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Abstract

Dialogue move recognition is cited as being representative of a class
of problem which may be of concern in data driven natural language
processing. The dialogue move recognition problem is formulated as a
keyword-based topic identification problem, and is shown to be
sensitive to the issue of unknown vocabulary. A model based on the
multiple Poisson distribution is shown to alleviate the unknown
vocabulary issue, subject to the assumption that the occurrence of
keywords represents a small fraction of the data. A keyword selection
strategy is derived to ensure this assumption is valid. It is shown that
a modified version of Zipf’s law provides a suitable prior probability
distribution for keywords, and that its inclusion increases
classification performance.  Crown Copyright 1997

1. Introduction

A Spoken Language Understanding (SLU) system can be thought of as consisting of
several different parts; signal processing, a speech recognizer, a language model and
finally a natural language or dialogue management module. Generally speaking, current
approaches to natural language processing (NLP) tend to be very hand crafted, requiring
large amounts of prior knowledge about the structure of language. In stark contrast
to this, current speech recognition technology is almost completely data driven. The
hypothesis is that SLU technology could be improved by extending the use of data
driven methods beyond the speech recognizer into the NLP and dialogue modules.

Several authors have made some progress in this area for specific applications: In
the ATIS domain (Cohen, 1995), Schwartz, Miller, Stallard & Makhoul (1996) have
developed a model they call a Hidden Understanding Model with the appealing
symmetry of modelling higher order semantic features in a similar manner to the way
the acoustic features are modelled. Pieraccini and Levin (1995) have developed a system
called CHRONUS (Conceptual Hidden Representation Of Natural Unconstrained
Speech), which also uses Markovian models to describe semantic meaning. The work
of Gorin (1995) is also highly relevant. Several laboratories are also working on data
driven dialogue modules for the VERBMOBIL project: Reithinger and Maier (1995)
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describe a statistical dialogue model for predicting dialogue events, and Schmitz and
Quantz (1996) show that knowledge of dialogue acts is necessary in a translation
system.

This work is concerned with methods that may be useful in a data driven SLU
scenario, without necessarily defining the scenario. Dialogue act recognition provides
a convenient test-bed for such methods. The particular database we use is the HCRC
map task corpus (Andersen et al., 1991), which has been annotated at the dialogue
move level. Dialogue moves are discussed by Kowtko, Isard & Doherty (1993). The
basis of dialogue moves is that when two people engage in a conversation they play a
series of games, with constituent moves, in order to impart some piece of information.
In the particular case of the map task corpus, 12 distinct moves have been identified;
many more are identified in the VERBMOBIL project (Jekat et al., 1995).

Dialogue move recognition involves classification of an input utterance, be it acoustic
or text (in this paper only text is considered), into one of M categories, and in this
sense the problem is identical to that of topic identification. In its simplest form, topic
identification is a two class problem, where the classes are referred to as “wanted” and
“unwanted”. The input can be the word level output of a speech recognizer (Carey &
Parris, 1995), or acoustic features (Nowell & Moore, 1995). Recently, with the advent
of the Switchboard corpus, the problem has been extended to the multi class domain
(e.g. McDonough, Ng, Jeanrenaud, Gish & Rohlicek, 1994).

The purpose of this paper is to formalize the theory used for topic identification in
the case of a closed set of M classes such that it can be applied to dialogue move
recognition in a robust manner. The utility of the theory is demonstrated by applying
it to the problem of dialogue move recognition on the map task corpus.

2. Probabilistic formulation of topic identification

2.1. Relationship with language modelling

Given an observation, x, typically representing a sequence of words of a particular
category, the problem is to infer the category from which it was sampled, also given
some labelled training data, D. Formally, the category is a sample m from the set M=
{m1, m2, . . . , mM}, and the solution is to assign x to the value of m resulting from

max
i

P(m=mi |x, D).

This expression can be “inverted” via Bayes’ theorem to yield

P(m=mi |x, D)=
P(x |m=mi, D)P(m=mi |D)

;M
i=1 P(x |m=mi, D)P(m=mi |D)

(1)

∝P(x |m=mi, D)P(m=mi |D).

Notice that P(x |m=mi, D) is a class dependent language model (LM); this can be made
more clear by considering the speech recognition problem. In a speech recognizer, one
is presented with an acoustic representation, a, of a sequence of words to be recognized
(an utterance). A probability, P(w |a, D), must be attached to a hypothesized sequence,
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M I. Loss matrix in topic identification

Unwanted Wanted

Treat as unwanted LUU (OK) LWU (False reject)
Treat as wanted LUW (False accept) LWW (OK)

w, of words which could have generated a originally. This probability can again be
expanded using Bayes’ rule:

P(w |a, D)∝P(a |w, D)P(w |D),

the final term being the (class independent) LM. Substituting x for w, and conditioning
the LM term on some class highlights the similarity. Topic identification, then, can be
thought of as discriminative language modelling.

2.2. The two class case

The two class case is worthy of particular mention as it is traditionally formulated
from a decision theoretic point of view: Bayesian decision theory requires utility to be
attached to combinations of classifications and actions, that is, define a loss matrix L
with elements Lij being some notional loss associated with performing action j when x
belongs to class i (see Matrix I). If j=W denotes “treat as wanted”, (for instance, have
an operator listen to a report), and j=U denotes “treat as unwanted” (for instance,
ignore the report) then LWU is the loss associated with treating x as unwanted when it
is actually wanted. For the time being, if M is redefined as M={W, U}; the expected
loss when assigning x to class W is then

LW=LWWP(m=W |x, D)+LUWP(m=U |x, D)

=LWW
P(x |W, D)P(W |D)

P(x |D)
+LUW

P(x |U, D)P(U |D)
P(x |D)

and similarly for LU. For readability, P(m=W ) has been abbreviated to P(W ), and
similarly for P(U).

