Active discovery and classification with applications on activity modelling

Tao Xiang

Queen Mary, University of London
With Tim Hospedales, Chen Change Loy and Tom Haines

Outline

- The problem: modelling rare classes by active discovery and classification
- Pool-based:
 - Adapting generative and discriminative models
 - Misclassification criterion using Dirichlet process
- Stream-based: online active learning criterion selection
- Weakly-supervised learning of rare events

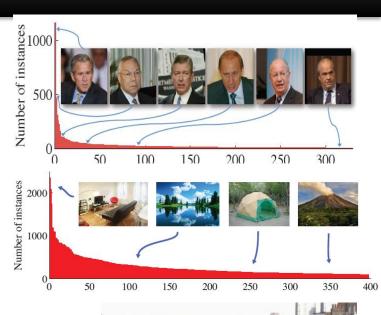
The problem

Problem: Joint (active) discovery and learning to classify rare categories

- Computer network intrusion detection
- Financial transaction monitoring
- Video surveillance

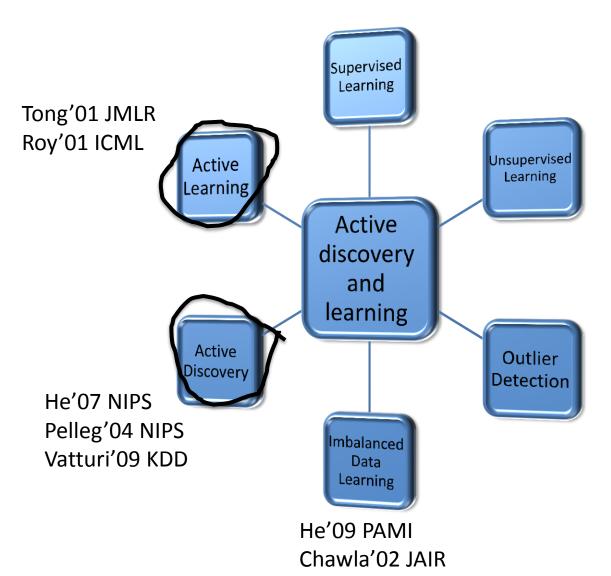
Characteristics:

- Large data volume: exhaustive labelling impossible
- Unbalanced classes
- Rare classes are unknown



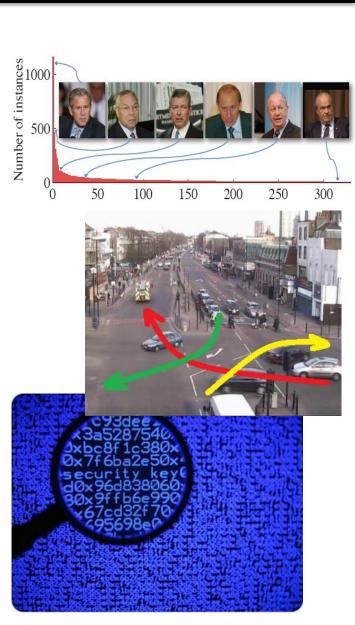
Background

Joint discovery and classification via active learning



Challenges

- Limited supervision
- Limited rare class data
- Joint detect & classify



State of the arts

Existing active learning methods

- Single objective: discovery or classification
- Mostly single criterion
 - Different criteria are needed for different objectives
- Single classifier
 - Different classifiers are more suitable for different data and different amount of supervision

What we need:

- Joint discovery and classification
- Adaptive multi-criteria weighting
- Classifier fusion

POOL-BASED ACTIVE DISCOVERY AND LEARNING

Criteria Selection: The Problem

Active learning query criteria:

Discovery: typically likelihood (outlier detection)

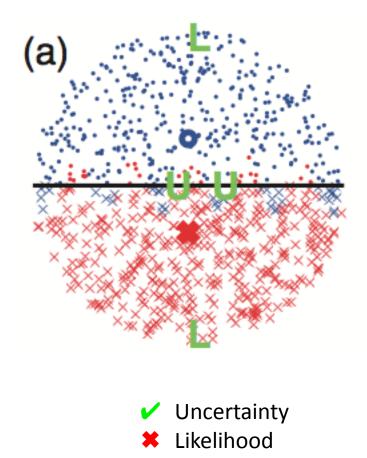
$$p_l(i) \propto \exp\left(-eta \max_{y_i} p(x_i|y_i)
ight)$$

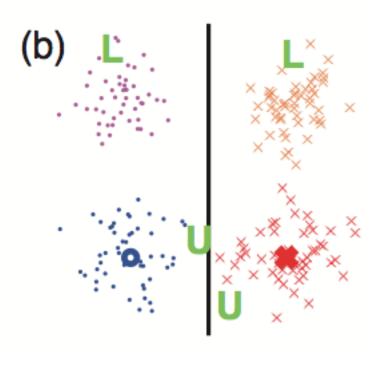
Classification: typically uncertainty

$$p_u(i) \propto \exp\left(\beta \sum_{y_i} p(y_i|x_i) \log p(y_i|x_i)\right)$$

- > The two problems are dependent
- > How to balance different criteria?

