the problem definition and the
motivation for our proposed model. We then discuss the mo-

tivation for representing the patent collection as a directed
weighted graph and explain how to build it. We focus on the
influence analysis aiming to find the important documents
in the citation graph who could influence their domain ter-
minology.

3.1 Problem Definition
The patent data set can be considered as a directed weighted
graph G = (V,E), where v is a set of |V | = N patent doc-
uments and E ∈ V × V is a set of citation relationships
between patent documents. Let xi be a set of attributes
associated with patent document vi. An attribute can be
the patent’s inventors, patent’s applicant, the classification
codes (denoting the topic of the patent), and its publication
date. We use X = {x1, x2, ..., xN} to denote the attributes
of all patents. These attributes are later used in Section 5 to
associate weights to edges. Our goal is to suggest a ranked
list of citations for a specific patent application vq, based on
its attributes xq, and the textual content of vq.

3.2 Brief Introduction to the Data
CLEF-IP 2010 dataset is composed of over 2.6 million Euro-
pean patent documents corresponding to approximately 1.3
million individual patents published between 1985 and 2001.
CLEF-IP patent documents are available2 in XML format.
We extracted the title, abstract, description, claims, patent
publication date, and bibliographic data, such as classifi-
cation codes, inventor names, and applicant names for all
documents in the test set and the collection. We further
extracted references (citations) for each patent in the data
set excluding queries (patent applications in the test set).

It is worth mentioning that the relevance judgments for the
CLEF-IP challenge are built using the documents listed in
a search report for a patent application. The search report
is written by the patent examiner. This report might share
references with the initial citation list provided by the patent
applicant. To remove the bias that might be introduced by
the applicant, we do not consider the initial citations of the
query patent in our model.

3.3 Motivation
A major motivation for our work comes from an inspection
performed on the data set to test whether the contextual
similarity between patent documents (nodes of the graph)
can provide extra information compared to the initial patent
query for finding and recommending citations. Contextual
similarity between a pair of documents is defined as having
common classification codes, common inventor or common
applicant.

We performed this analysis on the relevance judgments of
CLEF-IP 2010. Figure 1 shows the results of this analysis
per topic. Please note that we randomly selected a subset
of 100 topics in order to highlight the differences between
the two sets. We plotted the number of relevant documents
for each topic that have common attributes with the query
document. We also plotted the number of relevant docu-
ments that have similar attributes with the documents in
the citation-graph. We extracted the information about the

2http://www.ifs.tuwien.ac.at/~clef-ip/
download-central.shtml
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Figure 1: Contextual attribute similarity between relevant documents (the ground truth) and the query patent
vs. the contextual attribute similarity between relevant documents (the ground truth) and the documents
in the topic-specific citation graph.

relevant documents associated to each topic from the rele-
vance judgments. From this histogram we can observe that
for almost all the topics, contextual attribute similarity be-
tween the relevant documents and the topic-specific citation
graph is higher than the contextual attribute similarity be-
tween the relevant documents and the query.

This analysis shows that the contextual attributes extracted
from the citation network provide additional and comple-
mentary information compared to the initial query patent.
This investigation answered our first research question re-
garding the usefulness of employing citation network struc-
ture for distinguishing between relevant and non-relevant
documents.

In this paper we propose a method that uses this addi-
tional information to better distinguish between relevant
and non-relevant documents and increase the accuracy of
recommending citation for a given patent application.

3.4 Building the Network
In the CLEF-IP dataset, the citations of patent queries have
been removed by the organizers and used for building the
relevance judgments. However, we have access to the cita-
tions of all other documents apart from the patent queries
in the collection. We used a web service offered by the Euro-
pean Patent Office (EPO)3 to extract all the citations of the
documents in the collection except the query documents.

