
TOIS3204-16 ACM-TRANSACTION September 22, 2014 12:18

16

Patent Query Formulation by Synthesizing Multiple Sources
of Relevance Evidence

PARVAZ MAHDABI and FABIO CRESTANI, University of Lugano

Patent prior art search is a task in patent retrieval with the goal of finding documents which describe prior
art work related to a query patent. A query patent is a full patent application composed of hundreds of terms
which does not represent a single focused information need. Fortunately, other relevance evidence sources
(i.e., classification tags and bibliographical data) provide additional details about the underlying information
need. In this article, we propose a unified framework that integrates multiple relevance evidence components
for query formulation. We first build a query model from the textual fields of a query patent. To overcome the
term mismatch, we expand this initial query model with the term distribution of documents in the citation
graph, modeling old and recent domain terminology. We build an IPC lexicon and perform query expansion
using this lexicon incorporating proximity information. We performed an empirical evaluation on two patent
datasets. Our results show that employing the temporal features of documents has a precision enhancing
effect, while query expansion using IPC lexicon improves the recall of the final rank list.
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1. INTRODUCTION

A patent is a legal document, granted by a country’s patent office, that gives a set of
rights of exclusivity and protection to the owner of an invention. In order to be granted
a valid patent, an invention needs to meet certain criteria such as novelty, that is, it
should not have been previously patented by someone else, described in a scientific
paper, or disclosed to public through any other medium. A patent examiner has to
perform a search over previously published patents and non-patent data with the aim
of verifying whether the idea of a patent application is novel. This type of search is
called prior art search and is also referred to as patentability or novelty search. The
objective of this search is to retrieve all relevant documents that may invalidate or at
least describe prior art work in a patent application [Lupu et al. 2011].

There are other types of search processes in the patent domain, such as technology
survey, freedom to operate, validity, and patent portfolio search. These search processes
differ in terms of the information need of the searcher, the corpora used, and the
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output of the search. Notice, however, that the precise names and definitions of these
search processes vary between those who deal with patents, for example, information
specialists, private patent searchers, patent examiners, and patent lawyers [Lupu and
Hanbury 2013]. In the remainder of this article, we focus our attention on prior art
search which is a critical step in the examination process of a patent application.

Prior art search is executed by patent examiners using keyword-based searches from
the claims field of a patent application after its filing. These keyword-based searches
are completed using other metadata associated with the patent application, such as IPC
classes1 (International Patent Classification) and date tags. Bibliographic information
such as backward and forward citations2 can also be used to perform prior art searches.
These searches made from different sources are then merged to compose a unique rank
list. The goal of combining these complementary searches is to solve the term mismatch
problem which is due to the obscure style of writing a patent (“patentese”) and often
leads to low retrieval effectiveness [Lupu et al. 2011].

Prior art search is a recall-oriented application. This search can take a very long
time, as the searcher needs to ensure that he is not missing any relevant document,
because infringing on existing patents might result in costly lawsuits.

Patent search covers multiple subject areas, such as chemistry, mechanical engineer-
ing, electrical engineering, and practically all other domains of industry applicable hu-
man knowledge [Lupu and Hanbury 2013]. Thus, it can be seen as a generalization of
other domain-specific IR tasks such as health-care, biomedical, and chemical domains
[Sondhi et al. 2012; Yin et al. 2010]. Patent search inherits the following problems of
domain-specific IR tasks: the frequent usage of nonstandardized acronyms which are
invented by patent applicants, the presence of homonyms (the same word referring to
two or more different entities, such as bus3 and closet4), the presence of synonyms (two
or more words referring to the same entity such as signal and wave), and paraphrasing
(“picture-taking device” used to describe a camera).

Documents relevant to a given query may not contain the exact terms used by the
patent author, which are given to a search system as specific query terms. This problem
is called term mismatch. In this article, our aim is to address the term mismatch prob-
lem in patent retrieval through query expansion. In order to cope with this problem, we
first expand the initial query with the terms appearing in the cited documents. Using
citation information, we derive the word usage of the community of inventors related
to the topic of the query. To this end, we use the citation links, term distribution, and
temporal features of cited documents to expand our initial query.

Previous work used knowledge bases such as Wikipedia and WordNet [Lopez and
Romary 2010; Magdy and Jones 2011] for query expansion. We think that using a
domain-dependent resource might help to extract more relevant expansion concepts
compared to Wikipedia and WordNet. Thus, we intend to use a domain-dependent
resource. To do this, we take IPC definition pages5 and construct a lexicon from them.
We then extract expansion terms specific to the IPC classes of the query patent from
the lexicon and use proximity information to calculate importance weights for them.

We propose a proximity-based query propagation method to calculate the query
term density at each point in the document. Our proximity-based framework rewards

1http://www.wipo.int/classifications/ipc/en/.
2Forward citations denote the citations to a query patent application from patents which are forward in
time from the query patent. In contrast, backward citations indicate the citations made by query patent to
patents which are backward in time with respect to it.
3(i) Motor vehicle, (ii) an electronic subsystem transferring plurality of digits bits in group.
4(i) Water closet (flush toilet), (ii) a small cupboard used for storing things.
5http://web2.wipo.int/ipcpub/.
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expansion concepts occurring close to query terms by using positional information while
estimating the importance of expansion concepts. We hypothesize that this way, we are
able to focus on expansion terms associated with query terms and avoid topic drift.

Our proposed model consists of four steps. In the first step, we estimate a query
model from textual fields of a query patent. In the second step, we build a topic-specific
citation graph and use the term distribution and temporal features of documents in the
citation graph to estimate a citation query model which is used to expand our initial
query model. In the third step, a query-specific lexicon is built. In the fourth and last
step, query expansion is performed by deriving expansion concepts from the query-
specific lexicon, and positional information is used to calculate weights for ensuring
high-quality expansions. To this end, we utilize kernel functions to keep track of the
distance of expansion concepts from query terms.

In this article, we seek to answer the following research questions.

—RQ1. Could we use the citation links, the content, and the temporal features of the
cited documents to expand the initial query model built from a query patent?

—RQ2. How can we leverage the IPC classifications to construct a domain-dependent
lexicon for query expansion?

—RQ3. How does the final rank list perform compared to the state of the art of prior
art search approaches?

Our contributions are as follows.

—We present an approach to construct a domain-dependent lexicon for identifying
query expansion concepts.

—We describe an approach for expanding the initial query model using a topic-sensitive
graph built from the citation links.

—We describe an approach for exploiting the temporal features of documents in the
citation graph for building a query model.

—We present a proximity-based query expansion method for estimating the probability
that an expansion term is relevant to a query term.

—We investigate different query reformulation strategies for extracting concepts from
a domain-dependent lexicon.

This article extends our previous work on leveraging conceptual lexicon for query
expansion in patent retrieval [Mahdabi et al. 2013] by presenting a deeper analysis
on the proposed models and a more exhaustive set of experiments on the collections.
This paper also complements our other previous work [Mahdabi and Crestani 2013]
on citation analysis for patent retrieval. This paper extends the previous paper as
follows: (1) It presents a unified framework for query formulation retrieval synthe-
sizing different relevance evidence sources associated with the query patent such as
patent classifications and bibliographic information. (2) It introduces a new technique
for utilizing the term distribution of cited documents by modeling the time information
(3) It presents a more extensive set of experiments investigating the synthesis of differ-
ent sources of relevance evidence on two datasets. (4) It provides detailed explanations
and analyses of the results.

We evaluate our work on two patent collections, CLEF-IP 2010 and CLEF-IP 2011.
The experimental results demonstrate that combining different sources of relevance
evidence in a unified framework improves over using them separately. The results
also show that query expansion using the term distribution and temporal features of
documents in the citation graph leads to improving the precision of the rank list. The
results confirm the advantage of deploying a domain-dependent resource for selecting
expansion terms in contrast to Wikipedia and WordNet. Besides, the results demon-
strate that utilizing proximity information leads to the calculation of reliable weights

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 16, Publication date: September 2014.



TOIS3204-16 ACM-TRANSACTION September 22, 2014 12:18

16:4 P. Mahdabi and F. Crestani

for the expansion terms, and show consistent improvements in terms of recall in the
final rank list.

The rest of the article is organized as follows. Section 2 describes the literature survey.
Section 3 provides definitions of relevance evidence sources, presents the architecture
of our proposed model, and explains the construction of an IPC lexicon. Section 4
describes the details of constructing a citation graph and explains a query expansion
method which uses the citation links, the content, and the publication dates of the cited
documents. Section 5 presents a framework for query expansion using the IPC lexicon.
Section 6 and 7 present experimental settings and experimental results. We conclude
in Section 8 with a summary and an outline of the future work.