To minimize expected loss when there are only two classes, it follows that a decision
rule is to classify x as W if and only if

LWW
P(x |W, D)P(W |D)

P(x |D)
+LUW

P(x |U, D)P(U |D)
P(x |D)

<LWU
P(x |W, D)P(W |D)

P(x |D)
+LUU

P(x |U, D)P(U |D)
P(x |D)

,

or more simply:

(LUW−LUU)P(x |U, D)P(U |D)<(LWU−LWW)P(x |W, D)P(W |D).
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It is generally assumed that the loss due to an incorrect classification is greater than
that due to a correct classification, that is Lij>Lii, in which case the above expression
reduces to:

P(x |W, D)
P(x |U, D)

>
P(U |D)
P(W |D)

·
(LUW−LUU)
(LWU−LWW)

. (2)

In a real application, the L terms would be set by someone with some knowledge of
the application, and the probabilities on the right hand side (the priors) would be
inferred from the data. For evaluation purposes, however, the L terms are not known
and the data is often weighted in favour of the wanted category, so the true prior is
unknown; the whole right hand side is generally replaced by a single parameter, k,
which is varied over its range to produce a receiver operating characteristic (ROC)
curve.

2.3. The multi-class case

The theory in the previous section assumes two classes, and hence can result in a single
discrimination metric. Dialogue move recognition is a multi-class problem, and can be
thought of as multi-class topic identification. It is tempting to try to use the likelihood
ratio as a metric for discrimination of the classes, but alas, for more than two classes,
an inequality cannot be formed with a single class on either side.

In the case where one of the classes corresponds to “none of the above”, i.e. a babble
topic, topic identification can be formulated as M – 1 two class problems. These can
be solved with likelihood ratios and combined into a single ROC curve. Dialogue move
recognition however, clearly, corresponds to a “closed set” topic identification problem.
Furthermore, in topic identification, one is generally interested in whether the subject
is topic or non-topic, and it is correct, and useful, to attach utility at this point. If a
car driver wishes to listen to traffic information, it is perfectly reasonable to attach a
large loss to missing a report. In dialogue move recognition, however, the dialogue
move is not the highest level question in the chain; that might be “Put me through to
someone to complain to”, in which case a large loss can be attached to being put
through to the wrong telephone extension.

The move recognition can be thought of as being much deeper in the chain, and
there is no way a utility can be justified in this problem other than to assign zero loss
to a correct classification and equal loss to all possible misclassifications. This is the
same as maximizing the likelihood of the move (class). The correct output of the move
recognizer is simply a probability for each move, which can be interpreted by the next
stage.

Without attaching utility to the various classifications, the correct strategy is to
choose the class which maximizes the probability of the class, P(m=mi |x, D), i.e. to
go back to Equation (1).

3. Calculation of probabilities

3.1. Standard maximum likelihood multinomial approach

Equation (1) requires the calculation of two probabilities: the likelihood of the particular
class occurring, P(m=mi |D), and the likelihood that the observation was generated by
the model for that class, P(x |m=mi, D).
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The easiest term to calculate is the prior, P(m=mi |D). Note that it is a prior in the
sense that it is prior to seeing the observation, x; it is still posterior to the data, D. It
simply says “What’s the probability that a particular class occurs”. Making the
simplification that each class is independent of all previous classes, the intuitive thing
to do is to divide the number of times class mi occurred in the data by the total number
of observations in the data.

The probability, P(x |m=mi, D) is more involved. For the purpose of this paper,
assume that the constituent features of x are words, generated by repeatedly sampling
a variable w vW, where W={w1, w2, . . . , ww}. This model is a unigram language
model.

The general approach in the literature is to express the likelihood term as the joint
probability of the constituent features of x.

P(x |m=mi, D)=P(w=w1, w=w2, . . . , w=wK |m=mi, D), (3)

where P(w=wk) in this context is taken to mean the probability that w takes the value
of the kth word in x. Given the independence assumption between words, Equation
(3) can be expressed as

P(x |mi, D)=P(w1, w2, . . . , wK |m=mi, D)

=P(w1 |mi, D)P(w2 |mi, D) · · · P(wK |mi, D),

the notation abbreviated slightly.
Taking “given the move type and the data” to mean “consider only the data that is

of that move type”, it is now possible to work out these probabilities. The intuitive
method is simply to use the same method as the prior: P(wk |mi, D) can be estimated
by taking the number of times that word wk occurred in the data of move type mi, and
dividing by the total number of words in all moves of that type.

3.2. An experiment

The HCRC map task corpus (Andersen et al., 1991) has been annotated at the dialogue
move level; there are 12 move types in all. The corpus was split into a training and
testing set such that no map featured in both sets; in this way, the discrimination could
be attributed to the semantic qualities of the text, not the map features.

The training data were used to calculate probabilities as described in the previous
section, and these were used to classify the utterances (observations) of the testing data.
A confusion matrix is shown in Matrix II.

The horizontal axis represents classification bins, the vertical is the actual class of
the utterances. All axes are totalled, so as an example, there were 2459 “Acknowledge”
moves in the testing data, 1795 of which were correctly classified. In total 2687 moves
were classified as “Acknowledge”.

The classification accuracy is just over 47%; Kowtko et al. (1993) state that 70–80%
of the moves can be correctly identified by a human (though using context too). The
model accuracy is believable given that the model has independence assumptions in
the move sequence and in the word sequence.
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Assuming the test set accuracy is binomially distributed (Bedworth, 1992), the 95%
confidence limits for 10 265 independent testing samples are around ±1%.

The matrix as a whole is reasonably distributed, with large values on the leading
diagonal, and smaller values off it. There is a tendency, however, for a lot of utterances
to be classified as “Ready”. The “Ready” move is generally played at the start of the
conversation, and consists of words like “right” and “okay”. Given that “Acknowledge”
also consists of exactly the same words, but is far more frequent, one would expect all
the “Ready” moves to actually be classified as “Acknowledge”. It is hypothesized in
the next section that this is a symptom of the unknown word or out of vocabulary
(OOV) problem.

3.3. The unknown word problem

When a new utterance is to be classified, a probability must be attached to each word
in that utterance. For instance, if the utterance Go to the left is to be classified, the
probability of each of the words must be evaluated for each of the classes. In a move
such as “Instruct”, which is both frequent and has a “rich” language model, most of
the words go, to, the, and left are likely to have occurred in the training data, and will
be given finite probabilities. In a move such as “Clarify”, however, the language model
is still rich but the move itself does not occur very often; in such a case, one or more
of the words in the utterance to be classified may not have occurred in the training
data.