As previous work [5] suggests, computing Page Rank values
as a measure of static document quality (calculated indepen-
dently of any query a system might receive) has a clear disad-
vantage compared to conditioning the computation of Page
Rank values on the query being served. Thus we will focus

3http://www.epo.org/searching/free/ops.html

on how to assemble a subset of patent documents around the
topic of the query, from the graph induced by their citation
links. By doing so we are able to derive Page Rank values
relative to particular queries. Our approach is inspired by
the HITS algorithm [7] where a small sub graph of the entire
web related to the query (as opposed to the whole web) is
chosen for estimating the importance of a webpage.

We build such a graph by gathering a subset of linked doc-
uments in the patent collection related to a query following
the two steps below:

1. Given a query patent, we perform a search and we
retrieve an initial ranked list of documents. We take
the top-k documents from this primary rank list and
call this the root set of documents.

2. We construct the base set of documents, by including
the root set as well as any document that either cites
a document in the root set, or is cited by a document
in the root set.

In our citation network, each node denotes a patent docu-
ment in the graph and each link denotes a citation relation-
ship between two patent documents. The edges are weighted
according to the similarity between the target and source
nodes. The similarity metrics denoting the edge weights are
defined in the next section. The linking edges among the
nodes reveal a lot of valuable information about the poten-
tial relevance propagation over the network.

4. INITIAL QUERY MODEL (BASELINE)
We first focus on the textual content available in the initial
query and build a query model as explained below. We
estimate a bigram language model using SRILM [17], trained

http://www.epo.org/searching/free/ops.html


on the patent documents. For this we used the Katz backoff
smoothing [6] method. Accordingly, we estimated a query
by quantifying the difference between the language model
of the query q and the language model of the collection.
We calculated the cross entropy between q and the language
model of the collection LMcol as follows:

H(q, LMcol) = − 1

N

∑
i

logPLMcol(bi) (1)

where b1, ..., bN are the word bigrams found in q and PLMcol(bi)
is the probability of the bigram bi under the language model
of the collection. Higher cross-entropy values indicate bi-
grams that are distinguishing the language usage of the
query patent from the language usage of the collection. We
refer to this query model as QOrig in the rest of the paper.

5. TIME-AWARE NETWORK ANALYSIS
In this section we explain the time-aware Page Rank analysis
we performed. We first discuss how the initial probability of
selecting a node is discounted based on the age of the node
to address the bias introduced by Page Rank against recent
documents [1]. We then describe how similarity functions
are used to associate strength/weight to edges and how this
affects the transition probabilities. Finally we describe the
calculation of weighted Page Rank scores for the nodes in
the network and how these scores are used as a document
prior to guide the term extraction process.

Initial Probability. We modify the initial probability to
assign importance to newer nodes as described in Equa-
tion 2. The initial probability distribution is exponentially
discounted according to the age of the nodes. This takes into
account freshness of documents and it is in contrast with the
original Page Rank seeds where a uniform distribution is as-
sumed over all nodes.

ρi = e
−age
τd (2)

where ρi is the initial probability for selecting a node that
discounts the node according to its age. τd is a time gran-
ularity which could be set to a month or a year. Note that
we use the publication date of the first filed patent as the
time tag to calculate its age. The unit of time granularity
considered in our analysis is a year.

Transition Probability Matrix. The transition proba-
bility matrix W is described as follows:

Wij =

{ wij
Σkwik

if i cites j;

0 otherwise;
(3)

where wij defines the weight of the edge between node i and
node j. Edge weights are normalized, therefore, the sum
of weights for all outgoing edges from each vertex equals
1. Each entry wij defines the conditional probability that
a walk will traverse edge (i, j) given that it is currently at
node i.

We consider different similarity functions to assign weights
to edges based on textual and contextual similarities be-
tween two nodes. We use different similarity metrics such as
common classification codes, common inventor and common
applicant to assign weights to edges in the citation graph.
Table 1 lists different similarity metrics we used.

