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Resumen como el adlisis de componentes principales. Desafor-
tunadamente, la correspondencia basada en apariencia

Este ariculo presenta un sistema para el re- espropensa a fallar en situaciones con pags@clu-
conocimiento de objetos basado en carastieas lo- siones o bajo distintas condiciones de ilumigaco
cales simples invariantes a escala y orieftacgue del fondo. Recientemente, el reconocimiento de ob-
al ser entrenado con un mecanismo de clasificaci jetos se ha beneficiado de estrategias que combinan
supervisada produce clasificadores robustos para urla combinaddn de caractésticas georétricas locales,
niimero limitado de clases de objetos. El sistema ex-ad como de apariencia. El&s popular de estoséto-
trae las caractésticas néis relevantes de un conjun- dos, es quia, el uso de descriptores SIFT [4].
to de mu_e§tras_ de entrenamiento y construye una esy giterencia de usar reglas de saliencia para la selec-
tructura jearquica de ellas, conceatrdose primero

en caractésticas comunes entre las clases y posterior cion de caractésticas como en el caso del descriptor
L e yp SIFT, el uso deécnicas deboostingha demostrado
mente, en aquellas caradticas espéficas de cada

. N B ! beneficios al seleccionar las caratgtcas georatric-
clase. Para lograr invariancia a rotatide forma efi-

. ! ) as y de apariencia &s relevantes sobre conjuntos de
c!ente S€ propone el uso de filtros 0r|entados_nq Ga_us'muestras de entrenamiento. A pesar de su poder para
s1anos, J,ulmol con .l:jnadlmlagep Intggr?l del Orierataci alcanzar un reconocimiento correcto con los datos del
para un alculo mpido de la orientaon local. entrenamiento, las primeragchicas deboostingco-
mo [9], fueron confeccionadas para el reconocimiento
1. Introduccion de una sola clase de objetos, y por consiguiente no son

adecuadas para el reconocimiento multiclase, dada la

La detecddn de objetos es crucial para la magor ~gran cgntidad dg caracisticas que se necesita}p gl en-
de tareas de vién por ordenador; particularmente, en {rénarindependientemente cada clase de objetos.
aplicaciones que requieren el posterior reconocimien- mMamente han aparecido algunas extensiones a la idea
to de estos. Los primeros enfoques para la sohici 9eneral de clasificash conbootingque permiten el

del reconocimiento de objetos por ordenador se basarfntrenamiento combinado deditiples clases [3, 1].

en la tilsqueda de correspondencia entre modelos ge-EN Vision por ordenador, Torralbet al. [7] propuso
ométricos del objeto y caracfsticas en la imagen. una extengin al algoritmo deéboosting(gentleboost),

Para evitar la necesidad de poseer tales modelos a pri€0n €l prosito de compartir caractsticas a trags
ori, surgb en lasiltimas dos écadas el paradigma del de miltiples clases de objetos y reducir @mero total

reconocimiento de objetos basado en apariencia, usde clasificadores. Al &todo se le llard JointBoosty
ando &cnicas de redudmh de dimensionalidad tales S€dIn este enfoque, todas las clases objetos son entre-
nadas conjuntamente, donde para cada posible subcon-
Este trabajo es posible gracias BURON Network  junto de clase2(* — 1 excluyendo el conjunto fondo),
Robot Systems Research Ateld0E-507728 y al proyec- |5 caracteistica s Otil es seleccionada para distin-
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blemente falldia si el objeto se encuentra a diferentes boostingmulticlase e invariancia a rotdi, para la se-
orientaciones de las cuales fue entrenado. En este traleccion de caractésticas comunes y espécas para
bajo se investiga sobre la selgmtide caractésticas construir una estructura fEmuica que permita re-
multiclase de forma similar, pero con un fuerte iBer  conocer niltiples objetos independientemente de su
en el @lculo apido de clasificadoresediles invari- posicbn, escala y orienta@n utilizando un reduci-
antes a orientadn [8], con el fin de obtener un sis- do conjunto de caractsticas. En nuestro sistema, los
tema de reconocimiento delftiples objetos que sea puntos de intérs son seleccionados como aquellas re-
invariante a rotacin. giones en la imagen que tienen la respuesia dis-
criminante bajo la convoluéh con un conjunto de
funciones baseavaveletsa varias escalas y orienta-
ciones. En la Seconh 2 se explica como las carac-
teristicas n&s relevantes son seleccionadas y combi-