2. RELATED WORK

Patent prior art search is composed of a search over previously filed patents and non-
patent data with the aim of retrieving relevant documents which may invalidate or at
least describe the prior art work in a patent application (henceforth referred to as query
patent). The challenges of patent prior art search are different from those of standard
ad hoc text and Web search. The first distinguishing property of prior art search is
that the information need is presented by a patent document rather than short queries
[Xue and Croft 2009a]. Another property is related to the overwhelming vocabulary
mismatch which is due to the intentional obfuscation of content. For example, one
patent document may contain few or no keywords in common with the query patent,
but the idea conveyed in it might be quite similar or even identical to the query patent
[Atkinson 2008]. The last property is linked to the structure of patents. Patents are
structured documents with different fields such as abstract, description, and claims.
Patent writers use different writing styles for describing the invention in different
fields. For example, abstract and description fields use technical terminology while
claims field uses legal jargon [Xue and Croft 2009a].

Among the mentioned challenges, we focus on the following three. The first challenge
is to reduce a query patent in order to find a single focused information need and
to remove the ambiguous and noisy terms. In previous work, researchers explored
different fields of the query patent to perform query reduction [Xue and Croft 2009a;
Cetintas and Si 2012]. Some of the previous work reported that effective queries were
built from the entire query patent [Cetintas and Si 2012], while others obtained better
results using single fields such as “background summary” [Xue and Croft 2009a]. It is
worth mentioning that the “background summary” field is specific to U.S. patents.

The second challenge is related to query disambiguation. Previous work used dif-
ferent external resources for query expansion, such as Wikipedia [Lopez and Romary
2010] and WordNet [Magdy and Jones 2011] with the goal of query disambiguation.
The goal here is to alleviate the term mismatch problem by expanding the query with
topically related words or synonyms of the query terms.

The third challenge is related to the term mismatch problem. The language of patents
contains highly specialized or technical words not found in everyday language [Joho
et al. 2010]. Patent retrieval is often cumbersome and distinct from other informa-
tion retrieval tasks. This is due to the inherent properties of patent content, namely,
exceptional vocabulary, curious grammatical constructions, regulatory, and legal re-
quirements [Atkinson 2008]. Patent authors purposely use vague terms and a non-
standard terminology in order to avoid narrowing down the scope of their invention.
This exacerbates the retrieval problem and can confuse standard search systems.

We now explain the related work to this article. We first survey different approaches
for query formulation in Section 2.1 and describe how the patent text and different
metadata such as classification are used to build a query. We then describe different
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approaches which exploit knowledge bases and proximity information in Section 2.2.
Finally, in Section 2.3, we present different techniques which consider citation infor-
mation.

2.1. Query Formulation for Patent Retrieval

The main wave of research in patent retrieval started after the third NTCIR workshop
in 2003 [Iwayama et al. 2003], where a few test collections were released. Starting from
the fourth NTCIR workshop in 2004 [Fujii et al. 2004], a search task was presented
called “invalidity search run.”6 The goal was to find documents before the filing date
of the application in question that conflict with the claimed invention. The citation
parts of the applications are removed and counted as ground truth. Participants used
different term weighting methods for query generation from the claims field.

Takaki et al. [2004] studied the rhetorical structure of a claim (an item in the claims
field). They segmented a claim into multiple components, each of which is used to
produce an initial query. They then searched for candidate documents on a component
by component basis. Similar work was introduced in Mase et al. [2005], where the
authors analyzed the structure of the claims field to enhance retrieval effectiveness.
The structure of each item of claims usually consists of the premise and invention parts,
which describes existing and new technologies, respectively. The authors proposed a
two-stage process where they first extract a query from the premise to increase the
recall. They then aim to increase the precision by extracting another query from the
invention part. The final relevance score of each document is calculated by merging
the scores of both stages.

A recent line of work advocated the use of the full patent application as the query
to reduce the burden on patent examiners. This direction was initiated by Xue and
Croft [2009b], who conducted a series of experiments in order to examine the effect of
different patent fields on query formulation and concluded with the observation that
the best Mean Average Precision (MAP) is achieved using the text from the “background
summary” field of the query patent.

The current developments in patent search are driven by the Intellectual Property
task within the CLEF7 initiative. Several teams participated in prior art search task
of the CLEF-IP 2010 and proposed approaches to reduce the query patent by extract-
ing a set of key terms from it. Different participating teams experimented with term
distribution analysis in a language modeling framework and employed the document
structure of the patent documents in various ways [Piroi 2010]. Here, we only discuss
in detail the two best-performing approaches in CLEF-IP 2010. Lopez Lopez and Ro-
mary [2010] constructed a small corpus by exploiting the citation structure and IPC
metadata. They then performed the retrieval over this initial corpus. Magdy and Jones
[2010a] generated the query out of the most frequent unigrams and bigrams. In this
work, the effect of using bigrams in query generation studied, but the improvement was
not significant, perhaps because of the unusual vocabulary usage in the patent domain.

So far, one of the most comprehensive descriptions of the problems and possible solu-
tions for prior art search has been presented by Magdy et al. [2010]. The authors showed
that the best-performing run of CLEF-IP 2010 [Lopez and Romary 2010] used citations
extracted by training a Conditional Random Field (CRF). The second-best run [Magdy
and Jones 2010a] used a list of citations extracted from the patent numbers within
the description field of patent queries. They also showed that the best run employed

6Invalidity search (also called validity search) is performed over all public documents prior to the priority
date of a granted patent. The difference between invalidity search and prior art search is that the input of
the former is a granted patent, while the input of the latter is a patent application.
7http://ifs.tuwien.ac.at/ clef-ip/.
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sophisticated retrieval methods using two complementary indices, one constructed by
extracting terms from the patent collection and the other built from external resources
such as Wikipedia. They compared these approaches and concluded that the second-
best run achieves a statistically indistinguishable performance compared to the best
run when initial citations are provided with the query patent.

Classification Information. Many CLEF-IP and NTCIR participants have used clas-
sification information as an extra feature besides the content of the patent. Thus, a
different range of methods for combining text content and classification information
has been proposed. A standard way of combining the classification information is to con-
sider it as a metadata and use it to filter the search results [Takaki et al. 2004; Gobeill
et al. 2009; Teodoro et al. 2010; Verma and Varma 2011; Harris et al. 2011; Mahdabi
et al. 2011]. This helps to filter out classifications that are too general or not related
to the subject area of the query patent. Conclusive results are reported with respect to
the usefulness of filtering using classification information. Fujita [2004] integrated IPC
codes into a probabilistic retrieval model, employing the IPC codes for estimating the
document prior. A different usage of IPC classification has been performed in D’hondt
et al. [2011]. They used the classification information to extract query terms from triples
specific to an IPC class. To do this, they used LCS software [Koster et al. 2003] which
builds class profiles representing the term distribution (word and dependency triples)
per IPC class. They created a sub-corpus per query document that contains documents
with at least one IPC class in common with the query document. Classification informa-
tion has been successfully used by Salampasis et al. [2012] in a different manner. They
used classification information to partition the collection into different subject areas,
and with this partitioning, they simulate a federated search for patent documents.

2.2. Leveraging Knowledge Bases and Proximity Heuristics

Previous research [Magdy and Jones 2011; Lopez and Romary 2010] tackled the term
mismatch problem by first forming a keyword query from the query patent using the
frequency information. The initial query is then expanded using a knowledge base
such as Wikipedia or WordNet, exploiting this enhanced query to disambiguate the
occurrences of query terms. The use of external resources has shown to be more effective
compared to the use of the initial query and pseudo relevance feedback (PRF). In fact,
the retrieval effectiveness of PRF in patent retrieval has been shown to be disappointing
mainly due to the low MAP of the initial rank list [Ganguly et al. 2011].

Patent examiners use term proximity heuristics in their searches using the Boolean
retrieval model in order to reward a document where the matched query terms occur
close to each other. Two forms of adjacency operators are used in Boolean retrieval
to address proximity: the “ADJn” operator, which searches for terms within a window
of n words in the order specified, and the “NEARn” operator, which searches for the
terms within a window of n words, in either order. This usage shows that proximity
information plays an important role in patent searching.

Previous work [Magdy and Jones 2011; Lopez and Romary 2010] did not consider
proximity information between query terms and expansion concepts while employing
external resources for query expansion. Expansion terms extracted from these re-
sources are often general terms. Thus, it is useful to condition their occurrence on their
neighboring query terms and ignore their occurrence in isolation from any query term.

Our proximity-based framework is inspired by the work of Lv and Zhai on positional
language model and positional relevance model [2009, 2010]. Lv and Zhai’s work can
capture passage-level evidence in a “soft” way by modeling proximity information via
density functions. Their experiments confirmed that this approach works better than
applying a “hard” boundary of passages.
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Term position and proximity cues were mostly ignored in previous work in patent
retrieval. Recently, Ganguly et al.’s work captured term positions and proximity evi-
dences indirectly through the use of appropriate passages [2011]. This work provides
a general model for query reduction using PRF.

A different approach has been proposed by D’hondt et al. [2011] that rewrites the
query using Natural Language Processing (NLP) techniques. They extracted textual
relations as triple dependencies from the title, abstract, and the first 400 words of
the description field to enhance the query. Such dependencies are representations of
grammatical relations between words in a sentence. They observed that adding triples
to the query did not improve MAP scores, in comparison to a bag-of-word baseline, but
had a positive effect on recall scores.