Following the intuitive method, the probability of an unknown word is zero, so the
probability of the utterance is zero; the utterance clearly happened, so the model is
wrong. In fact, intuition can be updated: it is clear that unknown words will occur,
and that their probability ought to be non-zero and will probably be less than that of
the least frequent word in that category. The least frequent word that did occur will
have occurred once, and a common strategy (e.g. Nowell and Moore, 1995) is to count
unknown words as having occurred 0·5 times (some justification for this is hinted at
in section 3.4); this is how the confusion matrix in Matrix I was generated.

This ad hoc approach to unknown words explains the bias towards “Ready”: “Ready”
is the least frequent move, so the probability attached to an unknown word would be
0·5 divided by some small number being the number of words in that move type in the
data. Compare this with a move like “Instruct”, where the unknown word probability
is 0·5 divided by a much larger number, due to the rich and frequent nature of that
move type. Now imagine that a completely new word occurs in the utterance to be
classified: a new map feature, or a nuance of a new talker. The new word will be given
a much larger probability by the least frequent class.

3.4. Dice throwing

The OOV phenomenon is one of the main problems in language modelling, and there
is a large amount of literature on the subject. In general, the solution is to apply a
statistical smoothing function to the word probabilities, although this can involve a
lengthy cross-validation procedure to determine parameters; a recent reference is Ney,
Essen and Kneser (1995). The following sections show that for the task of discrimination,
a mathematically more attractive approach is available.

When one calculates a probability by dividing the number of occurrences of interest
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by the total number of occurrences, one is implicitly assuming a dice throwing model.
Statistically, the problem is the same as that of coin tossing or drawing coloured balls
from an urn and replacing them. If the number of occurrences of interest is represented
by n and the total number of occurrences by N, then n/N is the maximum likelihood
(ML) estimate of the true probability. ML estimates traditionally get more accurate as
n and N get large, and fall over completely as n tends to zero.

With small databases, especially cases where n is ever close to zero, it becomes
necessary to incorporate prior knowledge in some way. This is traditionally done in
classical statistics by assuming some distribution and smoothing the observations to
that distribution. In Bayesian statistics, the prior knowledge can be incorporated
explicitly, although quantifying prior knowledge is often a problem in itself.

It is instructive to consider the Bayesian formulation of the dice throwing model.
Formally, such a model is a multinomial distribution. Appendix A details a Bayesian
analysis of this formulation using a flat prior (that is, all combinations of bias are
initially estimated to have equal probability), and proves that the result can be applied
by replacing the n/N estimate with

n+1
N+W

,

where W is the total number of possible outcomes (2 for a coin, 6 for a die).
Whilst there is little justification for using a flat prior, this result is useful in that it

highlights a fundamental problem: in language modelling, W is the total vocabulary of
the task in question. It can be thought of as the total vocabulary of all the speakers
who took part in the task. W cannot possibly be known; a study by Efron and Thisted
(1976), on estimating Shakespeare’s vocabulary simply proved that it depends strongly
on initial assumptions. The problem has also been tackled by Fisher, Corbet and
Williams (1943), Goodman (1949), Good and Toulmin (1956) and McNeil (1973). W
however, is clearly large, and suggests that all probabilities calculated by the simple
maximum likelihood model will be grossly overestimated.

Note that in the Bayesian “estimate”, the probability when n=0 is half that when
n=1, which justifies in part the n=0·5 estimate in the maximum likelihood case.

3.5. The multinominal distribution and topic identification

In fact, the multinominal distribution has other problems when applied to topic
identification. Without breaking the sentence down into constituent features, the two
class discrimination metric is to classify x as wanted if and only if

log AP(x |W)
P(x |U)B>k.

Where k represents the product of the prior ratio and the loss function ratio of
Equation (2). The logarithm is generally used for practical convenience. If the words
in x are considered to be independent, P(x) can be broken down into the product of
the word likelihoods, and the classfication rule becomes
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]
K

i=1

ni log AP(wi |W)
P(wi |U)B>k (4)

where wi represents the ith word in x, and x is K words in length. This equation is
often referred to as “accumulated usefulness”.

For the purpose of topic identification, it is clear that only discriminative words need
be considered, and these words are termed keywords. The keywords are immediately
apparent, being those that result in extreme values of the likelihood ratio. In conventional
topic identification, the assumption is made that it is only necessary to compute
probabilities for these discriminative words, simply ignoring the others. In fact, it is
the probability of the whole utterance that is required.

A more subtle, but very important failure of the multinomial distribution in keyword
identification is best demonstrated by example. Consider the problem of spotting
weather reports in radio broadcasts. Words that maximize the likelihood ratio are likely
to be rain, snow, north and south, whilst words that minimize it might be minister,
stockmarket and Ambridge. Which class does the cat sat on the mat belong in? The
purely keyword-based accumulated usefulness equation falls down here, having no
evidence whatsoever to make a decision upon. The proper language modelling solution
uses default probabilities for unknown words, but these probabilities will be higher for
the least frequent class, hence favouring weather forecast given a properly representative
database.

What should be acknowledged here is the absence of keywords. The multinomial
model correctly applied does this by noticing the presence of other words that are not
keywords, but it cannot do this correctly as it does not know the vocabulary. What is
needed is a model that explicitly acknowledges zero occurrences of something, whilst
ignoring words that it has no knowledge of.

4. Removing the unknown vocabulary problem

4.1. The multiple Poisson distribution

The Poisson distribution was originally derived as an approximation to the binomial
distribution. The following brief derivation shows how the multiple Poisson distribution
can be derived from the multinomial distribution.

If qi is defined to be the underlying probability of the event w=wi, then the multinomial
distribution is

P(n |q)=
N!

n1!n2! · · · nW!
qn1

1 qn2
2 · · · qnW

W .

where q is the vector (q1, q2, . . . , qW), and n is the vector (n1, n2, . . . , nW). The sum of
the components of q is constrained to be unity.