Criteria Selection: Illustration





Uncertainty

Likelihood

Solution: Adaptive Weighting

Choose criteria by adaptive weighting

- Select either uncertainty or likelihood
- Sample a multinomial distribution
- Two weights control the sampling, one for each criterion
- After each query, predict the classification performance via entropy of the classifier

$$H = -\sum_{y=1}^{n_y} \frac{\sum_i \mathrm{I}(f(\mathbf{x}_i) = y)}{|\mathcal{U}|} \log_{n_y} \frac{\sum_i \mathrm{I}(f(\mathbf{x}_i) = y)}{|\mathcal{U}|}$$

Solution: Adaptive Weighting

Update the weights

$$w_{t+1,k}(q) \propto \lambda w_{t,k} + (1-\lambda)\phi_t(i)\frac{p_k(i)}{p(i)} + \epsilon.$$

 Where we define a reward function for Discovery and classification performance

$$\phi_t(i) = \alpha I(y_i \notin \mathcal{L}) + (1 - \alpha) \left((e^{H_t} - e^{H_{t-1}}) \right)$$

Rewards discovery

Rewards increase in classification performance

Model Selection: The Problem

- Effective model/classifier types vary with data quantity. E.g. for a given generativediscriminative pair: GMM, Naïve
 - Low data: Generative better
 - − High data: Discriminative better

Bayes

SVM, Logistic Regression

- How much is "sufficient" data?
 - Varies with dataset
 - May be crossed during active learning
 - Need to select model online

Solution: Model Switching

- Solution: online classifier switching:
 - between GMM:

$$p(\mathbf{x}|y) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \sum_{n=1}^{N} \omega_n \exp{-\frac{1}{2} \left((\mathbf{x} - \mathbf{x}_n)^T \Sigma^{-1} (\mathbf{x} - \mathbf{x}_n) \right)}$$

– ...and SVM:

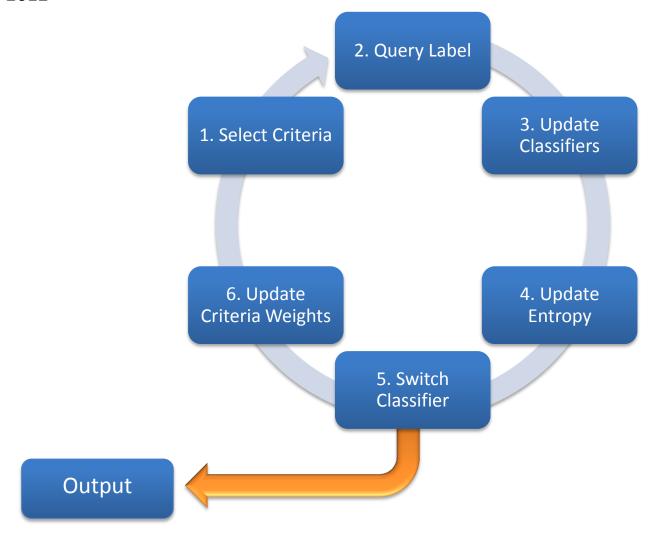
$$f_{svm}(\mathbf{x}) = rgmax \left(\sum_{\mathbf{v}_i \in SV_y} lpha_{ki} \mathcal{N}(\mathbf{x}; \mathbf{v}_i) + lpha_{k0}
ight)$$

– According to classification performance (Entropy):

$$H = -\sum_{y=1}^{n_y} \frac{\sum_i \mathrm{I}(f(\mathbf{x}_i) = y)}{|\mathcal{U}|} \log_{n_y} \frac{\sum_i \mathrm{I}(f(\mathbf{x}_i) = y)}{|\mathcal{U}|}$$

Algorithm Summary

 T. Hospedales, S. Gong and T. Xiang, "Finding Rare Classes: Active Learning with Generative and Discriminative Models", IEEE Transactions on Knowledge and Data Engineering (TKDE), 2012



Algorithm Summary

Algorithm 1 Active Learning for Discovery and Classification

Active Learning

Input: Initial labeled \mathcal{L} and unlabeled \mathcal{U} samples. Classifiers $\{f_c\}$, query criteria $\{Q_k\}$, weights w.

- Build unconditional GMM p(x) from L∪U (8)-(12)
- Estimate σ by cross-validation on p(x) (13)
- Train initial GMM and SVM classifiers on L

Repeat as training budget allows:

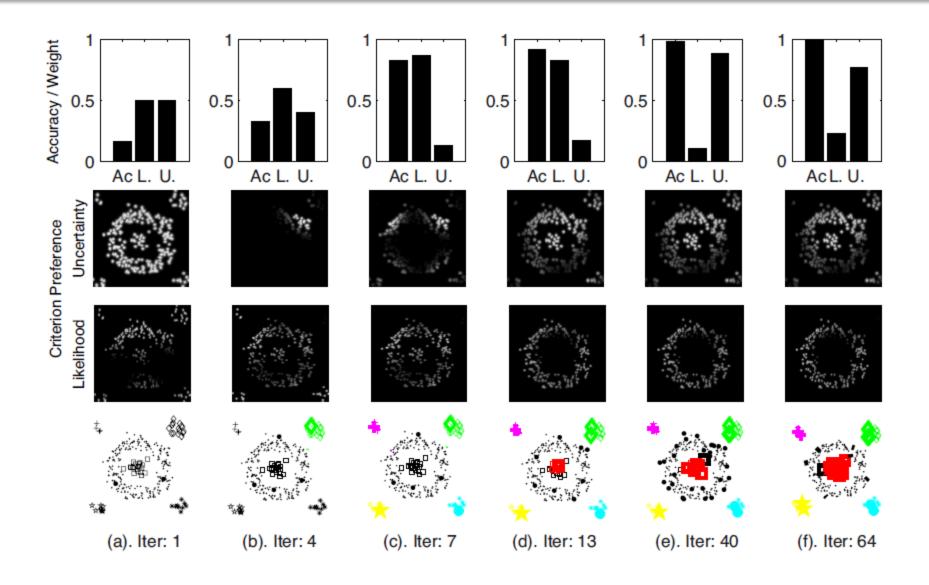
- Compute query criteria p_{lik}(i) (5) and p_{unc}(i) (3)
- Sample query criteria to use k ∼ Multi(w)
- Query point i* ~ p_k(i), add (x_{i*}, y_{i*}) to L
- Update classifiers with label i* (14) and (15)
- 5) Update query criteria weights w (17) and (18)
- 6) Compute entropies H_{gmm} and H_{svm} (16)
- If H_{gmm} > H_{svm}: select classifier f_{gmm}(x) (19)
- 8) Else: select $f_{svm}(\mathbf{x})$ (19)

Testing

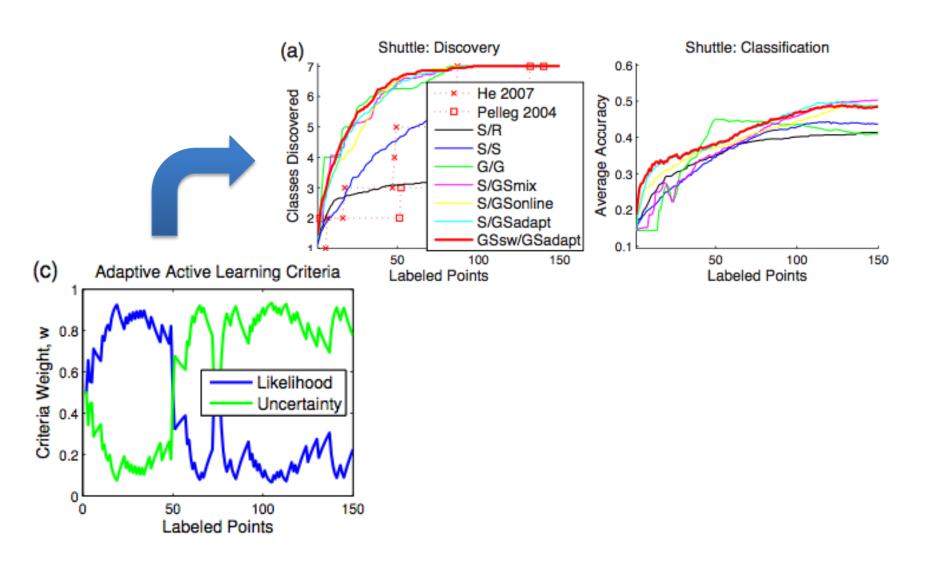
Input: Testing samples U^* , selected classifier c.

Classify x ∈ U* with f_c(x) ((14) or (15))