Another recent study on improving retrievability of patent documents [Bashir and
Rauber 2010] combined term proximity heuristics with other features to select good
query expansion terms in the context of PRF. In this work, different distance functions
were considered from different windows surrounding query term occurrences. They
reported an increase in terms of retrievability [Azzopardi and Vinay 2008] of individual
patents using proximity heuristics compared to standard PRF. However, they did not
evaluate directly the performance of their approach in terms of retrieval effectiveness.

A different approach is introduced by Calegari et al. [2012] which addresses the
patent retrieval as an XML retrieval task. The authors encapsulate proximity infor-
mation by introducing flexible constraints on the document structure (near and be-
low) which produce a numerical score based on tag positions in the XML structure of
patent documents. They calculate the similarity of a document to a query by taking
advantage of the XML structure of patent documents together with document content.
They showed that their approach achieved high recall and high precision by employ-
ing structure-based constraints, as opposed to most of the existing patent retrieval
approaches which have good recall but suffer from low precision.

2.3. Citation Analysis

We now explain previous approaches that used citation information. Fujii [2007] ap-
plied Page Rank algorithm [Brin and Page 1998] on a graph created based on the
citation link structure of patent documents. He developed two distinct methods for
measuring the influence of a patent document on the citation graph. In the first method,
he calculated the Page Rank score for each document by considering a graph structure
composed of all documents in the collection. This method is not specific to the query
submitted to the system. In the second method, he computed the Page Rank score
for a query-specific citation graph, which is composed of the top-k documents initially
retrieved for a given query patent and their cited documents. His experimental results
on the NTCIR-6 test collection demonstrated that the query-specific Page Rank score
is more effective than the traditional Page Rank score. As a baseline for this article,
we implemented the work of Fujii [2007]. Similar to his work, we used the Page Rank
measure on a query-specific citation graph to calculate a score for quantifying the
authoritativeness of each document.

Lopez and Romary used references in a patent document as a starting point for
prior art search [2010]. They showed that extracting patent references using regular
expression patterns resulted in missing at least 40% of references. In order to increase
the accuracy of the extraction module, they identified patent reference blocks in the
text of the patent using a Linear Chain CRF (Conditional Random Field) model. The
reference block is then parsed to obtain a set of bibliographical attributes. They also
used online bibliographical services to enrich the identified references. In order to
extract characterizing key terms from a document to formulate a synthetic query, they
extracted candidate phrases up to 5-grams from the text of the patent documents. They
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estimated the potential of each phrase to serve as a key term with a bagged decision
tree. This model is trained on the key terms annotated by authors and readers from a
set of training documents. Our work here is different from these mentioned works, on
one hand, we do not use references to cited patents; on the other hand, we do not have
access to annotated key terms that form the text of the patent query to supervise the
query formulation process.

In prior art search task of CLEF-IP, citation information of query patents (topics
in the testset) was removed and used for building the relevance judgement (ground
truth). However, references to cited patents in the text of the query patent were not
removed; as a result, the usage of these references in the text of the query patent was
not recommended by organizers, unless participants explicitly mention this usage.

3. POTENTIAL RELEVANCE EVIDENCE SOURCES FOR QUERY REFORMULATION

In this section, we categorize different information sources that can be used as addi-
tional knowledge for query reformulation in patent retrieval.

Query Patent. A query patent is a structured document which is composed of the
following fields: title, abstract, description, and claims. The claims field comprises of
multiple claims and they are numbered. A claim which does not refer to any other
claim is called an independent claim, while others are called dependent claims [Lupu
and Hanbury 2013]. The independent items in the claim field of the patent comprise the
kernel of the technical innovation of the patent. Among the claims, the most important
one is the first independent claim (the first item in the claims), which represents
the essence of the technology of the patent document. The other parts of the patent
document illustrate the reason, background, implementation, and advantages, of the
invention being described [Lupu et al. 2011]. An example of a patent application is
shown in Figure 1. According to this example, claim 1 is an independent claim while
claims 2–5 are dependent claims.

IPC Classification. The International Patent Classification (IPC classification) pro-
vides a hierarchical categorization over different technological fields, such as com-
puter science, electronics, mechanics, and biochemistry. Such classes are language-
independent symbols assigned as metadata to the patent documents. They categorize
the content of a patent document and describe the field of technology that a patent
document belongs to. These IPC classes can be seen as conceptual tags assigned to the
documents [Lupu et al. 2011]. For each conceptual tag, there are textual descriptions
available (IPC definition pages) that provide contextual cues about different technical
fields.

Citation Chain. Patents are issued with a list of other documents that were cited
during the processing of the patent application either by the patent examiner or the
inventor. A patent searcher has access to documents cited by each patent but also has
access to documents that cite each patent. The process of searching both of these sets
of documents is referred to as backward and forward citation searching, respectively.

These sources have different vocabulary usage. The query patent itself has an obscure
style of writing (patentese) [Lupu et al. 2011]. This characteristic might create a term
mismatch problem in finding relevant documents for a given patent. However, the
other two resources provide a more established vocabulary usage. The descriptions of
IPC classes represent the standard vocabulary usage related to different domains. The
citation chain contains the language used by the community of inventors related to
the subject of the invention of the query. Thus, the vocabulary usage of the two latter
sources are complementary to the query itself.
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Fig. 1. An example topic in CLEF-IP 2011 testset (an excerpt).

3.1. The Architecture of our Proposed Model

Figure 2 illustrates the general scheme of our proposed method for query expansion.
The system receives a full patent application (query patent) consisting of textual fields
and classification information. Note that we do not have the citation information asso-
ciated with the patent application. While, for the rest of the documents in the collection,
we have access to both classification information and citation information.

In the first step, we estimate a query model from the textual fields of the patent. In
step II, we build an initial rank list based on the query model estimated from the query
patent. In step III, we take the initial ranked list and extract query-dependent citation
links from the top-k ranked documents. We then build a query-specific citation graph.
We perform influence analysis on the citation graph incorporating the temporal fea-
tures of the cited documents into our model. In step IV, we build a citation query model.
In step V, we build a query-specific lexicon from IPC definition pages. In step VI, we
make a lookup in the lexicon using the IPC classes of the query document. In step VII,
we extract the terms related to the IPC classes of the query from the IPC lexicon. In
step VIII, we expand the citation query model with expansion concepts extracted from
the lexicon. In step IX, query expansion is performed, and the positional information
between query terms and expansion terms is used to calculate weights for ensuring
high-quality expansion. The final rank list is generated as the result of this step.
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Fig. 2. The general scheme of our proposed method for query expansion using IPC lexicon and citation
information. Numbers indicate the sequence flow of operations.

Table I. Entry in the Conceptual Lexicon

IPC Class Representing Terms

C07D 279/24
hydrocarbon, radicals,

amino, ring, nitrogen, atom

3.2. IPC Conceptual Lexicon

We now explain the process of building a lexicon from IPC definition pages. We refer to
this lexicon as a conceptual lexicon. We consider the description of an IPC subgroup8

as a text segment. We performed stop-word removal on these text segments. We then
filtered the patent specific stop-words. The list for patent-specific stop-words is built as
follows: we calculated document frequencies for each term in the collection. We selected
terms with the top 10% highest document frequency and considered them as patent-
specific stop-words. The threshold 10% was set experimentally. We then filter them out
to increase the accuracy of our lexicon. Examples of these patent-specific stop-words
are “method,” “device,” “apparatus,” “process.”

Each entry in our lexicon is composed of a key and a value. The key is an IPC class
and the value is a set of terms representing the mentioned class. An example of an
entry in the conceptual lexicon is presented in Table I.

The lexicon can be used to extract expansion concepts related to the information need
of a given query patent. To this end, the IPC classes of the query patent are searched
in the lexicon, and the matching terms are considered as expansion terms.

8IPC classification scheme is arranged in a hierarchical, tree-like structure. Subgroup is the lowest hierar-
chical level in the IPC hierarchy.
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Query expansion using the lexicon will help us solve the two following problems.
The first problem is related to the fact that the usage of words is sensitive to the
topic domain; in different domains, the same word may be used to indicate different
meanings. We aim at finding the correct sense of a word by associating relevant terms
from the topic domain to the given query terms for each query patent.

The second problem is related to the term mismatch. The vocabulary of the query
patent is tailored by the language usage of the author (who often uses a nonstandard
terminology), while conceptual lexicon provides a standard terminology. We try to
combine these two terminologies, as we think this might alleviate the term mismatch.

4. QUERY-SPECIFIC CITATION GRAPH

In this section, we present the basics of representing the patent collection as a directed
unweighted graph. We then focus on the influence analysis aiming to find the important
documents in the citation graph that could influence their domain terminology.

In the CLEF-IP collections, the citations of query topics (query patents) are removed
by the organizers and used for building the query relevance judgements (qrels) which
are later used for automatic evaluation of topics. However, we have access to the
citations of all other documents apart from the query topics in the collection. A recent
work [Lopez and Romary 2009] used a Web service offered by the European Patent
Office9 to retrieve the bibliographical attributes of documents in the collection. We also
used this Web service to extract all the citations of the documents in the collection with
the exception of the query documents.

