

Multimodal Object Recognition using Random Clustering Trees

M. Villamizar

mvillami@iri.upc.edu

A. Garrell

agarrell@iri.upc.edu

A. Sanfeliu

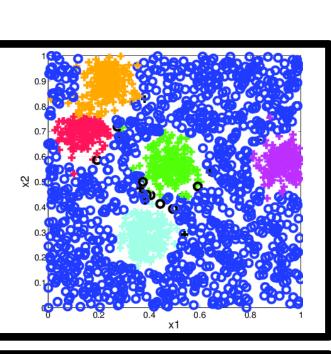
F. Moreno-Noguer

sanfeliu@iri.upc.edu

fmoreno@iri.upc.edu

Goal

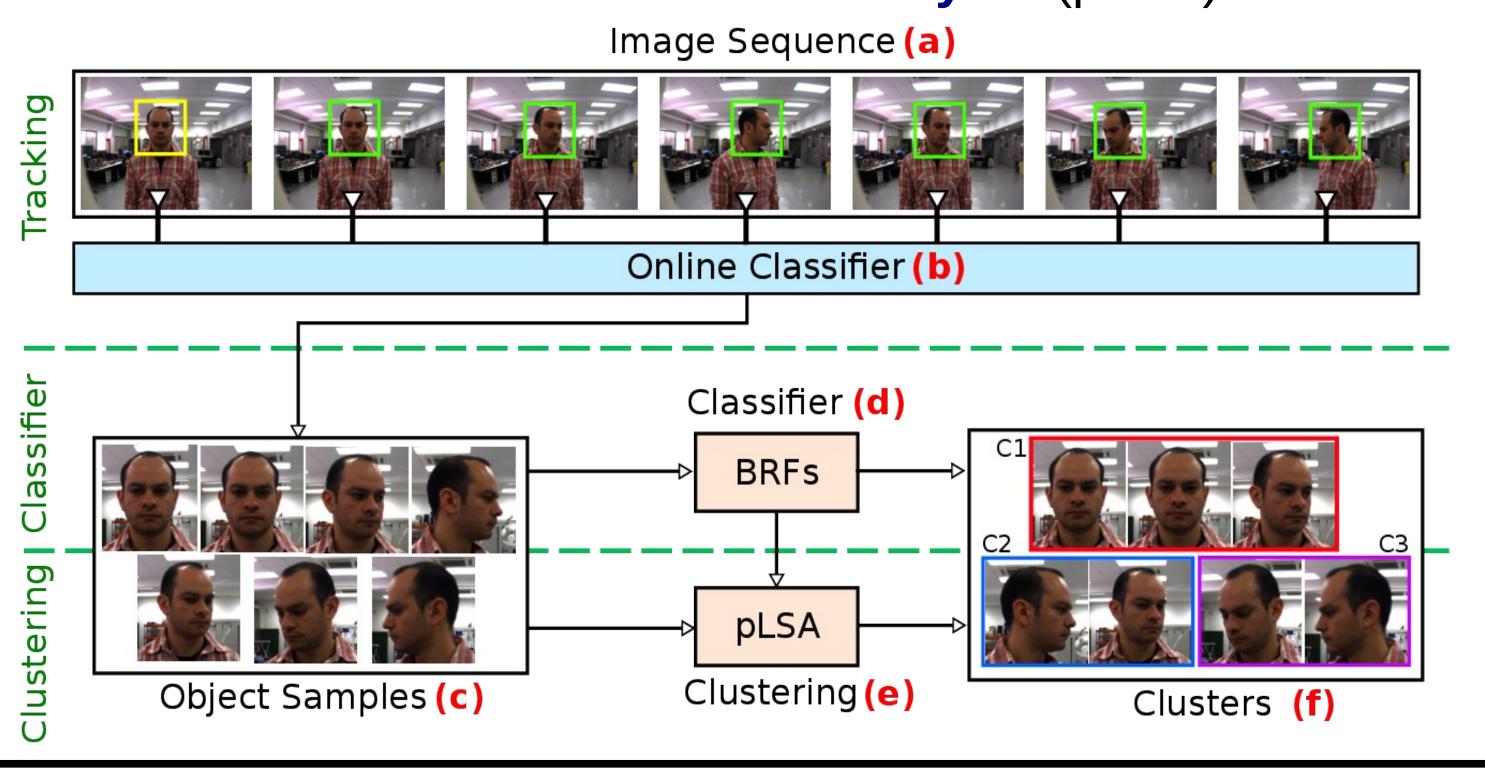
Efficient and discriminative approach to recognize objects and to discover automatically multiple intra-class modalities (object's views).