Weights for citation relationship (vi, vj)
Weight Description
SIMIPC Number of common classification

codes
SIMLEX Lexical similarity (cosine similarity)
SIMTEMP Difference between the publication

dates of vi and vj (in years)
SIMInventor Number of common inventors
SIMApplicant Number of common applicants

Table 1: Similarity metrics denoting edge weights
on the citation graph. Each metric is defined be-
tween the source node and the target node.

We construct a separate transition probability matrix (as
defined in Equation 3) according to each edge type men-
tioned in Table 1. For instance, W (SIMIPC) denotes the
transition probability matrix in which the edge weight wij

is proportional to the number of similar classification codes
between nodes i and j.

Weight Combination. Our goal is to see if the combina-
tion of different similarity functions for calculating the edge
weights can improve the result of a single similarity function.
To this end, we combine different edge weights (mentioned
in Table 1) between node i and j as shown in Equation 4.
We adopt from [21] the following function for combining the
weights of each wij entry.

pij =

{
1− exp(L) if 0 ≤ L ≤ 0.5;

1− exp(−L) if 0.5 < L < 1;
(4)

L =
∏

wij∈W (SIM)

wij

aij =

{
1 if pij ≥ 0.5;
0 if pij < 0.5;

(5)

aij is an entry of the adjacency matrix after weight com-
bination. We refer to this weight combination method as
SIMCOMB . We will compare different similarity functions
in Section 7.2.

Page Rank. The Page Rank formula is denoted as:

PR(u) =
λ

N
+ (1− λ) × Σv∈Bu

PR(v)

Lv
(6)

where N is the number of nodes under consideration, B(u)
is the set of nodes that point to u, and Lv is the number
of outgoing links from node v [3]. We consider a weighted
version of the Page Rank formula as follows:

PR−W (u) = λ × Ou

Σp∈L(v)Op
+(1−λ) × Σv∈Bu

PR(v)

Lv
(7)

where Ou and Op represent the number of outgoing edges of
nodes u and p. We decided to use the weighted Page Rank as
we observed a better performance compared to the conven-
tional Page Rank in terms of the retrieval effectiveness of the
final ranked list. We will explain these results in Section 7.2.
We now need to answer the question of how to formulate a
query given the edge weights and their combination.



6. RE-RANKING AND QUERY EXPANSION
Our approach for query modeling aims to improve the lan-
guage model of the initial query by using the term distri-
bution of documents in the citation network. We use docu-
ment metadata (node attributes) and network structure to
find important documents in the citation network. The key
assumption of this paper is that the term distribution of
documents with more importance in the citation graph will
help to overcome the term mismatch problem and thus term
selection from them is more effective.

We identify and weigh the most distinguishing terms in the
documents in the citation graph and then use the calculated
weighted Page Rank value as a document prior in a language
modeling framework. This term sampling is performed as
follows (the terms are ranked by the following score):

P (t|Qcit) = Zt

∑
D∈Gcit

P (t|D)P (D) (8)

where Gcit is the citation graph. P (D), the weight of each
document, is proportional to its Page Rank score calculated
according to Equation 7. Zt is a normalization factor.

We interpolate the citation query model with the initial
query model (as estimated in Equation 1):

P (t|Q) = λ′ · P (t|Qorig) + (1− λ′) · P (t|Qcit) (9)

TheM highest terms from the updated query model are then
used as a query to retrieve a final ranked list of documents.

7. EXPERIMENTAL EVALUATION
Here we describe the details of our experimental setup, re-
porting about the test sets and baselines. We report the
results of our experiments with the initial estimated query
model from the patent document. We then show how the
expanded query model estimated from the documents in
the patent citation network improves over the initial query
model.

7.1 Experimental Setups
In the following we first describe the datasets used in our
experiments and provide some statistics about them. We
then proceed to discuss some of the details of the method-
ology used for our analysis. In particular, here we focus on
the fields extracted from a patent document.