En [9], Viola introdujo la Imagen Integral para la eval-
uacbn rapida de caractisticas. Una vez calculada,
la Imagen Integral permite la respuesta de una im-

agen a la convolubn con una base de Haar [5] a RN : .
nadas para clasificarittiples objetos. La seledmn se

cualquier posi@n y escala en tiempo real. Desafor- . Lo
. . . . basaerointBoosten el cual una estructura @&guica
tunadamente, tal sistema no es invariante a cambios : -
. . . . . . es formada por conjuntos de clasificadores comunes y
de orientadin del objeto ni a oclusiones. Otros sis-

o . . espedicos. Una combinadin lineal de estos clasifi-
temas de reconocimiento que funcionan bien en es- P o
. , cadores dbiles produce un clasificador fuerte para ca-
cenas complejas son los basados entehmuto de

C . da clase de objetos, el cual es usado en la fase de detec-

caracteisticas locales multi-escala tales como el de- ., ) e L. .
. . : : cion. La invariancia a rotagn es posible al convolu-
scriptor SIFT [4] mencionado anteriormente. Unaidea . ) )
) . . cionar cada muestra con funciones base orientadas. La
importante en el descriptor SIFT es que incorpora . . -
. . o . rotacbn del filtro se calcula de forma eficiente con la

orientacon local para cada punto de inksr permi-

. . o s ayuda de los filtros orientados, que es a su vez la com-
tiendo invariancia a escala y orientawgidurante el T ! -

o ! binacbn lineal de filtros base, tal y como se indica en
reconocimiento. Incluso, cuando un grainrero de

caracteisticas SIFT pueden ser calculadas en tiempo la Seccon 3.

real para undinica imagen, la correspondencia en- Durante la fase de reconocimiento, cadadagie la

tre la muestra y las idgenes de prueba es realizada imagen debe ser rotada a una orierdiactardnica,
mediante la Bsqueda del vecino @&s cercano y por  obtenida durante el entrenamiento, antes de hacer la
votacbn con la transformada de Hough generalizada, correspondencia. Tal orientaci es dictada por la mo-
seguido por la soluén de la reladn de afinidad entre  da del histograma de orientaciones de gradientes de-
vistas, lo cual poda terminar en un proceso computa- scrito en la Secéin 4. En la Secéin 5 se explica
cionalmente costoso. nuestra Imagen Integral de orientaciones, la cual pro-
ponemos para urafculo rapido de orientadin, y en la

Yokono and Poggio [10, 11] prefieren el uso de es- , .
secchn 6 se presentan algunos experimentos.

quinas Harris a varios niveles de resoldsi como
puntos de inters, y de estas, seleccionan como car-
actefsticas del objeto aquellas que so@smobustas 2. Selecddn de Caracteiisticas
a filtros de derivadas de la Gausiana bajo rdtagi
el Como 12 deiacas e e Gauea 10508 1 conjnto de caactatcas ol e e i

i ’ e criminan un objeto se obtiene gracias a la convolu-
para orientar todas las respuestas de las carstéter

cas segn la orientadn local de gradientes alrededor cion de muestras de igenes positivas con un con-
g L 9 L junto simplificado de funciones basesvelets[5] a
del punto de intdérs. En la fase de reconocimiento, el

. ! ) . - diferentes escalas y orientaciones. Estos filtros tienen
sistema &n requiere correspondencia de cardster

cas locales, e iterar sobre todos las corres ondenciase'ectividad a la orientagn espacial como taméi
' . esp A frecuencia, y producen caradgticas que capturan
en grupos de 6, buscando la mejor homadgrafisan-

. . el contraste entre regiones representando contornos,
do RANSAC para eliminar valoresipicos. Desafor- untos y Ineas. El conjunto de operadores usados se

tunadamente, el coste computacional de este emcOquéjnuestra en la Figura 1. La respuesta del filtro es equiv-
no se reporta. alente a la diferencia de intensidad en la imagen orig-
En [8] hemos reportado que la respuesta del filtro a inal entre la regin oscura y la clara. La figura 1 d)
convoluciones con bases de Haar no solo se puede calilustra como un objeto puede ser representado por un
cular eficientemente con una Imagen Integral, sino quepequéio conjunto de caractisticas relevantes.

pggde ser apromquamenye rotada con algynas SIM{ a convolucon de estos operadores a una orieffaci
pI|f|caC|on.es dg los flltrqs.orlentados de Gau5|an§s. Lo deseada se realiza al orientar el filtro (Sénc8), y
cual permite el alculo eficiente de la respuesta a filtros

invariantes a rotaciones, y su uso como clasificadoresIa convolucon rapida sobre cualquier regi de la im-
débiles Y agen original es eficientemente obtenida mediante la

Imagen Integral (Secen 5).