With these, we can use the citation links and build a graph from the documents in
the collection. The assumption is that if a patent is cited by a large number of docu-
ments, the cited patent is possibly a foundation of the citing patents and is considered
important. Therefore, its language might be useful to bridge the gap between the query
and its relevant documents.

As previous work suggests [Fujii 2007], computing Page Rank values as a measure
of static quality of the patent documents in the collection (calculated independently of
any query a system might receive) has a clear disadvantage compared to conditioning
the computation of Page Rank values on the query being served. Thus, we will focus
on how to assemble a subset of patent documents around the topic of the query from
the graph induced by their citation links. By doing so, we are able to derive Page Rank
values relative to particular queries.

To gather a subset of documents in the collection, we follow the two subsequent steps.
We later define how these documents are used to build a topic-specific citation graph.

(1) Given a query patent, we perform the search and retrieve an initial rank list of
documents. We take the top-k documents from this list and call it the root set.

(2) We construct the base set by expanding the root set with any document that either
cites or is cited by a document in the root set.

The subset of selected documents can be considered as a directed unweighted graph
G = (V, E), where V is a set of |V | = N patent documents and E ∈ V × V is a set of
citation relationships between patent documents. Each citation link from document A
to document B can be seen as an endorsement of document B. We now compute the
topic-specific Page Rank values for all nodes in the citation graph.

4.1. Establishing a Baseline Query

We now explain our approach to estimate a unigram query model from the query patent
document. This query will be used to retrieve an initial set of documents to form the

9http://www.epo.org/searching/free/ops.html.
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root set. We create a language model �Q for the query patent:

P(t|�Q) = PML(t|D), (1)

where the maximum likelihood estimate PML is calculated as follows:

PML(t|D) = n(t, D)∑
t′ n(t′, D)

. (2)

We introduce a unigram query model by estimating the importance of each term
according to a weighted log-likelihood based approach as expressed here:

P(t|QInit) = Zt P(t|�Q) log
(

P(t|�Q)
P(t|�C)

)
, (3)

where Zt = 1∑
t∈V P(t|�Q) log

P(t|�Q)
P(t|�C )

is a normalization factor. What we have in the denom-

inator is the the Kullback-Leibler divergence between �Q and �C , as it is summed
over all the terms in the vocabulary. Thus, the normalization factor can be written as
Zt = 1

DKL(�Q||�C ) . This approach favors terms that have high similarity to the document
language model �Q and low similarity to the collection language model �C . All fields
of the query document are considered in this estimation.

4.2. Citation Analysis of the Graph Structure

The computation of Page Rank value for a document D is performed as follows:

P R(D) =
∑

x∈d∗→D

P R(x)
dx→∗

, (4)

where d∗→D is a set of patent documents that cites D, and dx→∗ is a set of patent
documents cited by D. If D is cited by a large number of documents, a high score is
given to D. However, if a document cites n documents, the value for each cited document
is divided by n [Brin and Page 1998].

We calculated the Page Rank values for all the documents in the topic-specific citation
graph. In the next section, we explain how this value is used to guide the priority
assignment to documents while estimating a query model from citation graph.

4.3. Query Expansion Guided by the Page Rank Scores

Our approach for query expansion aims to improve the language model of the initial
query model by using the term distribution of documents in the citation graph. The
key assumption of this approach is that the term mismatch can be alleviated by using
the term distribution of documents with higher Page Rank scores.

We identify and weigh the most distinguishing terms in the documents belonging to
the citation graph, and we use the calculated Page Rank values as document prior in
a language modeling framework. The term sampling is performed as follows:

P(t|Qcit) = Zt

∑
D∈Gcit

P(t|D)P(D), (5)

where Gcit denotes the citation graph and P(D) indicates the Page Rank score of docu-
ment D calculated according to Equation (4) after normalization. Zt is a normalization
factor.
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4.4. Temporal Analysis of the Citation Graph

After conducting our citation analysis using Page Rank scores, we noticed that the
Page Rank score is assigning a higher score to older documents. To investigate whether
the language of the query is more susceptible to the terminology of older documents,
we looked into the relationship between relevance and time and studied how relevance
changes over time using time series.

For this analysis, we focused only on the result set of a query and not all the doc-
uments in the collection. We derived time series from the result set (which could be
relevant to the query, thus referred to as pseudo relevant documents) and in parallel
from the set of relevant documents (qrels). We then compared these two time series. We
consider the publication date of the first kind-code of a patent application as the time
tag. A patent document has different kind-codes (versions) which are used to denote its
level of publication (e.g., first publication, second publication, or corrected publication).
The unit of time granularity considered in our analysis is a year. We thus aggregated
documents with publication dates in the same year in one bin.

After performing this analysis, we observed that for the majority of queries, the
temporal distribution of true relevant documents (qrels) has a higher density of doc-
uments with recent publication dates, while our result set contains a higher number
of documents with older publication dates. This means that the pseudo relevant set is
lagging behind the qrels in the time dimension. Likewise, citation influence analysis
using Page Rank scores is biased towards the terminology of older documents.

We are thus interested in taking into account the time dimension in order to improve
the effectiveness of the retrieval. To do this, we need a query model that captures the
established terminology (derived from older documents) but at the same time encodes
the new vocabulary of the field (which is led by recent documents). The challenge is
how to balance these two distinct terminologies and build a query model that combines
both of these terminologies at once.

Modeling Decay over Time. Our aim is to capture the language change over time. We
take into account the patent publication dates and prioritize recent documents while
penalizing older documents.

In previous work, different functions have been used to model the decay over time
in a retrieval setting [Amati et al. 2012; Peetz and de Rijke. 2013]. Exponential decay
function has been used previously in IR tasks for modeling the time decay [Li and
Croft 2003]. Recently, inspired by cognitive psychology, the Weibull function has been
introduced as a time-aware prior and has been successfully employed on the blog
and news collections for improving the query modeling of event-based queries. The
Weibull function has been shown to be more effective compared to exponential decay
according to the retrieval results obtained in Peetz and de Rijke. [2013]. In this work,
we consider time-aware functions to discount the effect of older documents and capture
the terminology of recent documents in the query model.

We describe two time-aware functions.

—Exponentail decay,

fExp-Decay(D, q, g) = μ̂e−μ̂ δg(q,D) (6)

—Weibull,

fWeibull(D, q, g) = e−( μ̂ δg (D,q)
d̂

)d̂
, (7)

where δg(q, D) is the difference between the publication date of the query and the
publication date of the document D. μ̂ determines the decay parameter, d̂ indicates the
steepness of the decay (forgetting) function, and g denotes the time granularity.
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Table II. Comparing the Query Terms Selected from the Query Patentand the Citation Graph

Query Document Citation Graph (Page Rank) Citation Graph (Temporal)

manage, server, collaborate, transact, handle, service, network, permission, secure,
client, soap, peer, ... access, command, ... request, collect, ...

We identify and weigh the most distinguishing terms in the documents in the citation
graph, prioritizing recent documents. We consider a granularity of one year and employ
time-aware functions as document priors.

P(t|Qinnov−cit) = Zt

∑
D∈Gcit

P(t|D)P(D), (8)

where Gcit is the citation graph. The document prior component in Equation (8), P(D),
is proportional to the value calculated by the exponential decay function or Weibull
function. The weight of each document, using the exponential decay function, is calcu-
lated as follows: P(D) = fExp-Decay(D,q,g)∑

D∈Gcit
fExp-Decay(D,q,g) . Zt is a normalization factor.

Our assumption is that recent documents have an innovative language, and using
temporal priors allows us to capture the terminology of recent documents.

4.5. Query Expansion using Citation Graph and Temporal Features

We build a query model that has good coverage over different time intervals, utilizing
the language usage of older documents (the established terminology of the domain) and
the innovative language usage of recently published documents. This query is built
from the linear combination of the initial query, the citation query model using the
Page Rank scores, and the temporal query model of the citation graph. We interpolate
the temporal query (as estimated in Equation (8)) with the citation query (as estimated
in Equation (5)) and the initial query (as estimated in Equation (3)):

P(t|Q) = α P(t|QInit) + β P(t|Qcit) + (1 − α − β) P(t|Qinnov−cit). (9)

The M-highest terms from the updated query model are then used as a query to
retrieve a ranked list of documents.

Table II shows a comparison between a list of terms derived from the patent appli-
cation, “EP-1832953-A2,” terms sampled from documents with high Page Rank scores
belonging to the topic-specific citation graph, and terms derived from the temporal
query model of the citation graph. This query topic belongs to the CLEF-IP 2011 topic
set. The title of this patent topic is “Method and apparatus for managing a peer-to-peer
collaboration system.” By looking at this example, we see that we are able to select
terms from documents in the citation graph which are relevant to the topic of the
query but are not captured in the initial query model.

5. A PROXIMITY-BASED FRAMEWORK FOR QUERY EXPANSION

We now explain how the IPC lexicon is used for query expansion. To do this, we first
describe strategies to identify expansion concepts that are referring to query concepts
in Section 5.1. Then in Section 5.2, we explain how to estimate the probability that an
expansion term is referring to a query term. Finally in Sections 5.3 and 5.4, we discuss
calculating relevance scores for documents.