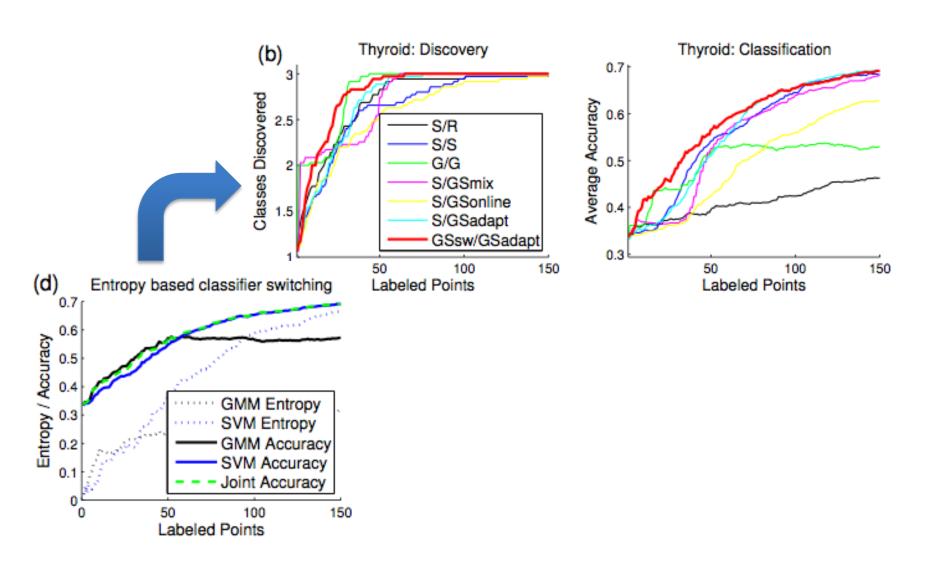
Synthetic data



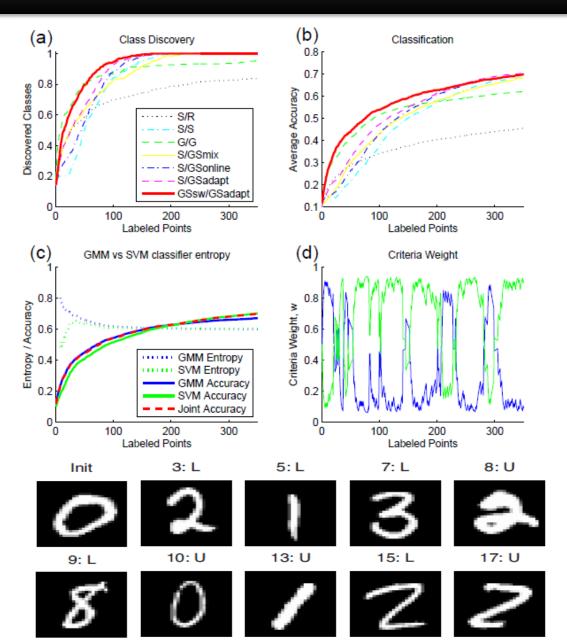
UCI data



UCI Results



Handwriting Digits



Summary

- Joint discover & classify: Under-studied
- How to balance discovery & classification?
 - > ADAPTIVE CRITERIA SELECTION
- How to generalise datasets and volume?
 - > SWITCHING GEN. & DISCR. CLASSIFIER MODELS

Limitation:

- Adaption model is fairly heuristic
- Pool based setting only

A MORE PRINCIPLED WAY FOR JOINT DISCOVERY AND CLASSIFICATION

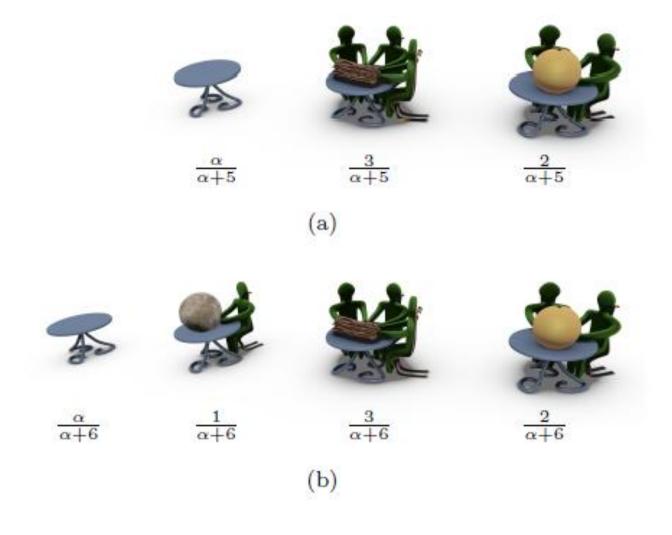
Discovery & Classification

- Discovery is when not all classes are known, and need to be found.
- Classification is where the classes are considered to be known but the boundaries between them need to be refined.
- We tackle both problems simultaneously, with the express purpose of maximising classification performance.

Assumptions

- Assumption 1: That the item with the greatest probability of being misclassified should be selected.
- Assumption 2: That the classes have been drawn from a Dirichlet process. This is equivalent to assuming the items in the pool come from a Dirichlet process mixture model.

Illustration of Dirichlet Process



The Algorithm

Class assignment that the classifier, which cannot consider new classes, gives:

$$cc = \underset{c \in C}{\operatorname{argmax}} P_c(c|\mathsf{data})$$

Class assignment probability, including the possibility of a new class:

$$P_n(c \in C \cup \{\mathsf{new}\}|\mathsf{data}) \propto \left\{ \begin{array}{ll} \frac{m_c}{\sum_{k \in C} m_k + \alpha} P_c(\mathsf{data}|c) & \text{if } c \in C \\ \frac{\alpha}{\sum_{k \in C} m_k + \alpha} P(\mathsf{data}) & \text{if } c = \mathsf{new} \end{array} \right.$$

Probability of misclassification:

$$P(\text{wrong}|\text{data}) = 1 - P_n(\text{cc}|\text{data})$$

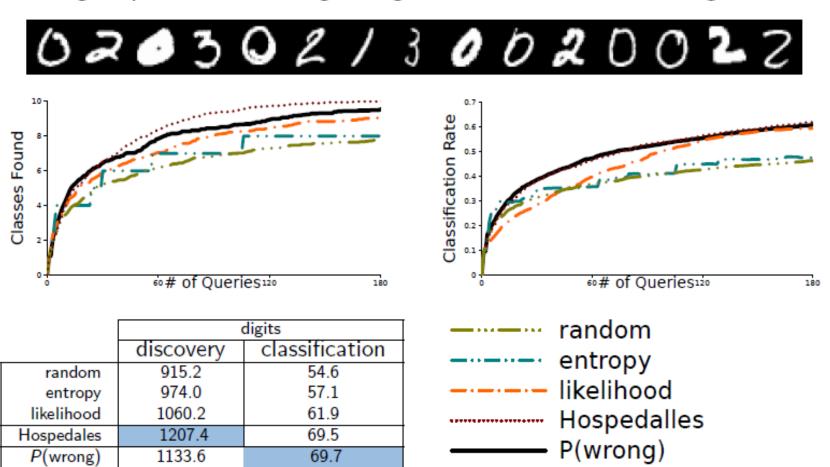
T. Haines and T. Xiang, "Active Learning using Dirichlet Processes for Rare Class Discovery and Classification", in *British Machine Vision Conference*, 2011.