Making the substitution ki=Nqi, and replacing qW with the sum to unity constraint,



284 P. N. Garner

P(n |k)=
N!

n1!n2! · · · nW! Ak1

NB
n1

Ak2

NB
n2

· · · AkW−1

N B
nW−1

×A1−k1

N
−

k2

N
− · · ·−

kW−1

N B
nW

.

rearranging yields

P(n |k)=
kn1

1 kn2
2 · · · knW−1

W−1

n1!n2! · · · nW–1!
N(N−1)(N−2) · · · (nW+1)

NN−nW

×A1−k1+k2+· · ·+kW−1

N B
nW

.

it can be shown that as n)∞

A1−x
nB

n

)e−x,

so the limiting case turns out to be

P(n |k)=
kn1

1 kn1
2 · · · knW−1

W−1

n1!n2! · · · nW−1!
e−k1−k2−· · ·−kW−1,

where n does not contain nW, and k is the obvious thing. Note that kW and nW have
disappeared. This is just the product of W−1 independent Poisson distributions—the
multiple Poisson distribution. The approximation is valid if N is large and nW is also
large compared to the sum of the other n.

In fact, the key point here is that qW does not exist in the Poisson distribution. In
the multinomial case there is a certain amount of redundancy in that a d dimensional
multinomial actually has the constraint that all the d probabilities add to one; it is
actually a d−1 dimensional distribution. The redundancy in the p terms is mirrored in
the n terms, in that if the sum of the n (N) is known, one of the n is consequently
redundant. The Poisson distribution ties down N to a fixed (infinite) value, so nW is
redundant. In turn, this is mirrored in the k terms.

The fact that one term disappears is useful, for example: in a keyword based system,
all of the non-keywords can be grouped together and referred to as a single word, the
unknown word. If it is this unknown word that is dropped in the above derivation,
the result is an expression that is independent of unknown words. Given that all
unknown words are grouped together, regardless of how many there are, the result is
also vocabulary independent. Re-interpreting the approximations in the derivation, the
multiple Poisson distribution is valid for a large training database where the number
of occurrences of keywords is small.
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Figure 1. The Zipf plot and how to modify it to relate to probability.

The multiple Poisson is clearly the better method to use if the approximations in its
derivation are valid. This distribution has two clear advantages prior to running an
experiment:

(1) The absence of a word has a finite probability, that is, if any or all of the test
observation word frequencies are zero then P(x |D) is finite. This means the
absence of keywords can be penalized.

(2) There is a default probability for unknown words, that is, if any or all of the
training word frequencies are zero then P(x |D) is still non-zero.

5. Prior information

5.1. Zipf’s law

The parameters of the Poisson distribution are unknown, but information about them
is available via the training data. Classically, the training data would be used to estimate
the values of these parameters in a maximum likelihood sense. In more recent years
the Bayesian approach has found favour, resulting in either integrating out the unknown
parameters or calculating a Maximum a posteriori (MAP) estimate. Practically, the
two approaches tend to produce similar results in the absence of prior information; in
this case though, prior information exists in the form of Zipf’s law (Zipf, 1935).

Zipf’s law itself is an empirical law relating frequencies of words. If a graph is plotted
of frequency as ordinate, and the words rank ordered on the abscissa, that is, the most
frequent word on the left and the least frequent on the right, the points will form a
smooth curve with approximately reciprocal square root form; the actual analytical
form is discussed by McNeil (1973). Further, this law will hold no matter which
database is used.

Such a graph is not very useful in that form, but integrating up the vertical axis
produces a graph which, suitably normalized, can be interpreted as “Probability of
Frequency”, which in turn is the prior on the k terms in the Poisson distribution. This
is illustrated in Fig. 1, where the graph on the left is a traditional Zipf plot, and the
one on the right is modified as described.

The graph on the right of Fig. 1 can be estimated with a histogram from a large
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Figure 2. Modified Zipf plot for various data sources; Map task (+), King
James Bible (×), Wall Street Journal (∗).

dataset, and this is depicted in Fig. 2. The plots refer to the 35 million word ARPA
Wall Street Journal corpus, the King James version of the Bible (less than 1 million
words), and the entire HCRC map task corpus (less than 200 000 words). Three things
are apparent from this plot:

(1) All the plots are straight lines with (approximately) the same gradient on log–log
axes. If the gradients are indeed the same, then Zipf’s law holds, and one dataset
can be used as a prior for another.

(2) The smaller data sets have higher tails (the right hand end in this case). This is
a well known effect, and suggests that the large dataset is a better approximation
to the true distribution.

(3) The fact that they are straight lines on a double logarithmic scale implies that
the real curve is of the form y=Axm, where A is some normalizing term and m
is the gradient of the line.

Note that the map task plot is only shown for reference. The information in the
plots is supposed to be prior information, and looking at any of the map task data is
cheating, never mind looking at all of it.



287Topic identification and dialogue move recognition

1

1e+08

1e–06
1e–08

Normalized frequency

P
ro

ba
bi

li
ty

 o
f 

fr
eq

u
en

cy

1e–05

0.01

1e+06

10 000

100

1

0.0001

1e–07 1e–06 0.0001 0.001 0.01 0.1

Figure 3. Various fits to the Wall Street Journal data; Wall Street Journal (+),
Gamma 1 (– – –), Gamma 2 (- - -), Line Fit (· · ·).

5.2. Parameterization of prior information

To be useful as a prior distribution, some convenient parameterized form must be made
to fit the Zipf plot. The gamma distribution, defined as

P(k |a, b)=
ba

C(a)
ka−1e−bk,

has an xm term, so it ought to be possible to fit a gamma distribution to this database.
Fig. 3 illustrates this. The line labelled “Gamma 1” is a gamma distribution with
parameters a=0.1 and b=0; “Gamma 2” is the same with b=10. Shrinking a any
more has the effect of moving the whole line downwards.

There is clearly nothing to be gained from setting b to be anything other than 0;
even a value of 10 introduces more curvature than can be justified. Setting a to some
small value may clearly be of benefit though.