Patent Dataset. In this study, we used two large patent
data collections released by the Intellectual Property track
at CLEF, called CLEF-IP 2010 and CLEF-IP 2011. CLEF-
IP 2010 consists of 1.3 million distinct patent documents
published between 1985 and 2001, from which we extracted
504,110 companies and 2,711,471 inventors. CLEF-IP 2011
consists of about 1.3 million distinct patent documents from
which we extracted 600,001 companies and 2,712,298 inven-
tors. There are 208 nodes and 1066 edges on average in each
topic-specific citation graph built from the dataset. These
statistics correspond to a case where 20 feedback documents
are used as the root set for building the citation network.

In our experiments we used the English subsection of both
collections. The English test set of CLEF-IP 2010 corre-
sponds to 1348 topics (patent applications). The English

test set of CLEF-IP 2011 corresponds to 1351 topics. We
used the training topics of CLEF-IP 2010 for tuning the
parameters of our model. This training set consists of 300
topics. We used five-fold cross validation.

Preprocessing. We performed stemming using porter stem-
mer and removed stop words according to the Terrier4 gen-
eral stop word list. We also performed token and sentence
segmentation on the documents.

Evaluation. We quantify the performance of our proposed
method by reporting Mean Average Precision (MAP) and
recall. We also report the evaluation results of our approach
in terms of Patent Retrieval Evaluation Score (PRES) [11]
which is specifically designed for recall-oriented applications.
PRES metric is calculated as follows:

PRES = 1−

∑
ri

n
− n+1

2

Nmax

∑
ri =

nR∑
i=1

ri + nR(Nmax + n)− nR(nR− 1)

2

whereNmax is the number of documents to be checked by the
user (cut-off value), n is the number of relevant documents,
and

∑
ri is the summation of ranks of relevant documents.

We used the Language Modeling approach with Dirichlet
smoothing [23] to score documents and build the initial rank
list. We empirically set the value for the smoothing param-
eter to 1500. We also used Language Modeling for the re-
ranking of the results. We select top k documents from the
primary rank list to generate the candidate documents for
suggesting as citations. The number of k is empirically set
to 20 in our experiments. We will study how this parame-
ter affects the recommending accuracy and coverage in Sec-
tion 7.2. The reported results for the methods are obtained
using 100 terms with highest weights selected from the es-
timated expanded query model. We experimented with dif-
ferent number of query terms and chose the best value.

Baselines. Table 3 reports the performance of the top
ranked participants in CLEF-IP 2010. The best perform-
ing run [8] (labeled as BAS1) uses initial citations provided
by the patent applicant, which are extracted by training a
Conditional Random Field (CRF). BAS1 method employs
two complementary indices, one constructed by extracting
terms from the patent collection and the other built from ex-
ternal resources such as Wikipedia. The second best run [10]
(labeled as BAS2) formulates a query from the query patent
application by extracting its most frequent unigrams and
bigrams.

method MAP recall PRES
BAS1 [8] 0.226 0.6946 0.615
BAS2 [10] 0.136 0.5886 0.483

Table 3: Evaluation results of the best participating
teams in CLEF-IP 2010 challenge.

As implied before, the relevance judgments for the CLEF-
IP challenge are built based on the report provided by the
4http://terrier.org/

http://terrier.org/


Method metric SIMIPC SIMLEX SIMTEMP SIMInventor SIMApplicant SIMCOMB

AQE-PR
(uniform PR seed)

MAP@1000 0.0794 0.1073 0.1183 0.1308 0.0776 0.07800
recall@1000 0.6705 † 0.6657 † 0.6170 0.6186 0.5978 0.6768 †
PRES@1000 0.5386 † 0.5370 † 0.4930 0.5034 0.4600 0.5784 †

AQE-TPR
(age-based PR seed)

MAP@1000 0.1351 0.1328 0.1306 0.1560 † 0.1025 0.1468 †
recall@1000 0.6662 † 0.6614 † 0.6156 0.6107 0.5942 0.6750 †
PRES@1000 0.5676 † 0.5621 † 0.5004 0.5040 0.4809 0.5850 †