The Algorithm

- Note that the misclassification probability (P(wrong))
 - Is different from uncertainty due to the unknown new classes considered (P(new))
 - If P(new) is high, P(wrong) is high encourage discovery of new classes
 - If the classifier is uncertain about existing classes,
 P(wrong) is high too
 - These two factors are dominated by the concentration parameter of the DP model – learned from data

Handwriting digits data

• Digits problem: Recognising the ten handwritten digits.



STEAM-BASED ACTIVE DISCOVERY AND LEARNING FOR VIDEO SURVEILLANCE

Problem

Detect unusual event on-the-fly with limited data

State of the arts

- Unsupervised 1-class learning strategy [Mehran-CVPR09, Wang-TPAMI09, Kim-CVPR09]
 - Hard to detect visually subtle and ambiguous events
 - Confused between noise and genuine unusual event
 - Outlying normal regions causing false alarms

Outlying regions

State of the arts

- Learning from human supervision
 - Resolving ambiguities
 - Arbitrating false alarms
- Fully supervised learning
 - Exhaustive annotation are time consuming
 - Unusual events not known a priori
 - Not all samples are critical for learning

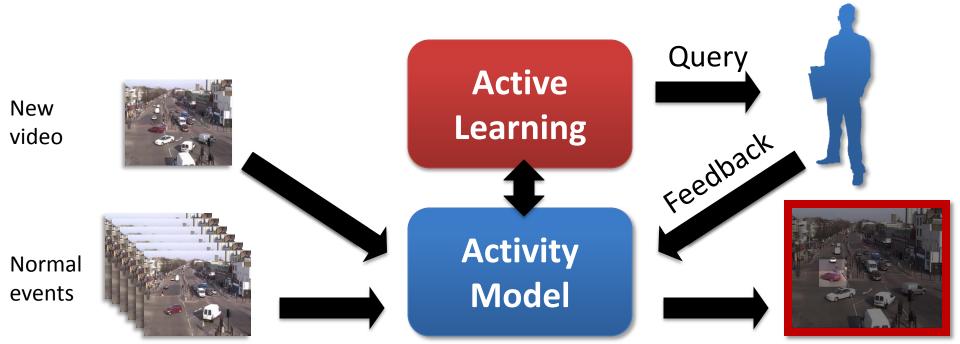
Unsupervised learning

Supervised learning

Exploit minimal human supervision without compromising the performance?

Motivation

- Some samples are more informative than others
- Select critical and informative queries for labelling based on predefined criteria

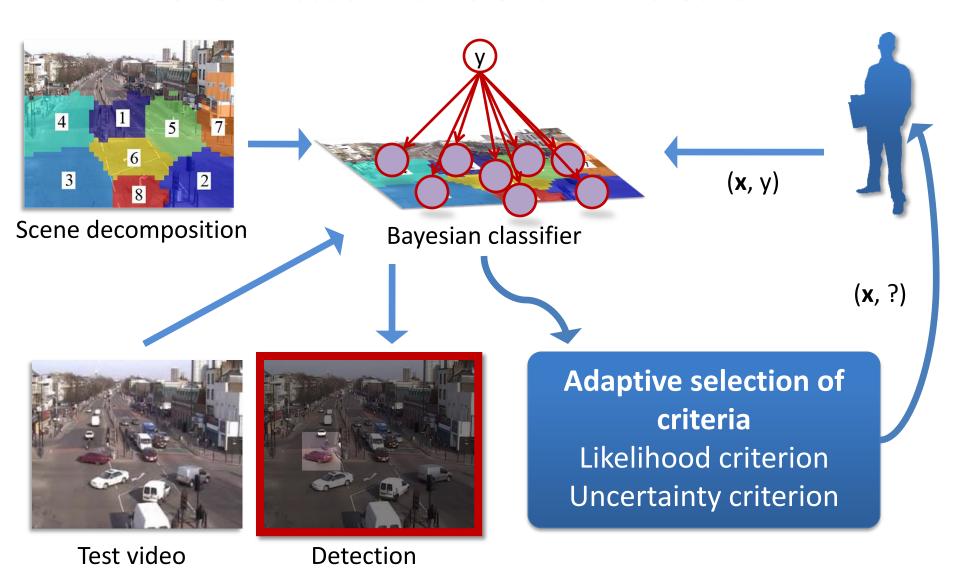


Why is it difficult?