En este aitulo, hemos incorporado estas dos ideas, La selecaddn de caractésticas se lleva a cabo de man-
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Figura 1: Conjunto de basegveletsimplificado. a)
punto b) contorno, clihea, y d) caractésticas locales
del objeto

era similar aJointBoos{ 7], escogiendo el clasificador
débil h(1, s) que mejor discrimina cualquier subcon-
junto s de la clase fondo, coBn — 1 subconjuntos
de clases: = 1...n (excluyendo el mismo conjunto
fondo), El clasificador &bil se define por los pamet-
ros del filtro, tam&o, posicbn, orientaddn y umbral,
tomando valores de dedisi binaria

1 @ Ixf>t

h(I, s) = { 0 otros casos @)

ficador ckbil para el subconjunto que tiene eimmo
error cuadatico J, y se @ade iterativamente al clasi-
ficador fuerte para cada clasens, H(I,c).

H(I,c):==H(I,c)+ h(1,s) )

La invariancia a escala se obtiene al iterar t@mbi
sobre filtros escalados. El escalado del los filtros se
puede efectuar en tiempo constante con la Imagen In-
tegral computada previamente.

3. Filtros Orientados

Para obtener invariancia a orientaaj los filtros lo-
cales deben ser rotados antes de realizar la convolu-
cion. Una buena alternativa, es computar estas rota-
ciones con filtros orientados [2], 0 con su vérscom-
pleja [6]. Un filtro orientado es un filtro rotado a partir
de la combinadin lineal de un conjunto de filtros base

a orientaciones espiicas.

[ f(0) =3 ki(O)I % () . @)

dondef(6;) son los filtros base orientados,ky son
los coeficientes de las bases.

Considere por ejemplo, la fudm Gausiana

Gu,v) = 6_(“2"""2)7 y su primeza 2y se-
gunda derivadas G, = —Que~ (W Hv) y
G! = (4u? — 2)e-("+°) Estos filtros pueden

dondel es una imagen de entrenamiento perteneciente_ “

a la clase: en el subconjunts, f es el filtro con todos
sus paametros; indica la operacin de convoludn,
y t es el umbral de la respuesta del filtro.

En cada iteracin durante la fase de entrenamiento, el
algoritmo debe buscar para todos fbs— 1 subcon-
juntos, el clasificador&bil que mejor discrimine aquel

subconjunto de la clase fondo, minimizando el error

ser orientados como la combinani lineal de los
filtros base. El imero de filtros base es undsque
el orden de diferenciagn.

Consecuentemente, la primera derivada de la &mci
Gausiana a cualquier orienténif es

Gy = cos G, + sin0G., , (5)

cuadatico sobre las muestras ponderadas de todas las

clases en aquel subconjunto.

Jwse = Zzwzc(zzc — (I, s))2

c=1s=1

)

dondez{ y wf son la etiqueta y el peso de la muestra

1 para la clase respectivamente, y el nUmero total
de muestras de entrenamiento. El algoritmo témbi

actualiza los conjuntos de pesos sobre las muestras d

entrenamiento. El dmero de conjuntos corresponde

con el niimero de clases a aprender. Inicialmente, to-

dos los pesos son iguales, pero en cada itenados

y, la orientacbn de la segunda derivada de la Guasiana
puede ser obtenida con

3
§=> ki(0)Gy, (6)
=1

conk;(0) = 3(1 4 2cos(d — 6;)); y Gy, son filtros

grecalculados de segunda derivadg a 0, 0 = %,

y 65 = 2%, Ver Figura 2.

El convolucionar con filtros de Gausiana es un proceso
computacionalmente costoso. En cambio, hemos prop-

pesos de las muestras mal clasificadas son incremenuesto en [8] que es posible aproximar la respuestas de
tados para que el algoritmo sea forzado a concen-tales filtros por la de filtros con bases Haar usando la

trarse en las muestras idifes del conjunto de entre-

Imagen Integral, lo cél es computacionalmenteas

namiento que han sido mal clasificadas por los anteri- eficiente. A§ aproximamos la respuesta de la primera
ores clasificadores. Finalmente, se selecciona el clasi-derivada orientada con
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Figura 2: Filtros orientados de primer y segundo or-
den. (a-b) bases Gausianas, (c-d) filtros orientados de

la Gausiana, (e-f) bases de Haar, (g-h) filtros Haar ori-
entados.