Proposed Approach

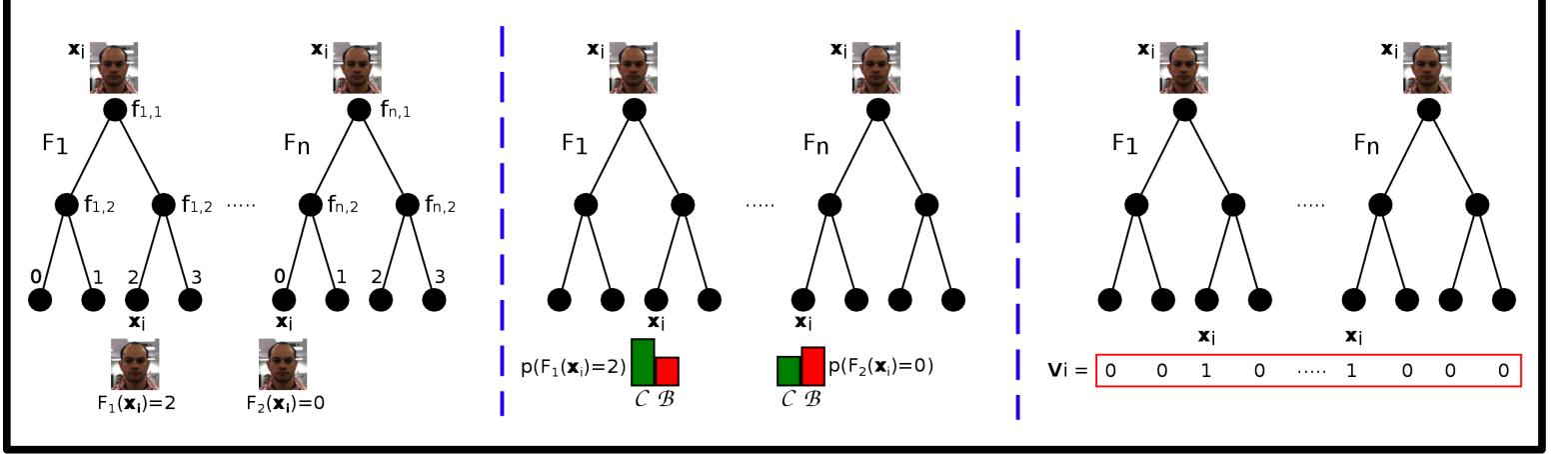
Combined approach to learn objects with multiple modalities:

- •Tracking step: online classifier to track the object during a video sequence and to acquire the training data (object and background samples).
- •Classifier step: computation of a discriminative and robust tree-structured classifier, **Boosted Random Ferns** (BRFs), using the acquired training data in the tracking step.
- •Clustering step: clustering of the classifier output using Probabilistic Latent Semantic Analysis (pLSA).



Object Tracking

- •Object tracking to extract automatically a set of training samples which are used later to compute the object classifier.
- •Extremely randomized trees (random ferns) are used to track online the object during the video sequence.
- •Online random ferns [1] are computed/updated incrementally using its own detection hypotheses in images (self-learning).



Object Classifier

- Efficient and discriminative object classifier based on the boosted combination of random ferns [2].
- •Each fern is a set of **binary features** (pixel comparisons) computed at specific image location.
- The most discriminative ferns are chosen via AdaBoost.

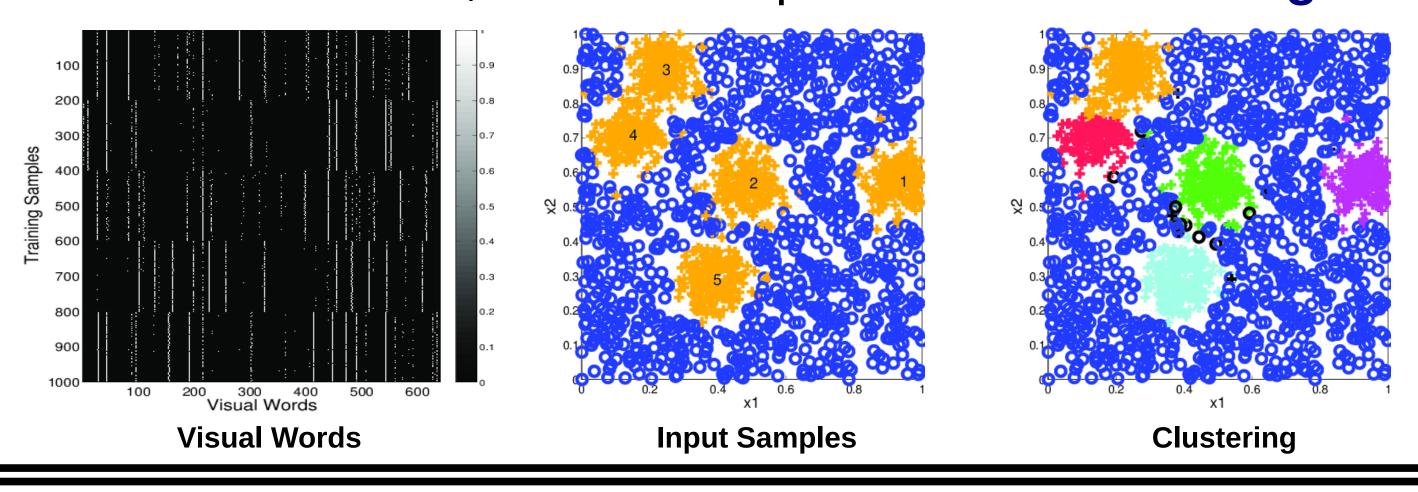
$$H(\mathbf{x}) = \sum_{t=1}^{T} h_t(\mathbf{x}) > \beta \qquad h_t(\mathbf{x}) = \frac{1}{2} \log \frac{p(F_t(\mathbf{x}) = r | \mathcal{C}) + \epsilon}{p(F_t(\mathbf{x}) = r | \mathcal{B}) + \epsilon}$$

