Università della Svizzera italiana Faculty of Informatics

Query Driven Mining of Citation Networks for Patent Citation Retrieval and Recommendation

Parvaz Mahdabi †‡ Fabio Crestani †

University of Lugano, Switzerland † Idiap Research Institute, Martigny, Switzerland ‡

CIKM 2014

Patent Document

- Patent classifications
- Inventor information
- Title
- Abstract
- Description
- Claims

Hierarchical Structure of IPC classes H ELECTRICITY

H03 BASIC ELECTRONIC CIRCUITRY

H03B GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS ...

> Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature

H03B 5/04

Patent Retrieval Versus Standard Information Retrieval

Web Search

Prior-art Search

Challenges of Prior-art Search

- A full patent application instead of a keyword query
- Term mismatch
 - Non-standardized acronyms: invented by authors
 - Homonyms: bus (I- motor vehicle, 2- within a computer system)
 - Synonyms: signal and wave
- Incorporating different relevance evidences that come together with a patent application

Research Questions

- How can we distinguish relevant docs from non-relevant docs
 - using the contextual similarity information diffused over the patent citation network
- Can this information be leveraged for formulating a better query?

Hypothesis

 Term distribution of influential documents in the citation graph might help to mitigate the term mismatch between the query and the relevant documents

Related Work

- Textual and categorical similarity
 - Lopez and Romary (CLEF 2010)
 - Magdy and Jones (CLEF 2010)
 - D'hondt et. al (CLEF 2011)
 - Bashir and Rauber (ECIR 2010)
 - Mahdabi et. al (SIGIR 2012, SIGIR 2013)

- Citation Network Analysis
 - Fujii (SIGIR 2007)
- Network analysis derived from interacting companies and inventors
 - Yang et. al (CIKM 2011)
 - Tang et. al (SIGKDD 2012)
 - Wu et. al (WSDM 2013)
- Temporal Citation Analysis
 - Wang et. al (CIKM 2014)
 - Zhang et. al (CIKM 2014)

Building the Network

- Given a query patent, we retrieve an initial rank list using lexical similarity (root set)
- All documents that cite or are cited by a document in the root set are collected (base set)
- Used EPO web service to extract citation information

Problem Definition

- Directed weighted graph G = (V, E)
- V is a set of |V| = N patent documents
- A set of citation relationships between patent documents $E \in V \times V$
- A set of attributes associated to a patent (applicant, inventor, conceptual tags)

$$X = \{x_1, x_2, \dots, x_N\}$$

• Goal: suggest a ranked list of citations for a patent based on its content and attributes

Initial Query Model

 Estimate a query by quantifying the difference between the language model of the query document and the language model of the collection (the cross entropy)

Outline

- Introduction and challenges
- Related work and definitions
- Building the network
- Time aware network analysis
- Reranking and query expansion
- Experimental results
- Conclusions

 The initial probability is exponentially discounted according to the age of the node

$$\rho_i = e^{\frac{-\text{age}}{\tau_d}}$$

• Compensating for the bias of the page rank algorithm against recent documents

Weights for Citation Relationships

- Number of common classification codes
- Number of common inventors
- Number of common applicants
- Lexical similarity (cosine similarity)
- Difference of the publication date
- Combination of different weights

Weighted PageRank

$$PR - W(u) = \lambda \cdot \frac{O_u}{\sum_{p \in L_v} O_p} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{L_v}$$

Re-ranking and Query Expansion

- Identify and weigh terms in influential documents belonging to the citation graph
- Use weighted page rank values as document prior to guide term selection

$$P(t|Q_{cit}) = Z_t \sum_{D \in \mathcal{O}} P(t|D)P(D)$$

Interpolate citation query model with initial query model

Experimental Settings

- Dataset
 - two patent collections: CLEF-IP 2010 and CLEF-IP 2011 (relevance judgement: citations)
 - size of each collection: 1.3 million patents
- Evaluation metric
 - PRES: designed for recall-oriented application
- Baseline
 - second best participant of the CLEF-IP 2010 (no bias favoring applicant's initial citation list**)

* Magdy and Jones: SIGIR 2010 ** Magdy, Lopez and Jones: ECIR 2010

Results on CLEF-IP 2010

AQE-TPR: after QE - weighted temporal PR

Results on CLEF-IP 2010

AQE-TPR: after QE - weighted temporal PR

Results on CLEF-IP 2010

Results on Different Technological fields

MAP @ 1000

- A: Human necessities
- B: Performing operations and transporting
- C: Chemistry and Metallurgy
- **D:** Textiles and Papers
- E: Fixed Constructions
- F: Mechanical Engineering
- G: Physics
- H: Electricity

Results on Different Technological fields

MAP @ 1000

- A: Human necessities
- B: Performing operations and transporting
- C: Chemistry and Metallurgy
- **D:** Textiles and Papers
- E: Fixed Constructions
- F: Mechanical Engineering
- G: Physics
- H: Electricity

AQE-PR

Results on Different Technological fields

MAP @ 1000

- A: Human necessities
- B: Performing operations and transporting
- C: Chemistry and Metallurgy
- **D:** Textiles and Papers
- E: Fixed Constructions
- F: Mechanical Engineering
- G: Physics
- H: Electricity

AQE-PR

Conclusions

- Built a directed weighted graph of citations, encoding contextual similarities as edge weights: common IPC classes, applicants and inventors and temporal distance
- Found influential documents using time aware weighted page rank on the citation network
- Candidate documents are used to draw terms for query expansion
- Lexical and categorical similarities work best for recall, temporal information improves the MAP

Università della Svizzera italiana Faculty of Informatics

Query Driven Mining of Citation Networks for Patent Citation Retrieval and Recommendation

Parvaz Mahdabi +‡ Fabio Crestani +

University of Lugano, Switzerland † Idiap Research Institute, Martigny, Switzerland ‡

CIKM 2014