5.1. Query Reformulation

Let Q = {q1, q2, . . . , qk} be a query composed of top-k query terms with highest weights
according to a query model estimated from the query patent document DQ (as explained
in Equation (12)). Given the IPC classes assigned to DQ, we select a set of concepts
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Table III. Comparison between the List of Terms Derived from Three
Information Sources for the Query with Title “Ink-Jet Recording Ink”

Query Document Conceptual Lexicon Retrieval Corpus

acrylate, ink, light-sensitive, record, liquid,
jet, acid, polymer, duplicate, printer, surface, composition,
pigment, record, ... ink, sheet, mark, ... polymer, cartridge, ...

CE = {e1, e2, . . . , em} from the conceptual lexicon (as explained in Section 3.2). The set
of CE is associated to the query Q, since the IPC lexicon contains explanations about the
IPC classes of DQ. Once the set of concepts CE is identified, we determine the importance
weights according to their distance from the query terms based on the intuition that
concepts closer to query terms are more related to the query. Equation (10) shows
the process of calculating importance weights for expansion concepts. We can then
rerank documents in the initial rank list R using a weighted combination of matches
of concepts in CE and our initial keyword query Q based on Equation (12).

We explain four different strategies for selecting expansion concepts in the following.

Explicit Expansion Concepts. In this strategy, we use the concepts in our conceptual
lexicon which match against the IPC classes of DQ. However, we restrict our attention
to concepts that are present in DQ. This provides a set of explicit expansion concepts
(a subset of CE) which serve as candidate expansion terms. We refer to this set as
XE. We utilize the proximity of query terms and expansion terms inside DQ to assign
importance weights to items in XE. These weights are then used to rerank documents
in the list R.

Implicit Expansion Concepts. In this strategy, the expansion terms are not limited
to the set of explicit expansion concepts XE which were defined previously. Instead,
our query expansion method includes all expansion concepts in CE. In this setting, we
extract proximity information from documents inside R to compute importance weights
for expansion terms. This strategy is able to make use of all terms available in CE and
is not limited to the concepts that appear in DQ.

Combining Search Strategies. In this strategy, instead of expanding the initial query,
we calculate an IPC score based on the expansion concepts in CE. We linearly combine
this score with the initial scores calculated in R. Our goal is to compare whether having
a unified query, as it exists in the query expansion, is better than constructing two sep-
arate queries and combining their results at the end. We introduce this setting for the
experiments in order to simulate the specific search strategies taken by searchers for
retrieving relevant documents. In such a search strategy, searchers perform separate
searches based on different information sources, such as the patent query document
and IPC classes, and then merge the results of the runs together to produce a unique
rank list [Lupu et al. 2011].

Proximity-Based Pseudo-Relevance Feedback. As a comparison baseline, we use the
retrieval corpus as a source for PRF, and we use the feedback set for selecting expansion
terms. The distance between query terms and expansion terms is used to calculate the
weight for expansion terms.

As an example, Table III shows the terms selected from different information re-
sources for the query patent “EP-1783182-A1” selected from CLEF-IP 2010 test topics.
The terms from the retrieval corpus are selected via the procedure of PRF.
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5.2. Estimating the Query Relatedness

In this section, we explain our method for estimating the probability that expansion
term e at position i is related to query term q. We calculate this probability as follows:

P(q|i, D) =
∑

j

P(q| j)P( j|i, D), (10)

where D denotes a document, i denotes an expansion term position, and j = {1, 2, . . . , k}
denotes a set of query term positions. P(q|i, D) indicates the probability that the ex-
pansion term at position i in D is about the query term q. We refer to this probability as
query relatedness probability. To find the query relatedness at position i, we calculate
the propagated probability from all query positions at position i. For every position j
in D, we consider the weight of query term at position j, denoted by P(q| j), and weight
it by the probability that the term at position j is about the expansion term at position
i, denoted by P( j|i, D). This probability is estimated as follows:

P( j|i, D) = k( j, i)∑|D|
j ′=1 k( j ′, i)

, (11)

where k(i, j) is the kernel function determining the weight of the propagated query-
relatedness from j to i. We model the query relatedness by placing a density ker-
nel function around query terms. The values are normalized to obtain the calculated
weights in form of probabilities.

In the following, we present different kernels used in our experiments. We study
three different density functions, namely, Gaussian, Laplace, and Rectangle kernels.
We selected Gaussian and Laplace kernels as they have been shown to be the best
performing kernels among the kernel functions tested in previous work [Lv and Zhai
2009; Gerani et al. 2012]. We also chose the Rectangle kernel to simulate the effect of
imposing a hard boundary over passages in contrast to the soft boundary introduced
by other kernels. The parameter σ controls the spread of kernel curves and restricts
the propagation scope of each term.

—Gaussian kernel,

k(i, j) = 1√
2πσ

exp
[−(i − j)2)

2σ 2

]
.

—Laplace kernel,

k(i, j) = 1
2b

exp
[−|i − j|

b

]
,

where σ 2 = 2b2.

—Rectangle kernel,

k(i, j) =
{ 1

2a if |i − j| � a
0 otherwise,

where σ 2 = a2

3
.

Our aim is to investigate whether it is better to use kernel functions which favor
expansion term occurrence in close proximity of query terms or not.
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5.3. Calculating Document Relevance Score

In this section, we intend to calculate the overall probability that relevant expansion
concepts (inside the document) are related to the technical concept of the query. This
probability is denoted by P(q|D, e), which is defined as

P(q|D, e) =
|D|∑
i=1

P(q, i|D, e) =
|D|∑
i=1

P(q|i, D, e)P(i|D, e). (12)

We assume e and q are conditionally independent given their positions in document
D. Thus, P(q|i, D, e) reduces to P(q|i, D), which can be estimated using the query
relatedness probability. We now need to estimate the probability P(i|D, e). We suggest
two different methods for estimating P(i|D, e).

—Avg Position Strategy. All positions of expansion concepts are equally important:

P(i|D, e) =
{

1/|pos(e)| if ti ∈ e
0 otherwise,

by substituting this in Equation (12), we have

P(q|D, e) = 1/|pos(e)|
∑

i∈pos(e)

P(q|i, D), (13)

where |pos(e)| denotes the number of occurrences of expansion term e in document D.
—Max Position Strategy. As an alternative, we only consider the expansion term posi-

tion with the highest P(q|i, D) as important:

P(q|D, e) = max
i∈pos(e)

P(q|i, D). (14)

5.4. Normalization

Here we compare the effect of different normalization methods prior to linear combina-
tion using two score normalization methods: MinMax [Lee 1997] and HIS normalization
[Arampatzis and Kamps 2009]. These methods are often used in distributed informa-
tion retrieval. MinMax normalization method shifts and scales scores to be between
zero and one. On the other hand, HIS normalization estimates a single cumulative
density function (CDF) for every search engine based on historical queries.

We also experimented with a variation of score normalization where we first ap-
plied MinMax and then HIS normalization. We refer to this method as MinMax-HIS
throughout the experiments.

6. EXPERIMENTAL SETUP

Here we describe the details of the experimental setup, reporting about the testsets
and baselines.

6.1. Testsets

In this section, we explain the experimental setup for evaluating the effectiveness of
our proposed approaches.

Testing Collections. We conducted our experiments over two years worth of CLEF
Intellectual Property (CLEF-IP) task, including CLEF-IP 2010 and CLEF-IP 2011
datasets. CLEF-IP 2010 contains 2.6 million patent documents while CLEF-IP 2011
consists of about 3 million patent documents. In our experiments, we used the English
subsection of both collections. The English testset of CLEF-IP 2010 corresponds to
1,348 topics. The English testset of CLEF-IP 2011 consists of 1,351 topics. We used the
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Table IV. IPC Section Distribution over English Testset of CLEF-IP 2010 and CLEF-IP 2011

# of topics in # of topics in
Category Description CLEF-IP 2010 CLEF-IP 2011
A Human Necessities 154 250
B Performing Operations and Transporting 307 213
C Chemistry and Metallurgy 255 150
D Textiles and Papers 10 23
E Fixed Constructions 7 18
F Mechanical Engineering, Heating, Weapons, and Blasting 90 143
G Physics 289 263
H Electricity 236 291

total number of queries 1,348 1,351

training topics of CLEF-IP 2010 for the parameter tuning of our model. This training
set consists of 300 topics.

We calculated statistics about the IPC classifications codes. In general, there are
about 70,000 classes in the most fine-grained level of the IPC hierarchy.10 The number
of distinct classes in CLEF-IP 2010 and CLEF-IP 2011 are 62,183 and 63,495, respec-
tively. On average, there are 3.4 IPC classes assigned to each documents in CLEF-IP
2010 and 3.9 in CLEF-IP 2011.

As previously mentioned, the relevance judgements for the CLEF-IP challenge are
built based on the documents listed in the search report of a patent application which
is written by a patent examiner. This report might share references with the initial
citation list provided by the patent applicant. To remove the bias that might be intro-
duced by the applicant, the initial citation of the query patent is removed by organizers
of CLEF-IP. As a consequence, our model does not use the initial citation information
of a query patent.