References

- [1] M. Villamizar, A. Garrell, A. Sanfeliu, and F. Moreno-Noguer. Online human-assisted learning using random ferns. In ICPR, 2012.
- [2] M. Villamizar, J. Andrade-Cetto, A. Sanfeliu, and F. Moreno-Noguer. Bootstrapping boosted random ferns for discriminative and eficient object classication. Pattern Recognition, 2012.
- [3] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine learning, 2001.

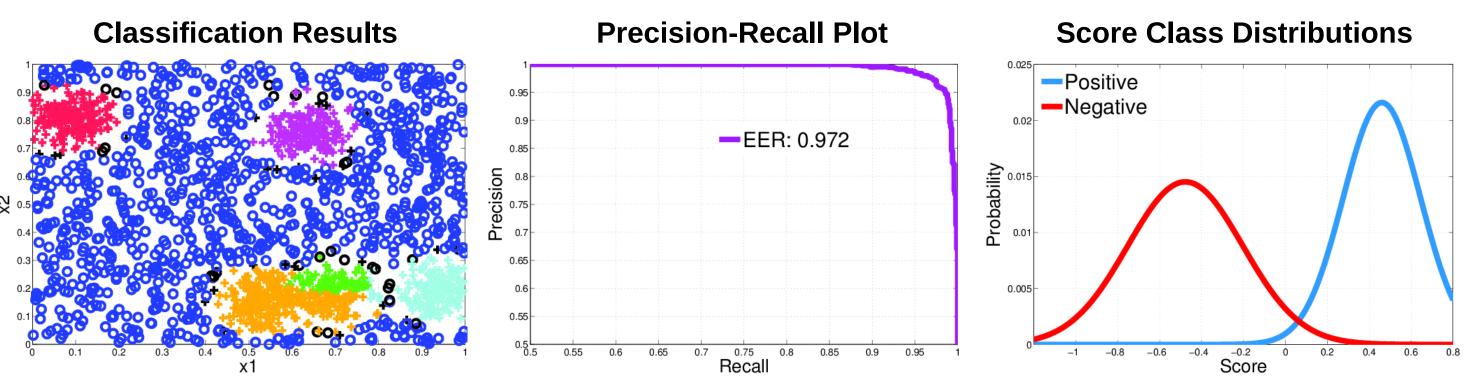
Clustering

- •Probabilistic Latent Semantic Analysis [3] are used to discover automatically intra-class object modalities (latent variable). The overall object appearance is discretized in multiple sample clusters with strong feature similarity.
- Tree-structured visual words, obtained from the output of the BRFs classifier, are used to perform the clustering.



Synthetic Experiments

- 2D classification problem involving two complex classes.
- •Classification results of BRFs for multimodal distributions:



Average classification results of BRFs and RFs classifiers:

	Classification Performance														
			RFs	}	BRFs										
		# Clusters (K)			# Clusters (K)			# Ferns (R)				# Features (S)			
		3	5	10	3	5	10	5	10	20	50	1	3	5	7
	$\mathrm{EER}(\%)$	90.6	92.4	84.4	96.9	97.4	96.0	95.4	96.6	96.9	97.2	83.1	96.1	96.9	97.2
ĺ	Distance(%)	59.0	68.8	46.5	83.1	90.6	73.2	77.2	80.4	83.1	88.8	41.2	73.0	83.1	88.4

Average confusion values in the clustering labels:

Clustering Results													
		BRFs-	-pLSA	L	K-m	eans (Euclid	lean)	$\mathrm{BRFs+K ext{-}means}$				
D	2	5	10	20	2	5	10	20	2	5	10	20	
K=3	0.097	0.001	0.033	0.000	0.147	0.100	0.133	0.067	0.177	0.036	0.086	0.113	
	0.240												
K=10	0.514	0.144	0.092	0.096	0.367	0.143	0.159	0.116	0.548	0.251	0.207	$0.\overline{102}$	

Real Experiments

Detection and pose estimation of faces and 3D objects.