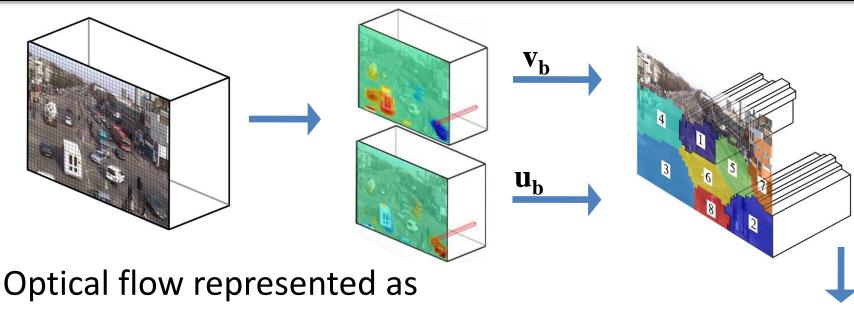
- Joint discovery of unknown events and refinement of classification boundary
- Stream-based observations demand on-the-fly decision

Overview of the approach

Stream-based Active Unusual Detection



Activity representation



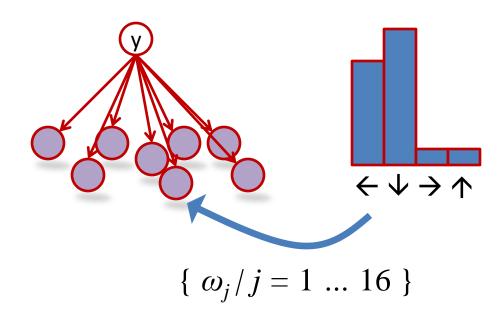
time series

Block clustering:

- spatial proximity
- activity correlation

Motion features as words

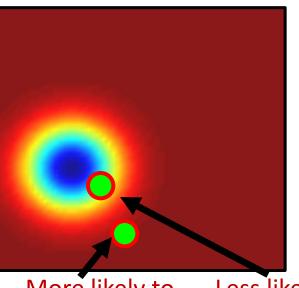
Regions as graph nodes

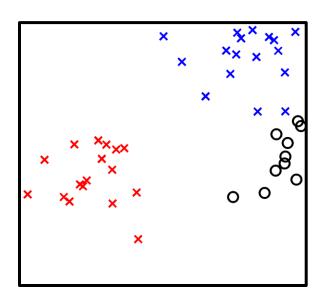


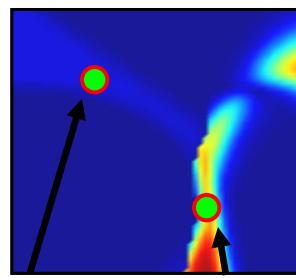
Query Criteria

- Likelihood criterion:
 - Favour low-likelihood points
 - Discover unknown events

- Uncertainty criterion :
 - Favour ambiguous points
 - Refine classification boundary
 - Reformulate Query-by Committee
 [Seung-COLT92, Engelson-JAIR99]





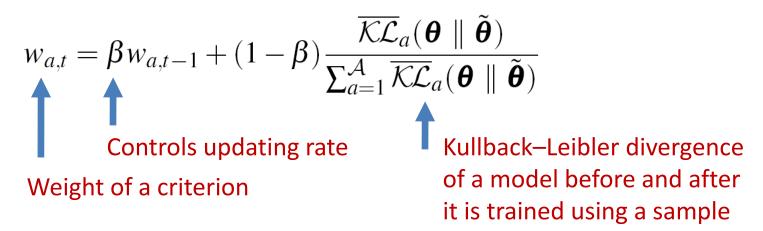


More likely to Less likely to be queried be queried

Less likely to More likely to be queried be queried

Adaptive criteria selection

- Best suited criterion for specific dataset at different phases of learning are not known a priori
- Favour criterion that returns query that brings more influence to a model



Kullback-Leibler divergence

Tendency to be selected

Algorithm Summary

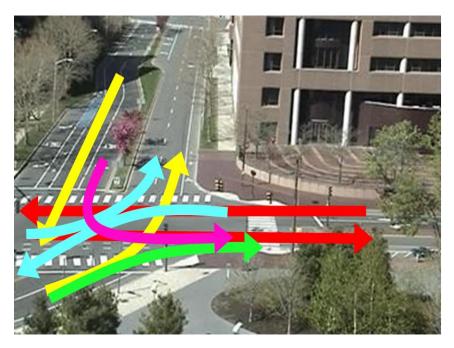
Algorithm 1: Stream-based active unusual event detection.

```
Input: Data stream \mathcal{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots), an initial classifier \mathcal{C}_0 trained
             with a small set of labelled samples from known classes
    Output: A set of labelled samples S and a classifier C trained with S
 1 Set S_0 = a small set of labelled samples from known classes;
 2 for t from 1, 2, \ldots until the data stream runs out do
        Receive \mathbf{x}_t:
 3
        Compute p_t^l (Eqn. (3));
 4
        Compute p_t^u (Eqn. (6));
 5
        Select query criterion by sampling a \sim \text{Mult}(\mathbf{w}), assign p_t^{\text{query}} based
 6
        on the selected criterion;
        if p_t^{\text{query}} \geq \text{Th then}
 7
            Request y_t and set S_t = S_{t-1} \bigcup \{(\mathbf{x}_t, y_t)\};
 8
            Obtain classifier C_{t+1} by updating classifier C_t with \{(\mathbf{x}_t, y_t)\};
 9
            Update query criteria weights w (Eqn. (9));
10
        else
11
         S_t = S_{t-1};
12
        end
13
14 end
15 Unusual event is detected if p(y = unusual|\mathbf{x}) is higher than Th<sub>unusual</sub>;
```