Table 2: Performance comparison of query models built after computing random walks on the citation graph
using different edge weights. The symbol † denotes statistical significant improvement over BQE. Wilcoxon
signed ranked matched pairs test with a confidence level of 0.01 was used for testing statistical significance.
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Figure 2: Performance results of BQE, AQE-PR and AQE-TPR using different similarity functions.
(a) MAP@100. (b) Recall@100. (c) PRES@100.

patent examiner. This report can have overlapping refer-
ences with the initial citation list provided by the patent
applicant. Thus, using the initial citation list provided by
the patent applicant, as performed by BAS2, raises a con-
cern about the validity of the evaluation of the task. To have
a fair comparison setting, we can not compare our work di-
rectly to the first approach presented in Table 3. However,
the second approach shows the performance of a method
which does not take into account the initial citations pro-
vided by the patent applicant. Thus, we can compare our
method directly to the second best approach. Note that our
proposed approach does not take into account the initial
citations provided by the patent applicant.

Table 4 shows the performance of the primary rank list be-
fore query expansion (labeled as BQE), built from the patent
application topic (as implied in Section 4). These results are
comparable to the BAS2. We will use the results of BQE
method as the baseline in the rest of this paper.

Query model built from query patent application
method MAP@1000 recall@1000 PRES@1000
BQE 0.1363 0.6231 0.5076

Table 4: Performance of the primary rank list (be-
fore query expansion) on CLEF-IP 2010 .

7.2 Experiments
In this section we describe the experiments that we con-
ducted to evaluate the usefulness of our proposed method
and present the results.

We first describe the structure of our experiments. Our goal
is to see if the combination of different similarity functions

for calculating the edge weights can improve the result of a
single similarity function. We also compare the effectiveness
of the query expansion method with uniform initial Page
Rank seeds (labeled as AQE-PR) with the proposed query
expansion method using the temporal Page Rank seeds (la-
beled as AQE-TPR). We compare the performance of these
methods to the baseline (labeled as BQE). We then study
the effect of the number of feedback documents considered
while generating the query-specific citation network in Sec-
tion 7.2.1. We further investigate the effect of the estimated
query models and present the evaluation results of AQE-PR
and AQE-TPR on different technological fields inferred from
IPC classes in Section 7.2.2. We show some example queries
and the list of terms selected from them in Section 7.2.3.
Finally, we report the evaluation results of our approach on
CLEF-IP 2011 in Section 7.2.4.

We now investigate the effect of using different similarity
functions for calculating edge weights on the final perfor-
mance of our method. These results are presented in Ta-
ble 2. In Table 2, we can notice an interesting effect in the
results of SIMCOMB by comparing AQE-PR to AQE-TPR:
the MAP results of SIMCOMB improved enormously with-
out impacting the recall value. This can be attributed to the
effect of the initial age-based seed values used for random
walks. We can see a similar trend of MAP improvement for
all the similarity metrics while maintaining a steady recall
value. This improvement highlights the importance of using
the age-based penalty for the random walker.

In addition to this, looking at the data in Table 2, we see that
similarity SimApplicant, SimInventor and SimTemp have cu-
riously lower recall values with respect to SimCOMB , SimLEX

and SimIPC . The result of this study suggests that the
contextual attributes like applicant, inventor and temporal
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Figure 4: Evaluation results over CLEF-IP test set queries grouped according to technological categories.
(a) MAP@1000. (b) Recall@1000. (c) PRES@1000.

information can be helpful when used jointly with lexical
(content) attributes and topical aspects (denoted by IPC)
but not separately. In fact, by excluding the results of the
combination SimCOMB , we can see that the best recall value
is achieved through the use of topical aspects. The second
best result is achieved by content attributes. The symbol †
in Table 2 denotes statistical significant improvement over
BQE. We used Wilcoxon signed ranked matched pairs test
with a confidence level of 0.01 level for testing statistical
significance. These findings provided answer to our third
research question.