A gamma distribution has the advantage of mathematical convenience, being a
conjugate prior for a Poisson distribution. Rather than insisting on conjugacy and
going out of the way to make a gamma distribution fit the prior information, it ought
to be possible to find a distribution that fits the prior information, but is not necessarily
conjugate. In Fig. 3, it is clear that the line labelled “Line fit” fits the data much better
than the gamma distributions. This is simply the line y=Ax−1·7, where A was chosen
to make the line go through the data rather than above or below it.
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The gamma distribution is not proper (does not integrate to 1) if the a term falls
below −1, so the line fit is out of the range of the gamma distribution. It is possible,
however, to alter y y x−1·7 such that it is proper by moving the whole graph to the
left by an amount d such that it actually crosses the y axis. This is equivalent to
modelling the prior as

P(x)∝(x+d)−c,

where c is the (negative) gradient of the line on double logarithmic axes and d is some
small number. The value of d can be obtained by evaluating the normalizing constant

P(x)=
c−1
d1−c (x+d)−c,

and fitting to the histogram. In fact, d controls the general “height” of the line on the
graph.

Appendix B shows that assuming a Poisson model, where the parameters follow a
gamma distribution, yields the probability of a sequence of words to be

P(x |D)=\
V

i−1

C(xi+ni+a)
C(ni+a)

(D+b)ni+a

(D+b+K)xi+ni+a , (5)

where x={x1, x2, . . . , xK}, xk is the number of times word wk occurred in the observation,
ni is the number of times word wi occurred in the data, D, and D is the total number
of words in D. In practice, all of these terms are conditioned on the class too. Note
that the definition of x has been slightly overloaded here to refer to a vector of word
counts.

Matrix III shows a confusion matrix for the data with the prior set from line “Gamma
1” in Fig. 3 (a=0·1, b=0). Note that only one move is now categorized as “Ready”,
as was the problem with the ML multinomial. There is no category that scoops up all
the unclear observations either. As a result, the overall accuracy is higher than that for
the ML multinomial.

Appendix C proves that the equivalent of Equation (5) for a “log–linear” prior is

P(x |D)=\
V

i=1

(xi+ni)!
ni!

U(c, c−xi−ni, (D+K)d)
U(c, c−ni, Dd)

D1+ni−c

(D+K)1+xi+ni−c , (6)

where U(a, b, z) is Kummer’s confluent hypergeometric function sometimes known as
W(a; b; z).

Matrix IV shows a confusion matrix for the “log–linear” prior. The classification
accuracy is a little less than for a gamma prior, but within the 95% confidence limits.
There is a slight bias towards classifying moves as “Ready”, and this is detrimental
(more wrongly than correctly classified). On the whole, though, no clear conclusions
can be drawn about the relative benefits of the two priors.

In the case of the multinomial, it was clear how to assign a “flat” prior to the
distribution by simply setting all the hyperparameters to 1. In this case, however, a flat
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prior is less clear cut. By inspection, the gamma distribution can be made flat by setting
a=1 and b=0. This prior essentially says that all the ki have an equal probability of
lying anywhere from zero to infinity. This is plainly riduculous; even if all the ki were
1, then each observation on average would be expected to contain the entire vocabulary
of the task.

Matrix V shows a confusion matrix for classification using a “flat” gamma prior and
probabilities calculated using Equation (5). Considering the prior, the results are
remarkably good.

A flat prior is a mathematical convenience, though. A prior should either be non-
informative or represent real prior information. The next section shows that the addition
of Zipf’s law can be even more beneficial when training data is scarce.

6. Evaluation

In order to evaluate the different methods of assigning probabilities to observations of
sequences of words, classification experiments were performed on various amounts of
training data. Of the original 64 dialogues in the training set, 10 were used as a “burn
in” set to ensure that at least some data from each move type was present. Classifications
were then performed, adding another dialogue to the training data each time.

The hypothesis was that the approaches using prior information should perform
better than those without for small amounts of training data. In addition, the use of a
log–linear prior should improve on the conjugate gamma prior.

Figure 4 shows the classification performance for the various methods for the range
of training data sizes used. The behaviour is broadly as predicted: all of the Poisson
based measures outperform the standard multinomial, and the inclusion of prior
information increases performance for small amounts of training data.

The log–linear prior does not perform as well as expected, though. In fact, the gamma
prior is consistently better. The reason for this is most likely to be that the log–linear
fit is only a somewhat ad hoc attempt to fit the Zipf plot. Whilst it fits the visible part
of the plot, there is no reason to believe that it fits the unseen part to the extreme left.
In fact, the log–linear curve bends downwards to cross the axis in this region, and the
unseen plot is unlikely to do this. In turn, it is this region which is most important
from the point of view of reverting to prior information because it contains the unknown
words. The gamma distribution has two advantages here: it does not actually cross the
axis, and for larger amounts of data it does not dictate a particular functional form,
i.e., the functional form with a gamma prior is the same as for a flat prior.

The evaluation as shown is somewhat biased in that certain moves (notably “Acknow-
ledge”) are very easy to classify, and are very prevalent. A more objective evaluation
should use a test set with equal probability of occurrence of any particular move. This
is reflected in Fig. 5: A test set was constructed by randomly sampling 100 observations
of each type of move from the original test set, and this knowledge was reflected by
ignoring P(mi |D). The effect of this is to increase “performance resolution”. The overall
performance is lower reflecting the lower frequency of easy to classify moves, but the
curves are now separated, emphasizing the importance of prior information. The 95%
confidence limits on the classification rate for this smaller test set are around ±3%.

In the latter figure, the curves for the two informative priors are coincident for a
while, but separate when there is a large amount of data, although they still lie within
each other’s 95% confidence limits. It can be concluded at this stage that there is
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Figure 4. Classification performance vs. amount of training data for the four
different probability measures. ML multinomial (+), Poisson, flat prior (×),
Poisson, gamma prior (∗), Poisson, log–linear prior (Φ).

nothing to be gained from using the log–linear prior, especially since the functional
form is unnecessarily complicated.