Pre-processing. We used the Terrier Information Retrieval System11 to index the
collection with the default stemming and stop-word removal. We considered the textual
fields of entire patent documents while indexing. We then removed patent-specific stop-
words such as “device” and “method.” The list for patent-specific stop-words is built as
follows. We calculated document frequencies for each term in the collection. We then
selected terms with top 10% highest document frequency and considered them as
patent-specific stop-words. The value 10% is experimentally set as a threshold.

Evaluation. We used the relevance judgement for the test topics with English lan-
guage provided by CLEF-IP for evaluation purposes. We report recall, mean average
precision (MAP), and patent retrieval evaluation score (PRES) [Magdy and Jones.
2010b], which combines MAP and recall in one single score.

In the remainder of our experiments, we used the randomization (permutation) test
with a confidence level of 0.05 to report statistical significance test results, since this
test has been shown to be more reliable than Wilcoxon and t-test [Smucker et al. 2007].

We also performed the evaluation per topics belonging to each technology class.
Table IV represents the information about the field of technology of test topics. As
shown in Table IV, IPC divides technology into eight sections.

6.2. Establishing a Baseline

We estimated an initial query model from the query patent document by calculating
the importance of each term according to a weighted log-likelihood-based approach,

10http://www.wipo.int/classifications/ipc/en/general/statistics.html.
11http://ir.dcs.gla.ac.uk/terrier/.
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Table V. Choosing Baselines on Two
Retrieval Collections

CLEF-IP 2010 (training topics)
Run identifier MAP recall PRES
W10TR 0.1219 0.6367 0.5512

CLEF-IP 2010 (test topics)
Run identifier MAP recall PRES
W10TE 0.1295 0.6105 0.5150

CLEF-IP 2011 (test topics)
Run identifier MAP recall PRES
W11TE 0.0990 0.5935 0.4859

as explained in Section 4.1. The entire text of query patent documents is used in this
estimation. Table V summarizes the results we obtained using the initial query model
for the topics in the training and testset of CLEF-IP 2010 and the testset of CLEF-IP
2011. Throughout our experimental section, W10TE is used as the baseline on the
test topics of CLEF-IP 2010, and W11TE is used as the baseline over test topics of
CLEF-IP 2011. Note that the training set of CLEF-IP 2010 is only used for tuning the
parameters of the model, thus we will refer to W10TR in such comparisons.

We used the language modeling approach with Dirichlet smoothing [Zhai and
Lafferty 2001] to score documents from both collections and to build the initial rank
lists. We empirically set the value for the smoothing parameter μ to 1500. We also
used language modeling for the reranking of the results. Table V reports evaluation
results after performing IPC filtering on the rank list. This means that documents in
the rank list that do not share any IPC class with the query document are filtered out.
IPC filtering improves the evaluation results.

At the end of the experimental section, we will compare the performance of our
approach with the best official results of CLEF-IP 2010 and CLEF-IP 2011.

7. EXPERIMENTAL RESULTS

In this section, we explain the experiments conducted in order to evaluate the perfor-
mance of the proposed models. We present the results and formulate answers to the
following questions according to the results of our experiments.

(1) Do citation links together with the content of the cited documents improve the
performance of the initial query built from the query document? Does employing
the temporal features of the query and of the collection result in a more precise
query? What type of document prior is more effective in modeling the decay over
time?

(2) Is the IPC conceptual lexicon useful for query expansion? Is the proximity informa-
tion between query terms and expansion terms, extracted from the IPC conceptual
lexicon, helpful in identifying weights for expansion terms?

(3) What are the effects of the parameters of the model on the final performance?

In Section 7.1, we report the results of our experiments on the influence analysis over
the citation graph. In Section 7.2, we show how the temporal query modeling from the
citation documents improves over the citation query model. Sections 7.1 and 7.2 discuss
and provide answers to the first question. In Section 7.3, we aim to answer the second
question. To this end, we report the results of using IPC lexicon for query expansion,
and we study the effects of using different density kernels to model the proximity
information. In Section 7.4, we study the sensitivity of the proposed framework for
query expansion using proximity information in order to answer the last question.
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Table VI. Performance of Different Citation Analysis Methods with a
CutOff Value of 1,000

CLEF-IP 2010 test set
Method Run description MAP recall PRES
Score-cit1 citation depth level 1 0.102 0.567 0.449
Score-cit2 citation depth level 2 0.105 0.574 0.461
QM-cit1 citation depth level 1 0.118 0.580 0.469
QM-cit2 citation depth level 2 0.121 0.585 0.474

Table VII. Performance of Different Citation Analysis Methods with a
Cut-Off Value of 1,000

CLEF-IP 2011 test set
Method Run description MAP recall PRES
Score-cit1 citation depth level 1 0.091 0.543 0.453
Score-cit2 citation depth level 2 0.095 0.550 0.459
QM-cit1 citation depth level 1 0.105 0.560 0.465
QM-cit2 citation depth level 2 0.105 0.579 † 0.481

7.1. Query Expansion using Citation Graph

We now describe the structure of the experimental evaluations. We compare the two
following methods with the baseline presented in Table V. The first method corresponds
to our implementation of the work reported in Fujii [2007]. This method is focused on
computing a composite score using the textual information of the query together with
the link-based structure of the query-specific citation graph. This method is referred
to as Score-cit. The second method is our proposed model which estimates a query
model from the documents in the citation graph and expands the initial query using
the estimated model from the term distribution of the documents in the citation graph.
This method is referred to as QM-cit. Tables VI and VII show the evaluation results of
different methods using the CLEF-IP corpora.

Results marked with † represents a statistical significant difference compared to
Score-cit1 and Score-cit2. The reported results for QM-cit1 and QM-cit2 are obtained
using the top-100 feedback terms selected from the expanded query model. The top-30
feedback documents are selected and used to generate the root set. The number of
feedback terms and number of feedback documents are experimentally set with the
goal of optimizing the performance of the method.

We study the influence of the size of the citation graph on the effectiveness of query
expansion by considering two alternative versions of Score-cit and QM-cit. The first ver-
sion considers a citation graph exploiting one level depth of citation links, constructed
by collecting documents in the root set and base set, as explained in Section 4. We call
these methods Score-cit1 and QM-cit1. The second variation takes into account a cita-
tion graph using two levels of citation links. We refer to the methods in this category
as Score-cit2 and QM-cit2.

The results of Tables VI and VII suggest that the QM-cit method obtained better per-
formance compared to Score-cit in terms of both recall and precision. QM-cit2 obtained
statistical significant improvement in terms of recall over Score-cit1 and Score-cit2.
This observation suggests that using the link-based structure as well as exploiting the
term distribution of the citations (through estimation of a query model) is more useful
than using the citation links alone. We can see from the results of Tables VI and VII
that neither of the versions of Score-cit nor QM-cit achieved statistically significant
improvement over the baselines W10TE and W11TE.

The results presented in Tables VI and VII show that increasing the depth of the
citation graph (from depth 1 to depth 2) has a positive effect on the performance of
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Fig. 3. Sensitivity analysis of QM-cit2 to the number of feedback terms on CLEF-IP 2011.

both Score-cit and QM-cit methods. We also carried out experiments with a citation
graph of depth 3, where three consecutive iterations of the steps described in Section 4
are considered. The obtained performance is statistically indistinguishable from the
results for Score-cit2 and QM-cit2. We therefore did not present these results.

In Figure 3, we studied the effect of increasing feedback terms and feedback docu-
ments on the performance of QM-cit2. We notice that increasing the number of feedback
terms has a consistent positive effect on all evaluation metrics. However, when we vary
the number of feedback documents, we can see from the curve trends of QM-cit2 that
there is a marked drop of performance in terms of MAP for values more than 30. We
observe a less severe drop of performance in terms of recall. We can conclude that
recall is less susceptible to the number of feedback documents than MAP. By looking at
PRES values presented in Figure 3, we can see that the best performance of QM-cit2
is obtained with 30 feedback documents and 100 feedback terms.

In the next section, we show how we can obtain a better performance by incorporating
temporal information into the model when performing citation influence analysis.

7.2. Enhancing Citation Analysis with Temporal Information

We study the impact of the temporal features for improving the citation query model,
and we look into capturing the language change over time. Table VIII shows the re-
sults of the temporal query model (according to Equation (9)). Results marked with †
achieved statistically significant improvement over the baselines W10TE and W11TE.
The parameters of the model are tuned using five fold cross-validation to maximize
PRES.

The results reported in Table VIII show that including temporal features into the
citation query model led to statistically significant improvement in terms of MAP. Fur-
thermore, reported results show that modeling the decay over time using the Weibull
prior (Equation (7)) performed better than the exponential decay prior (Equation (6)).

To further investigate the effect of the temporal query modeling, we presented the
evaluation results of methods in different technological fields in Tables IX and X.