We also compare the performance of our method with and
without taking into account the temporal properties of doc-
uments in the modeling process. The result presented in
Table 2 shows how integrating the temporal properties in
AQE-TPR improves MAP and PRES values over AQE-TPR
which does not use temporal properties. Figure 2 shows the
MAP, recall and PRES values at cut-off rank 100. This anal-
ysis confirms that our model works well when combining all
the attributes together at different cut-off values. We also
considered the linear combination of the weights but the re-
sults were not satisfactory. Thus we did not present these
results in the experimental section.

7.2.1 Effect of Number of Feedback Documents
As AQE-PR and AQE-TPR share the parameter k (i.e.
number of feedback documents used as the root set for build-
ing the citation network) we are interested in understanding
how this parameter affects the retrieval performance of these

two methods. We thus draw the sensitivity curves of AQE-
PR and AQE-TPR with respect to k in Figure 3.

There is a marked drop of performance in terms of MAP
when we increase the number of feedback documents. How-
ever, increasing the number of feedback documents has a
positive effect in terms of recall and PRES. The results of
Figure 3 show that AQE-TPR is consistently more effective
than AQE-PR when we vary the value of k. In fact, we
can see that the curve trends of AQE-PR and AQE-TPR
are similar to each other and they share the same optimal
setting of k. The reported results for AQE-PR and AQE-
TPR elsewhere in this paper are obtained using the top 20
feedback documents to generate the root set, since it has a
good balance between MAP and recall. Top 100 terms are
selected from the expanded query model.

7.2.2 Results on Separate IPC Classes
International Patent Classification (IPC)5 divides technol-
ogy domains into eight different fields. Some information
about the field of technology of the query topics in CLEF-
IP 2010 dataset are presented in Table 5.

We present the evaluation results of our methods in differ-
ent technological fields in Figure 4. The results of Figure 4
demonstrate that AQE-TPR outperforms BQE consistently
in terms of recall over all topical aspects (IPC classes) and
also achieves better MAP and PRES scores than BQE in
most cases.

5See http://www.wipo.int/classifications/ipc/en/ for
such classes

http://www.wipo.int/classifications/ipc/en/


Category Description # of topics
A Human Necessities 154
B Performing Operations and Transporting 307
C Chemistry and Metallurgy 255
D Textiles and Papers 10
E Fixed Constructions 7
F Mechanical Engineering, Heating, Weapons, and Blasting 90
G Physics 289
H Electricity 236

total number of queries 1348

Table 5: IPC section distribution over English test set of CLEF-IP 2010.

Topic Number Query Patent Document (BQE) Citation Graph using AQE-TPR (SIMCOMB)

PAC-9
receiver, wireless microphone, transmit, signal level, lan wireless, mobile network
operator, communication, display bluetooth, transact, station, broadcast

PAC-999
lithographic printing, hydrophilic surface, printing plates, print precursor, pigment, heat
thermosensitive, polymer, image laser, ink, water soluble, dissolution

PAC-997
electron beams, deflection, ray tube, funnel neck, panel, emit
cathode, ray, electron gun, shadow deflection yoke, magnet, coil, rectangular

Table 6: Top keywords, phrases extracted from example topics using the BQE and AQE-TPR methods.

Topic Number PAC-999
Patent Application Number EP-1356929-A2
Title Method of preparation of lithographic printing plates

Abstract
A method for preparation of a lithographic printing plate, which comprises the steps of:
imagewise recording on a lithographic printing plate precursor comprising a support
having a hydrophilic surface and a thermosensitive layer, the thermosensitive layer
comprising at least one of polymer particles and a microcapsule encapsulating an
oleophilic compound therein; and rubbing the printing plate precursor by a rubbing
member in the presence of a processing liquid to remove the thermosensitive layer
of non-image portions.