7. Pruning the vocabulary—keyword identification

7.1. Discussion

In the preceding sections, no attempt has been made to choose those words that are
discriminative. The vocabulary size has been defined as the complete vocabulary of the
training data. In fact, it is clear that some words will have a much greater discriminative
effect than others, and even that some words will have no discriminative effect at all.
Further, the multiple Poisson approximation to the multinomial becomes more valid
as the combined rate of occurrence of vocabulary words decreases. Pruning the
vocabulary should therefore increase the performance of the model. One can imagine
some optimal vocabulary that is small enough to allow the Poisson approximation to
be valid, yet large enough to retain discriminability.

In the traditional topic identification scenario, the discriminative words are chosen
as those that maximize the ratio (4), and are referred to as keywords. This ratio is
referred to as usefulness because it identifies those words that are useful. In the multi-
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class case, however, the single ratio does not apply and it is less clear how to attach a
discriminability measure to words.

7.2 A multi-class discriminability measure

The decision rule itself can be used to indicate the measure of discriminability for each
word in the vocabulary: the overall decision rule is to maximize

P(mi |x, D)=
P(x |mi, D)P(mi |D)

P(x |D)

=
P(x |mi, D)P(mi |D)

;M
j=1 P(x |mj, D)P(mj |D)

over all moves in M. This is the same as minimizing the reciprocal, in which case the
summation appears in the numerator and the expression breaks down into a sum of
ratios:
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Pi=
P(x |m1, D)P(m1 |D)
P(x |mi, D)P(mi |D)

+
P(x |m2, D)P(m2 |D)
P(x |mi, D)P(mi |D)

+· · ·+
P(x |mM, D)P(mM |D)
P(x |mi, D)P(mi |D)

,

which consists of easily differentiable parts.
When choosing a feature set, it is desirable to choose features that have maximum

effect upon the decision rule. Consider an observation, x, consisting of a single word
wk. The difference in Pi after obsering x is likely to be proportional to

∂Pi

∂xk Kxk=0

.

where xk is the number of times words wk occured in x. It is natural to use the expectation
of this expression over all words in the vocabulary:

EA∂Pi

∂xkB=]
V

k=1

∂Pi

∂xk

P(wk |mi, D),

and since the problem is multi-class, an expectation can also be taken over classes.

EA∂P∂xkB=]
M

i=1

EA∂Pi

∂xkBP(mi |D).

Interchanging the order of summation, the contribution of a particular word wk to this
expression is

U(wk)=]
M

i=1

∂Pi

∂xk

P(wk |mi, D)P(mi |D).

It follows that, since Pi is to be minimized for a correct classification, words should
be chosen which minimize U(wk).

Consider first the case where the words are assumed to be distributed multinomially.
The probability of a sequence of words x conditioned on the class, in a maximum
likelihood sense, is

P(x |mi)=\
K

k=1

nik

Di

,

where, with a change of notation to allow conditioning on the class, there are nik words
of type wk and Di words in total in class mi of the training set. Differentiating as
prescribed and setting xk=0 results in
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U(wk)=]
M

i=1

nik

Di

ni

N]
M

j=1
jri

nj

ni

log
njkDi

nikDj

,

where there are nj examples of class mj in the training data. In practice, the two ni terms
cancel, and the N is unnecessary.

In the special case of two classes, this expression can be written

U(wk)=−P(m2)P(wk |m1) log
P(wk |m1)
P(wk |m2)

−P(m1)P(wk |m2) log
P(wk |m2)
P(wk |m1)

.

Each of these terms is exactly the same as that given by Parris and Carey (1994),
though from a much more general view, and corresponds to combining features
indicative of the wanted class with features indicative of the unwanted class. For this
reason, the name usefulness is retained. Curiously though, the term corresponding to
class 1 is weighted by the probability of class 2 and vice-versa.

In the case of the Poisson based estimate for word probability, consider one of the
terms of Pi, comparing move j with move i:

\
V

k=1
CC(njk+a+xk)

C(njk+a)

(Dj+b)njk+a

(Dj+b+K)njk+a+xkD nj

N

\
V

k=1
CC(nik+a+xk)

C(nik+a)

(Dj+b)nik+a

(Di+b+K)nik+a+xkD ni

N

,

rearranging yields

\
V

k=1
CC(njk+a+xk)
C(nik+a+xk)

C(nik+a)
C(njk+a)

(Dj+b)njk+a

(Di+b)nik+a

(Di+b+K)nik+a+xk

(Dj+b+K)njk+a+xkD nj

ni

.

Differentiating with respect to a single xk yields the same expression multipled by

log(Di+b+K)−log(Dj+b+K)+w(njk+a+xk)−w(nik+a+xk) ,

where w is the digamma function. Setting all the xk=0 as before, and K=0, the
expression for the usefulness of word wk becomes

U(wk)=]
M

i=1

P(wk |mi)]
M

j=1
jri

nj [log(Di+b)−log(Dj+b)

+w(njk+a)−w(nik+a)] ,
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Figure 6. The effect on the classification rate of pruning the vocabulary; ML
multinomial (+), Poisson, gamma prior (×).

where P(wk |mi) is the probability of an observation consisting of the single word wk.
The usefulness in the Poisson case is essentially the same form as that for the

multinomial (the two logarithm terms can be written as the logarithm of a ratio), with
the addition of the digamma functions. Digamma functions simply relate gamma
functions to their first derivatives. Practically, the expression is more complicated to
compute as the P(wk |mi) term is a product over all keywords, but mathematically the
result is reassuringly simple.

7.3. Evaluation

The 64 dialogues of the same training set as before were used to generate ordered lists
of words for the ML multinomial and Poisson with gamma prior probability measures.
Classification experiments were then performed using all 64 training dialogues and the
same test situations as before, but with various vocabulary sizes. The results for the
full test set are shown in Fig. 6.

Figure 7 shows the same results, but for the equally distributed test set used before.
The features of the Poisson based curve are enhanced in the latter figure.