C. Loy, T. Xiang and S. Gong, "Stream-based Active Anomaly Detection", in *Asian Conference on Computer Vision*, 2010.

Experiments

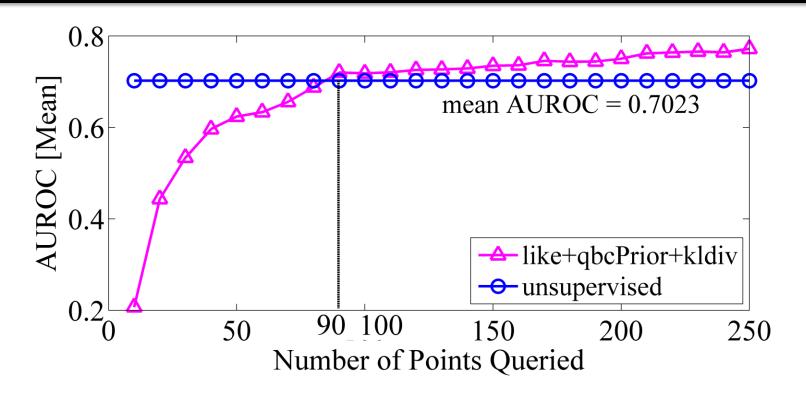
MIT Traffic Dataset



QMUL Junction Dataset

- Dominant traffic flows as normal classes
- Unusual events including illegal u-turns, improper lane usage etc.

Active vs. unsupervised learning

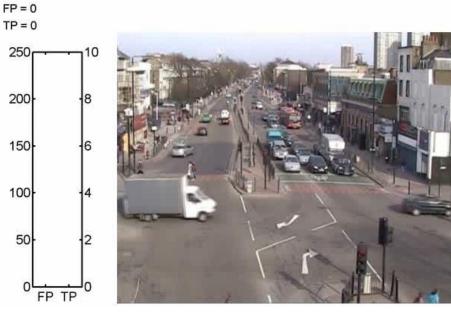


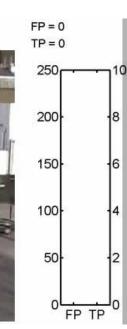
	# training samples	mean AUROC
unsupervised	800	0.7153 ± 0.0085
like + qbcPrior + kldiv	250	0.7720 ± 0.0078

Active vs. unsupervised learning

Unsupervised Learning

Active Learning



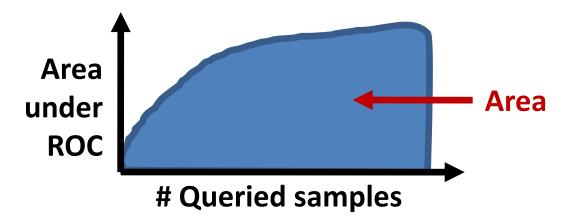


False positive

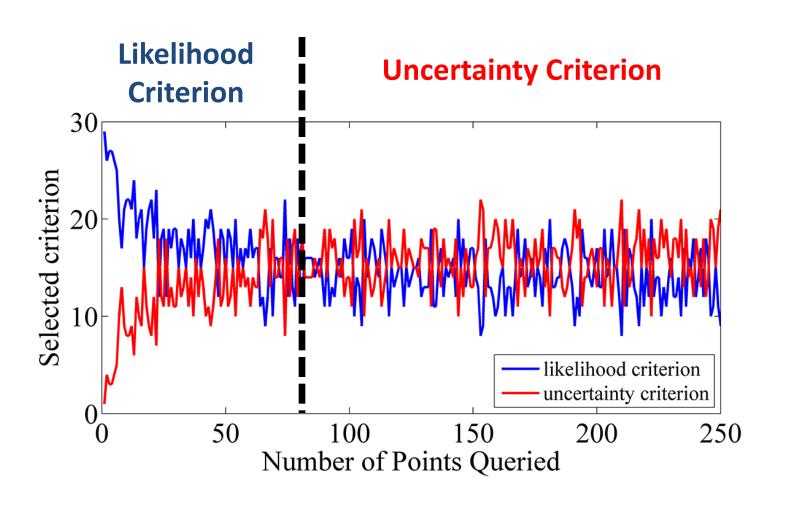
True positive

Comparison with other strategies

	MIT Traffic Dataset	QMUL Junction Dataset
Proposed method	12.26	16.52
Random sampling	11.75	15.22
Likelihood	11.87	16.52
QBC with Vote Entropy	11.83	16.37
QBC with Prior	11.90	16.40
Likelihood + QBC with interleave strategy	11.95	16.33



Adaptive criteria selection



Summary

- Learning from human feedback
 - Resolving ambiguity
 - Arbitrating false alarm
- On-the-fly decision using stream-based active learning
- Adaptive selection of different criteria
 - Discovering unknown classes and regions
 - Refining classification boundary