Table 7: An example topic in CLEF-IP 2010 test set.

Regarding different technological categories derived from IPC
classes, we observe that MAP improvements on A, E and H
categories are as high as 6%-8% for AQE-TPR method over
the baseline BQE. Also, the recall improvements on B, C and
F categories are as high as 7%-10% for AQE-TPR method
over the BQE. The results of Figure 4 show that AQE-TPR
obtains better PRES values compared to BQE especially in
categories A, C and H (up to 0.11%-0.14%). These are inter-
esting observations, which suggest that using the contextual
information derived from the citation network achieves the
best improvement in topics related to Chemistry, Metallurgy
and Electricity. We leave further investigation to the future
work.

7.2.3 Example Extracted Topic Keywords
We list the extracted keywords (unigrams and bigrams) for
some example topics in Table 6. For topic PAC-9 with the
title “Wireless Microphone Communication System”, we can
see that the keywords extracted from the query patent doc-
ument and the keywords extracted from the citation graph
differ from each other. This shows that the keywords ex-
tracted for the same topic but from two different sources are
adequately discriminative. To familiarize the reader with
different fields in a patent application, an example is shown
in Table 7.

7.2.4 Comparison on CLEF-IP 2011 dataset
Table 8 reports the evaluation results of the best partici-
pating teams in CLEF-IP 2011 challenge [16], the results
of BQE method, together with the best results we obtained
using the AQE-TPR. Note that the PRES metric was not
reported in the official results. It can be seen from Table 8

method MAP recall PRES
nijm (rank 1) 0.0582 0.6303 NA
hyder (rank 2) 0.0593 0.5713 NA

BQE 0.0990 0.5935 0.4859
AQE-TPR (SIMApplicant) 0.0771 0.5810 0.4910
AQE-TPR (SIMInventor) 0.1365 † 0.5887 0.5104
AQE-TPR (SIMTEMP ) 0.1090 0.5934 0.5120
AQE-TPR (SIMLEX) 0.1135 † 0.6280 † 0.5276
AQE-TPR (SIMIPC) 0.1198 † 0.6351 † 0.5305 †
AQE-TPR (SIMCOMB) 0.1250 † 0.6470 † 0.5363 †

Table 8: Performance comparison of AQE-TPR with
other approaches on CLEF-IP 2011 dataset at (cut-
off 1000). The symbol † denotes statistical sig-
nificant improvement over BQE. Wilcoxon signed
ranked matched pairs test with a confidence level
of 0.01 was used for testing statistical significance.



that the AQE-TPR (SIMCOMB) method achieves better
results compared to other approaches in terms of recall,
MAP, and PRES. The improvements achieved by AQE-TPR
(SIMCOMB) are statistically significant in comparison to
BQE method. We answered our second research question
based on the evaluations performed over CLEF-IP datasets
presented in Tables 2 and 8.

8. CONCLUSION AND FUTURE WORK
In this paper we study the problem of finding and recom-
mending patent citations for a given query patent (patent
application). We extracted different types of metadata from
the query patent and the dataset such as classification in-
formation (implying topical aspects), applicant names, in-
ventor names and publication dates. We built a directed
weighted graph of patent citations and developed a frame-
work that combines network structure and node attributes
to infer and discover similarities among patent documents.
We performed this by estimating a query model which em-
ploys the network structure and node attributes. We eval-
uated our proposed model on the CLEF-IP datasets and
the experimental results showed that our model achieved
significant improvements in terms of recall and MAP over
competitive state of the art prior art search approaches.

As for the future work, it would be interesting to model the
graph as a heterogeneous network. Our current model cal-
culates the strength for the edges on the network by looking
into different similarity metrics utilizing textual and con-
textual attributes at node level. However, considering the
attributes directly as nodes on the network might lead to a
better diffusion schema of information on the network.
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