There is a definite peak in the Poisson curve at 300 keywords which corresponds to
an optimal vocabulary size. To the right of this point, the performance of the multinomial
continues to increase as the unknown vocabulary becomes less of a problem. The
performance of the Poisson based system deteriorates though. One reason for this is
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Figure 7. The effect on the classification rate of pruning the vocabulary for
equal move probability; ML multinomial (+), Poisson, gamma prior (×).

clearly the failing nature of the approximation in the derivation of the multiple Poisson
distribution.

The other reason is that the system is including words which only occurred once in
the training set and are not discriminative. If a word only appears once, it will be
treated as positively discriminative for the move in which it appears. With fewer than
300 keywords both systems deteriorate, and with fewer than 100 words there is simply
not enough information to retain performance.

Results were reported by Garner and Hemsworth (1997), comparing several other
methods of pruning the vocabulary. These results are summarized in Fig. 8, which
shows the effect of pruning the vocabulary for a Poisson based model, using various
pruning strategies. The key labels refer to measures as follows: usefulness is discussed
in this paper, and the line is identical to that in Fig. 6. Mutual information,

I(M; wk)=]
M

i=1

log
P(mi |wk)

P(mi)
P(mi) ,

is the information provided by word wk about the set of moves M. Mutual information
reversed can be thought of as−I(M;wk), and was used because it was not clear whether
to maximize large positive or negative values. Entropy is defined as
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IE(M; wk)=−]
M

i=1

P(mi) log P(mi)+]
M

i=1

P(mi |wk) log P(mi |wk) ,

and represents the increase in entropy of the ensemble M when word wk is observed.
Salience is defined as

S(M; wk)=]
M

i=1

P(mi |wk) log
P(mi |wk)

P(mi)
,

and is used by Gorin (1995) in his language acquisition work. The line labelled
“Random” is simply a random pruning of the vocabulary. It is clear that usefulness
outperforms all other methods considered in this experiment.

8. Conclusions

This paper has outlined a consistent and rigorous approach to keyword-based topic
identification, resulting in a robust enough theory to give good results when applied to
dialogue move recognition. This leads to the practical result that dialogue moves can
be inferred using a unigram language model to an accuracy of around 50%. The
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approach, however, is more important than the actual result. Dialogue move recognition
can clearly be much improved using dialogue context and acoustic intonation: Reithinger,
Engel, Kipp and Klesen (1996) report an accuracy of around 40% predicting 18
intentional dialogue acts from a VERBMOBIL corpus using purely dialogue context,
and Taylor, Shimodaira, Isard and Kowtko (1996) report approximately 55% on the
map task corpus using purely intonation. In a more genuine experiment on a similar
corpus again using intonation (Taylor, King, Isard, Wright and Kowtko, 1997), a move
accuracy of around 39% is reported, which goes up to around 44% when dialogue
history is considered.

In short, it is suggested that the multiple Poisson distribution is a better distribution
with which to model words than a multinomial, since it alleviates the unknown
vocabulary problem. This advantage far outweighs the approximate nature of the
distribution. When the approximation is taken into account and only discriminative
words are chosen, the multiple Poisson distribution performs even better.

Zipf’s law provides a convenient subjective linguistic prior to incorporate into the
posterior probability in a Bayesian sense. Its inclusion further improves performance.

This paper only goes as far as suggesting that there is some optimal vocabulary to
use for a particular task; it does not suggest how to find that vocabulary, other than
the obvious use of a validation set.

An assumption taken throughout is that the word and dialogue move boundaries
are known, which is not the case in the context of, for instance, automatic speech
recognition (ASR). Any extension to ASR would need to acknowledge the uncertain
nature of the transcription, and one possible approach would be the use of lattices.
The probability of a single utterance could then be evaluated as the sum of the
probabilities of the words in each path through a lattice, weighted by the probability
of the path. This, however, remains a subject for future research. The problem of
detection of move boundaries has been addressed by Cettolo and Corazza (1997).
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Appendix A: probability “estimates” from the multinomial

The following proof is by no means new, but is included in an abbreviated form for
reference. For a more complete discussion of the techniques involved, see any text on
Bayesian statistics.

A predictive distribution, P(x |mi, D), is sought, where x is a sequence of words. To
simplify the notation, assume that all of the calculations in this section are conditioned
on m=mi, i.e. P(x |D)oP(x |m=mi, D). Assume that x was generated by repeatedly
sampling a variable w from the set W={w1, w2, . . . , wW}. If there are K words in x,

P(x |D)=P(w=w1, w=w2, . . . , w=wk |D).
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If there are nk words of type k in D, and N words altogether, and the unconditional
probability P(w=wk) of each word is qk, the core problem is to find

P(x |D)=P(x |n, N)=P
1

0

· · ·
W P

1

0

dqP(x |q, n, N)P(q |n, N),

where q={q1, q2, . . . , qW}, and the notation is meant to mean “integrate w.r.t. each
qk”.

With reference to, for instance O’Hagan (1994), applying Bayes’ theorem to the final
term and assuming q follows a Dirichlet distribution, if there are xi words of type wi

in x, then

P(x |D)=P
1

0

· · ·
W P

1

0

dq qx1
1 qx2

2 · · · qxW
W

qn1+a1−1
1 qn2+a2−1

2 · · · qnW+aW−1
W

// dq qn1+a1−1
1 qn2+a2−1

2 · · · qnW+aW−1
W

=
B(n1+a1+x1, n2+a2+x2, . . . , nW+aW+xW)

B(n1+a1, n2+a2, . . . , nW+aW)
,

where B(a, b, . . .) is the multivariate beta function.
It is actually more informative to look at this equation for a specific sequence: the

terms for any word that does not appear in x simply cancel, leaving terms for the
words that do occur, so the probability of the sequence {w1, w1, w2, w2} is

n1+1
N+W

n1+2
N+W+1

n2+1
N+W+2

n2+2
N+W+3

.

A flat prior has been assumed by setting a1=a2=aW=1. Notice that the expression
is equivalent to adding each word of the observation, x, to the data, D, before evaluating
the next word. This effect is sometimes known as Laplace’s rule.