The results of Table IX shows that TM-WB obtained a better performance compared
to QM-cit2 in categories F, G, and H. These improvements hold for all three reported
metrics. However, we observe that the performance of TM-WB is lower than QM-
cit2 in category C. Our experiments on CLEF-IP 2010 showed that communities of
inventors related to the topics in categories F, G, and H are more receptive to the
linguistic changes over time, while categories A, B, C, D, and E are more resistant to
the changes of the language. The decrease of precision on category C (which categorizes
the patent documents related to “Chemistry” and “Metallurgy”) was counterintuitive,
as we expected the language of this community to be evolving over time. However, we
did not capture this effect in our query model. The results of Table X show the positive
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Table VIII. Performance of Temporal
Modeling with a Cut-Off Value of 1,000

CLEF-IP 2010 test set
Method MAP recall PRES
TM-ED 0.138 0.587 0.496
TM-WB 0.145 † 0.588 0.503

CLEF-IP 2011 test set
Method MAP recall PRES
TM-ED 0.124 † 0.580 0.487
TM-WB 0.128 † 0.582 0.490

Table IX. Evaluation Results over Testset of CLEF-IP 2010

method name metric A B C D E F G H

QM-cit2
MAP 0.138 0.123 0.127 0.070 0.086 0.128 0.110 0.119
recall 0.518 0.598 0.535 0.620 0.500 0.619 0.600 0.598
PRES 0.433 0.489 0.448 0.540 0.427 0.517 0.476 0.482

TM-WB
MAP 0.134 0.122 0.121 0.075 0.081 0.148 0.117 0.134
recall 0.518 0.596 0.533 0.620 0.500 0.638 0.624 0.599
PRES 0.433 0.489 0.439 0.542 0.427 0.529 0.500 0.495

Table X. Evaluation Results over Testset of CLEF-IP 2011

method name metric A B C D E F G H

QM-cit2
MAP 0.129 0.099 0.132 0.195 0.125 0.096 0.103 0.073
recall 0.603 0.566 0.568 0.676 0.438 0.569 0.584 0.545
PRES 0.509 0.471 0.485 0.588 0.370 0.490 0.483 0.440

TM-WB
MAP 0.127 0.102 0.130 0.195 0.137 0.120 0.105 0.101
recall 0.603 0.568 0.565 0.679 0.446 0.579 0.585 0.558
PRES 0.509 0.472 0.483 0.588 0.376 0.488 0.485 0.455

effect of our method in capturing the language change in categories E, F, and H, as
opposed to other categories over the topics of CLEF-IP 2011.

A concluding remark for these experiments is that we obtained more accurate results
when incorporating temporal features into our model. In the next section, we explain
how the precise citation query model is expanded in our proximity-based framework.

7.3. Query Expansion using IPC Lexicon and Proximity Information

To guarantee the assignment of reliable importance weights to the expansion concepts,
we need to start with a set of precise query terms, because we rely on the distance
between query terms and expansion concepts in order to calculate importance weights
for expansion concepts. Obviously starting with less noisy query terms has a direct
effect on the quality of importance weights. According to our experiments, the run with
the interpolated citation query model based on Equation (9) achieved the best MAP so
far. Thus, in the remainder of the experiments, we focus on this query model. Note that
Equation (7) is used as document prior for the temporal component.

We are interested in investigating the effectiveness of different query reformula-
tion methods proposed in Section 5.1 for scoring documents in our proximity-based
framework. The results of this comparison are summarized in Tables XI and XII. In
all the comparisons, our query expansion method that uses explicit expansion concept
is denoted as EEC, while the one that uses implicit expansion concept is referred to as
IEC.
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Table XI. Recall Results of Different Settings of the Kernel
Functions using IEC Query Reformulation Method on the

Training Topics of CLEF-IP 2010

IEC
kernel\σ 25 75 125 150
Gaussian 0.6448 0.6564 † 0.6678 † 0.6805 †
Laplace 0.6429 0.6568 † 0.6583 † 0.6725 †
Rectangle 0.6401 0.6527 0.6563 † 0.6680 †

Table XII. Recall Results of Different Settings of the Kernel
Functions using EEC Query Reformulation Method on the

Training Topics of CLEF-IP 2010

EEC
kernel\σ 25 75 125 150
Gaussian 0.6389 0.6420 0.6675 † 0.6640 †
Laplace 0.6365 0.6389 0.6688 † 0.6519
Rectangle 0.6340 0.6378 0.6646 † 0.6504

The performance of these methods is directly affected by the effectiveness of the
kernel function used to estimate the query relatedness probabilities. Thus, we first
compare three different proximity-based kernel functions.

As previously explained in Section 5, we place a density kernel function around
each occurrence of query term positions in the document. The query relatedness at
each expansion term position is then calculated by counting the accumulated query
relatedness density from different query terms at that position. Therefore, an expansion
term occurring at a position close to many query terms receives high query relatedness
and thus obtains a greater weight in comparison to an expansion term which is located
further away from query terms.

Our proximity-based framework has two parameters: the type of kernel function and
its bandwidth parameter σ which controls the degree of query relatedness propagation
throughout the entire document. To tune the parameters of our model, we used the
training topics of CLEF-IP 2010.

Tuning the Parameters of the Kernel Functions. The results of comparing different
kernel functions on the training topics of CLEF-IP 2010 are shown in Tables XI and XII.
A † denotes statistical significant improvement over W10TR (presented in Table V). The
results show that EEC and IEC achieved better performance over W10TR regardless
of the choice of the kernel function.

It is also clear that among all the kernel functions, the Gaussian outperforms other
types of kernels in most cases. Since the Gaussian kernel performed the best in most
of the experiments, we use this kernel function in the rest of our experiments.

In order to find the best value for the parameter σ , we tried a set of fixed values in
the range [25, 225] with a step of 25, similar to what has been done in previous work
[Lv and Zhai 2009, 2010]. Tables XI and XII report the performance of different kernel
functions using varying values of σ . We obtained the best result for IEC method using
the σ value set to 150, and increasing the σ value to values more than 150 did not lead to
an improvement in terms of retrieval effectiveness. For the EEC method, the best result
is achieved using σ value set to 125. Overall, Tables XI and XII clearly demonstrate
that the results obtained with the σ value of 150 achieved better performance in most
cases, although the difference among different settings was not significant. Thus, we
use the σ value of 150 in the rest of the experiments.

Comparison of Max and Avg Strategy. We now compare the max and avg strategies
for calculating the probability of relevance of a document, as defined in Section 5.3.
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Table XIII. Recall of the Max and Avg Method using Gaussian
Kernel with IEC Reformulation Method on Training Topics of

CLEF-IP 2010

method\σ 25 75 125 150
max 0.6448 † 0.6564 † 0.6678 † 0.6805 †
avg 0.6172 0.6205 0.6212 0.6249

Table XIV. Performance Results of Query Reformulation Approaches on Two Patent
Retrieval Datasets on the Test Topics of CLEF-IP 2010 and CLEF-IP 2011

Collection metric baseline IEC EEC CSS PPRF

CLEF-IP 2010
MAP 0.1295 0.1434 † 0.1405 † 0.1301 0.1122
recall 0.6105 0.6598 † 0.6452 † 0.6243 0.5890
PRES 0.5150 0.5560 † 0.5510 † 0.5338 0.5029

CLEF-IP 2011
MAP 0.0990 0.1231 ‡ 0.1225 ‡ 0.1189 0.1022
recall 0.5935 0.6369 ‡ 0.6268 ‡ 0.6094 0.5645
PRES 0.4859 0.5290 ‡ 0.5255 ‡ 0.5141 0.4952

Table XIII shows the results of using avg and max strategies for different σ values on
the training topics of CLEF-IP 2010 using the IEC reformulation method.

The results show that the max strategy is statistically better than the avg strategy.
Thus, we use the max strategy in all configurations of our experiments throughout this
article. A † denotes the statistical significant improvement over the avg method.

7.3.1. Effect of Query Reformulation. In this section, we present the evaluation results
of our proposed approaches on the testset of CLEF-IP 2010 and CLEF-IP 2011.
Table XIV reports the retrieval performance of query reformulation methods described
in Section 5.1. The symbols † and ‡ denote statistical significant improvements over
W10TE and W11TE (presented in Table V), respectively.

We now compare the performance of our query expansion methods which use IPC
lexicon for extracting expansion candidates. In addition to EEC and IEC which were
introduced earlier, the results of the other two query reformulation methods are pre-
sented in Table XIV. The method that combines search strategies is denoted as CSS.
The last method in our comparison is the positional-based pseudo relevance feedback,
which is denoted by PPRF.

The main observation from Table XIV is that IEC is always more effective than the
other three methods. In addition, IEC improved significantly over the baseline in terms
of recall on both collections.

Table XIV shows that a method which uses a conceptual lexicon for selecting ex-
pansion terms outperforms a method that uses feedback documents for identifying
expansion terms. This is evident by comparing the performance of EEC, IEC, and CSS
to the performance of PPRF, since the first three methods use the conceptual lexicon
for query expansion. This result is consistent on both corpora used for evaluation.