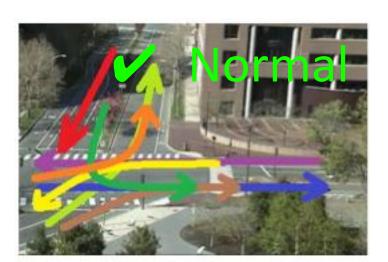
Limitations

- The naïve-Bayes based activity model is weak
- How do we model a new class with:
 - A single sample
 - Weak label

LEARNING RARE EVENTS USING WEAKLY-SUPERVISED TOPIC MODEL

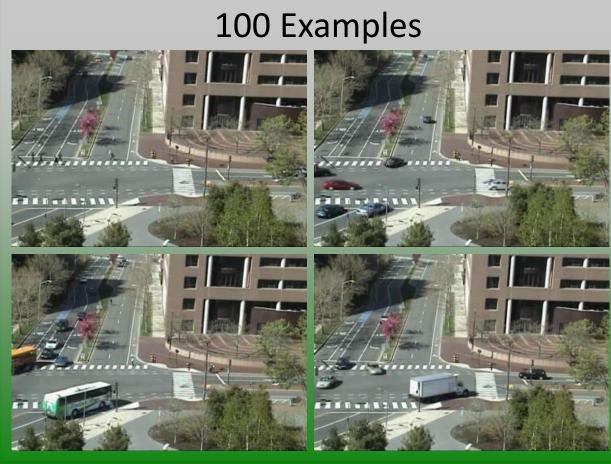
Challenge: Detect Events...

- Too visually subtle to be obvious anomalies
- Too rare to learn a traditional classifier
 - N-shot learning
- With only weak supervision
 - > Important for practical use!

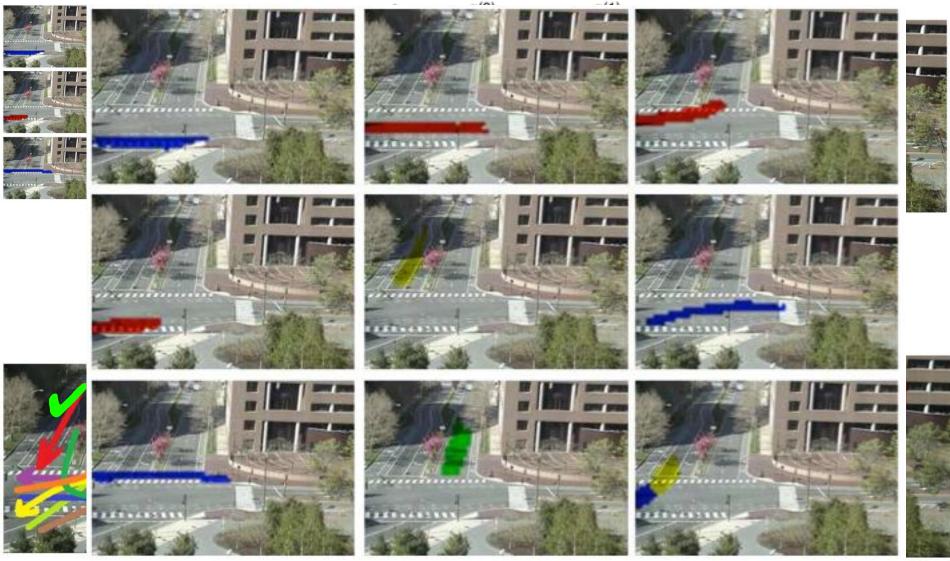


Weakly supervised joint topic model: Learning Example

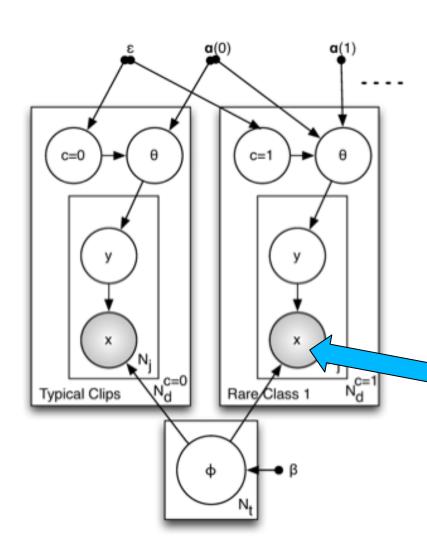
1 Example Each



Weakly supervised joint topic model: Learning



WSJTM: Inference



Classify: Compute p(C|X)

- Bayesian Model Selection
 - Variational Importance Sampler

Locate: Infer p(Y|X,C)

> Gibbs

Behavior Profiling: Results

Summary:

- Learning: MCMC collapsed Gibbs sampling
 - > Almost real time
- Inference: Model Selection by Variational Importance Sampler
 - >> Real-time.
- Weak (1-bit) supervision
 - Outperforms LDA, S-LDA, SVM, etc.
- Published in: T. Hospedales, J. Li, S. Gong and T. Xiang, "Identifying Rare and Subtle Behaviours: A Weakly Supervised Joint Topic Model", *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 2011.

Thank You