Appendix B: word probabilities from the multiple Poisson

Given an observation x containing xk words of type wk, the probability P(x |D) is
required. This depends upon the parameters of the Poisson distribution and is given
by

P(x |D)=P
x

0

· · ·
V P

x

0

dkP(x |k, D)P(k |D). (B.1)

This integral is actually a lot easier than it looks because the multiple Poisson
distribution is simply the product of V independent Poisson distributions.

An important consideration here is that of “window size”. In the case of the
multinomial, the probability of generating n sets of l words is the same as the probability
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of generating a single set of n×l words. For the multiple Poisson, the concept of
window size is more important, and the two cases are different. One approach would
be to choose a window size natural to the application such as length of observation.
Observations are generally of different length, though, so the approach taken here is
to normalize the window to be one word long, and to treat an observation length l as
l separate observations.

Consider the univariate version of P(k |D): the univariate Poisson distribution is
defined to be

P(n |k)=
kne−k

n!
.

If a sequence of D trials results in observations n={n1, n2, . . . , nD}, then

P(n |k)=
kn1e−k

n1!

kn2e−k

n2!
· · ·

knDe−k

nD!

=
kn1+n2+· · ·+nDe−Dk

n1!n2! · · · nD!

=kne−Dk .

The nk can be either 1 or 0 corresponding to a word either appearing or not appearing,
whereas the n refers to the number of occurrences in the D trials. Using Bayes’ theorem
to obtain the posterior,

P(k |D)=
P(n |k)P(k)

/
x

0
dkP(n |k)P(k)

.

Assuming that P(k) is a gamma distribution, and that the normalizing terms cancel,

P(k |D)=
kne−Dkka−1e−bk

/
x

0
dk kne−Dkka−1e−bk

=
kn+a−1e−(D+b)k

/
x

0
dk kn+a−1e−(D+b)k

=
(D+b)n+a

C(n+a)
kn+a−1e−(D+b)k .

Assuming that all the ki are drawn from the same gamma distribution, the multivariate
case is simply the product of these over all words, that is



304 P. N. Garner

P(k |D)=\
V

i=1

(D+b)ni+a

C(ni+a)
kni+a−1

i e−(D+b)ki .

The likelihood term of (B.1) is simply the raw multivariate Poisson distribution,

P(x |k, D)=P(x |k)=\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B ,

where xik is the number of words of type wi in position k in x, x being K words in
length.

Equation (B.1) can be rearranged and evaluated as V independent integrals thus:

P(x |D)=P
x

0

· · ·
V P

x

0

dk\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B\
V

i=1

(D+b)ni+a

C(ni+a)
kni+a−1

i e−(D+b)ki

=\
V

i=1
C
(D+b)ni+a

C(ni+a) P
x

0

dki\
K

k=1
A
kxik

i e−ki

xik! Bkni+a−1
i e−(D+b)kiD

=\
V

i=1
C
(D+b)ni+a

C(ni+a) \
K

k=1

1
xik! P

x

0

dkik
xi+ni+a−1
i e−(D+K+b)kiD

Since xik is always either 1 or 0, and the integral is now just another gamma integral,
the final form is

P(x |D)=\
V

i=1
CC(xi+ni+a)

C(ni+a)

(D+b)ni+a

(D+b+K)xi+ni+aD .

In practice, this equation simplies in that if VqK, xi will mostly be zero and the
gamma functions cancel. Further, <V ( · )ni+a=( · )N+Va, so the product is only over K

terms.
This distribution is related to the negative binomial distribution. Consider for the

moment the terms inside the product, which can be written

(xi+ni+a−1)!
xi!(ni+a−1)!

(1−p)ni+apxi

where p=(D+b−1)−1. The xi disappeared in the derivation since it was always 0 or
1. This expression is of the form
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P(x |r, p)=Ar+x−1
x Bprqx

which is the negative binomial distribution that Fisher used to count butterflies (Fisher,
Corbet & Williams, 1943) and that Efron & Thisted (1976) used to model Shakespeare’s
output. The derivation differs from Fisher in its use of a prior distribution, and since
the a terms are not necessarily integer, the normalizing term cannot be written using
factorials.

Appendix C: Poisson distribution with “log–linear” prior

Following the notation and argument in Appendix B, P(k |D) is required. This is the
product of all the univariate cases, where a single univariate case is given by

P(k |n)=
kNe−Dk(k+d)−c

/
x

0
dkkNe−Dk(k+d)−c

,

assuming the normalizing constants cancel.
The integral in the denominator can be solved by noticing the similarity with the

integral definition of the confluent hypergeometric function (Gradshteyn & Ryzhik,
1980):

C(a)U(a, b, z)=P
x

0

e−ztta−1(1+t)b−a−1dt.

Making the change of variable t=k/d, the integral in the denominator becomes

I=P
x

0

dt d(dt)ne−Ddt(d+dt)−c

=dN+1−c P
x

0

dt tNe−Dt(1+t)−c

=dN+1−cC(N+1)U(N+1, N+2−c, Dd).

Changing notation to allow for the multivariate case, an proceeding as in Appendix
B,
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P(x |D)=P
x

0

· · ·
V P

x

0

dk\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B

×\
V

i=1

kni
i e−Dki(ki+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)

=\
V

i=1 C /
x

0
dki <

K

k=1 A
kxik

i e−ki

xik! B kni
i e−Dki(ki+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)D
=\

V

i=1 C <
K

k=1

1
xik!

/
x

0
dkik

xi+xi
i e−(D+K)ki(k+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)D .

Again, xik can only ever be 0 or 1. The whole expression can be simplified using the
Kummer transformation

U(a, b, z)=z1−bU(1+a−b, 2−b, z).

In addition, some of the d terms cancel, and the arguments to the gamma functions
are always integer so factorials can be used, yielding

P(x |D)=\
V

i=1

(xi+ni)!
ni!

U[c, c−xi−ni, (D+K)d]
U(c, c−ni, Dd)

D1+ni−c

(D+K)1+xi+ni−c .

The relationship with the gamma prior expression is now evident; this expression is
like that for a flat prior, but with c as a notional “initial count” for ni, and the addition
of the ratio of confluent hypergeometric functions.