In addition, the results of Table XIV demonstrate that IEC obtained improvement
over EEC. In contrast to IEC, EEC extracts a limited set of expansion terms from the
conceptual lexicon, the ones which are present in the query document. This diminishes
the power of EEC in contrast to IEC. The results confirm that the unlimited usage of
the conceptual lexicon is superior to its limited usage.

Another observation which can be made from Table XIV is that CSS achieved worse
results compared to both EEC and IEC. This is perhaps due to the fact that informa-
tion is lost during the merging of two separate runs made from the query terms and
expansion terms. On the other hand, both EEC and IEC use a unified query which is
composed of query terms and expansion terms. Overall, the results of Table XIV show
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Table XV. Comparison with the Best Official Results on the
English Subset of the Testset

Official best results of CLEF-IP 2010
Method Run description MAP recall PRES
IEC our method 0.1434 0.6598 0.5560
humb rank 1 0.2264 0.6946 0.6149
dcu rank 2 0.1807 0.616 0.5167

Official best results of CLEF-IP 2011
Method Run description MAP recall PRES
IEC our method 0.1231 0.6369 0.5290
nijm rank 1 0.0582 0.6303 NA
hyder rank 2 0.0593 0.5713 NA

Table XVI. Comparison of Performance Results of
PRF and PPRF

Collection metric PPRF PRF

CLEF-IP 2010
MAP 0.1122 0.0880
recall 0.5890† 0.5630
PRES 0.5029 0.4962

CLEF-IP 2011
MAP 0.1022 0.0842
recall 0.5645† 0.5348
PRES 0.4952 0.4794

that using the conceptual lexicon as a domain-dependent external resource is effective
in terms of recall and precision. These findings deliver the answer to the third question
listed in the beginning of Section 7.

We used 40 expansion terms (experimentally set) in each of the query reformulation
methods. In Section 7.4, we studied the effect of varying the number of expansion
terms and number of feedback documents on the performance of each method. We also
presented the results of normalization using MinMax-HIS throughout the article. In
Section 7.4, we investigated the effect of different normalization methods.

Table XV shows the performance of the IEC method along with the best official
results of CLEF-IP 201012 and CLEF-IP 2011 [Piroi 2010; Piroi et al. 2011]. Note that
PRES values were not reported for the best results of CLEF-IP 2011. It can be seen
that the IEC method performed better than the best official results over CLEF-IP 2011.
IEC can also be considered as the second best method on CLEF-IP 2010.

7.3.2. Comparison with Standard PRF. Table XVI reports the retrieval performance of
PPRF and PRF. A † denotes statistical significant improvement over standard PRF.

As previously explained in Section 5.1, PPRF is similar to PRF since they both use
a feedback set for selecting expansion terms. However, PPRF uses proximity informa-
tion inside the feedback set to calculate the weight for expansion terms in contrast to
standard PRF. The results show that PPRF performs significantly better than stan-
dard PRF. This result confirms the usefulness of proximity information for identifying
importance weights for expansion terms, as previously shown in Lv and Zhai [2010].
PPRF and PRF did not achieve improvement over the baseline.

The number of feedback documents is set to 10 for both PPRF and PRF methods. We
study the effect of this parameter on the performance of our methods in Section 7.4
and show that 10 is the optimal value.

12http://www.ifs.tuwien.ac.at/∼clef-ip/pubs/CLEF-IP-2010-IRF-TR-2010-00003.pdf.
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Fig. 4. Sensitivity to the number of expansion terms and number of feedback documents on CLEF-IP 2010.

7.4. Parameter Study

In this section, we study the influence of different parameters on the effectiveness of
our proposed methods. The reported sensitivity results provide answers to the final
question stated in the beginning of Section 7.

Number of Expansion Terms and Number of Feedback Documents. We plot the sensi-
tivity of different query reformulation methods in relation to the number of expansion
terms over CLEF-IP 2010 testset in Figure 4.

According to Figure 4, IEC is the clear winner among the four methods given the three
evaluation metrics, and PPRF achieved inferior results compared to the other methods.
We observe some variations in the performance of PPRF with different numbers of
expansion terms. The best performance of PPRF is achieved with 40 expansion terms.
Another observation is that IEC, EEC, and CSS seem to be less susceptible to the
numbers of expansion terms. We can see that IEC, EEC, and CSS need 40 expansion
terms to exhibit their best performance according to PRES values. IEC, EEC, and CSS
continue to maintain a stable performance using higher numbers of expansion terms.

Since PRF and PPRF share the number of feedback documents, we are interested to
understand how this parameter affects the retrieval performance of these two methods.
We draw the sensitivity curves of PRF and PPRF with respect to the number of feedback
documents and expansion terms on CLEF-IP 2010 in Figure 5. Since IEC, EEC, and
CSS do not share the number of feedback documents as a parameter, we did not include
them in this analysis.

Figure 5 shows that PPRF achieved better results compared to PRF. The best per-
formance values for both PRF and PPRF are obtained with 10 feedback documents
according to PRES values. The sensitivity curves for both PRF and PPRF show that
using more than 10 feedback documents does not improve the performance. We hy-
pothesize that this is because when we select feedback documents with higher rank
positions in the rank list, more noisy terms are also selected, and this hampers the
performance of PRF and PPRF.

We can observe that retrieval effectiveness of methods presented in Figures 4 and 5
seem to stabilize after about 50 expansion terms. We hypothesize that this is because
weights calculated for the expansion terms are small, and thus after a while, they do
not play a powerful role in improving the retrieval effectiveness. We also think that
this is because in an expansion setting, after a while, the query expansion reaches a
saturation point, meaning that increasing the number of expansion terms does not lead
to an improvement in retrieval effectiveness. We need to design further experiments
to validate this hypothesis, and we leave this to the future work.

Effect of Combination. In all configurations of our experiments, we linearly combined
the results from each of the reformulation methods with the initial query. The weight
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Fig. 5. Sensitivity analysis of PRF and PPRF on CLEF-IP 2010.

Fig. 6. Sensitivity to the λ coefficient in the linear combination of results

of the interpolation λ controls the weight of the initial query. When λ = 0, the query
expansion model is used, while when λ = 1, the initial query is used; λ was tuned based
on the training topics of CLEF-IP 2010.

Figure 6 shows the results of the sensitivity analysis over the coefficient λ on the
test topics of CLEF-IP 2010 and CLEF-IP 2011. We notice that IEC is more effective
than other query reformulation methods for different λ values. The optimal value for
the parameter λ seems to be in a small range around 0.4.

Effect of Normalization. Table XVII shows the comparison among different normal-
ization methods. These results correspond to the final performance of each run after
the combination on the testset of CLEF-IP 2010. The results are obtained with the
IEC method. We observe that IEC achieved the best performance using MinMax-HIS
normalization. The results of other methods confirm that applying normalization using
MinMax-HIS is better than either MinMax or HIS alone. The improvements are not
statistically significant.
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Table XVII. Comparison of Different Normalization
Methods over CLEF-IP 2010 using IEC method

metric MinMax HIS MinMax-HIS
MAP 0.1312 0.1358 0.1434
recall 0.6534 0.6553 0.6598
PRES 0.5490 0.5525 0.5560

8. CONCLUSION AND FUTURE WORK

In this article, we presented a unified framework for query expansion which incorpo-
rates bibliographic information, IPC classifications, and temporal features to improve
the initial query built from the query patent. We used the link-based structure of
the citation graph together with the term distribution of cited documents and built a
query model from the citation graph. We used the publication dates associated with the
patents to adapt our query model to the change of vocabulary over time. The results
showed the advantage of using the term distribution of the cited documents together
with the publication dates. In particular, our citation influence analysis using tempo-
ral features improved the precision. It is worth mentioning that the positive effect of
capturing the language change using the temporal query was more visible for patents
belonging to domains such as “Mechanical Engineering” and “Electricity,” while we ob-
served a decrease in precision for topics belonging to the “Chemistry” category. These
findings answered our first research question (RQ1) regarding employing the citation
information for improving query modeling.

We then constructed an IPC lexicon which can be used as an external resource
for query expansion. The IPC lexicon is built using the IPC descriptions available
for each IPC class. Each entry in the conceptual lexicon is composed of a key and
a value. The key is an IPC class and the value is a set of terms representing the
mentioned class. We introduced a query expansion method leveraging the IPC lexicon
by extracting expansion terms related to IPC classes of a given query document. We
observed that the distance of expansion terms from query terms is a good indicator of
the importance of expansion terms. We also noticed that the query expansion method
using IPC lexicon has a recall enhancing effect. These observations provided answer
to our second research question (RQ2).

We evaluated our proposed method using two patent datasets, namely, CLEF-IP
2010 and CLEF-IP 2011. The IEC query formulation method achieved similar perfor-
mance as the state-of-the-art methods on CLEF-IP 2010 and was able to improve over
the official best results of CLEF-IP 2011. We answered our third research question
(RQ3) based on the evaluations performed over CLEF-IP datasets.

As a future direction, it would be interesting to capture the vocabulary change in
domains such as “Chemistry,” for which the proposed approach was not successful. One
possible solution is to build different temporal query models, representing the language
usage of different time intervals, in order to capture the gradual language change in a
domain.
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