Ix f1(0) = cosOI * f1(0) +sinfl * f1(5) . (7)

y de la misma forma, el detector deéas a cualquier R LR
orientacbn § se obtiene con (d) [ Hg () I+ Hsy
3 Figura 3: Respuesta a filtros de primer y segundo or-
I fa(0) =D ki(0)] x f2(6:) - (8)  den. a) imagen original , b-e) respuestas de los filtros

=1

La similitud de la respuesta a filtros con bases Gau'sianaG; y G [11], tan = I+G\, Otra €cnica, nas

; ; gttian I*G,
slanas'y Qe Haar nos permite usar wna base co robusta a oclusiones parciales es usar la moda del his-
mo clasificadores&biles para la detedm de puntos,

p X g tograma de orientaciones de los gradientes locales (ver
contornos yineas, de igual forma que se ptadhacer

: : o : Figura 4 c-d), para lo cual es necesario calcular la ori-
con los filtros Gau5|§lnos. La principal ve:'ntaja de este entacon del gradiente pixel a pixel, eés de una con-
enfoque es la vellomdad de.compqto. Mientras que..lavoluci'on con toda la re@in como en el caso previo.
convolucbn con filtros Gausianos tiene una compleji-
dad computacional d@(n), conn el tamdio del fil-
tro, la convoluodn con las bases de Haar orientadas 5. Imagen Integral de Orientacion
puede ser calculada en tiempo constante usando la rep-
resentadn de Imagen Integral. La Figura 3 muestras Una Imagen Integral es una represergade la ima-
algunos resultados. gen que permite unatculo @pido de caractesticas,
debido a que no trabaja directamente con las inten-
sidades de la imagen original. En cambio, esta tra-
baja sobre una imagen incrementalmente construida
gue diade valores de caracisticas a lo largo de filas
y columnas. Una vez computada esta represémaci
de la imagen, cualquiera de nuestras carstieas
locales (clasificador @bil) puede ser computado en
cualquier localizadn y escala en tiempo constante

4. Orientacion Local

Considere que una sési de entrenamiento ha pro-
ducido una constela@n H de caractdsticas localed
como se ilustra en la Figura 4. El objetivo es examinar
para nilltiples posiciones y escalas en cada nueva im-
agen, si tal constelamn pasa la prueb& o no. Enes

de intentar cada posible orientanide la constelaon, En su forma ras simple, el valor de la Imagen Inte-
escojemos almacenar la orientaticarbnicad, de H gral M en la coordenada, v contiene la suma de los
de una imagen de referencia del conjunto de entre-valores de los pixeles superior e izquierdauge, in-
namiento, y compararla con la orienteid de cada  cluyendo estodltimos.

region de la imagen que éssiendo examinada. La

diferencia de orientadn entre las dos indica la can- o

tidad que se debe reorientar la constélaaile carac- M(u,v) = Z 1(i,7) ©)
teristicas antes de examinar contra el clasificador iSu.gsv

Una forma para calcular la orientaai de una re@n Entonces, es posible computar por ejemplo, la suma
es con la ragn de las primeras derivadas de la Gau- de valores de intensidades en una @agiectangular
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Figura 6: Clases de objetos a entrenar. @dgenes del
dado, b) inagenes de la caja de discos , y chuenes
Figura 4: Orientadn local. a) orientaén carbnica, b) del fondo.

consteladin rotada, c) gradientes de Imagen, b) his-

tograma de orientaciones de gradientes.
i -" r I
A 4
A R B Pz .dilnm

cx—wsl- |

(a) (b)

(b)

Figura 5: Indgenes integrales, a) imagen integral b)
imagen integral de orientaciones.

simplemente @adiendo y sustraendo las intensidades (©) (d)

acumuladas en sus cuatrértices en la Imagen In-

tegral(Figura 5a). Luego, la respuesta de filtros Haar Figura 7: Constelaciones. a) constetexctel dado b)
puede ser calculada de formapida independiente- consteladdn de la caja de discos (c-d) clasificadores
mente del tanfao y posicon del filtro. comunes.

Area= A+ D—-B-C (20) ) ) )

en escala de grises. El conjunto de entrenamienta ten
Extendiendo la idea de tener informagiacumulada 100 imagenes para cada clase, y 50@genes nega-
en cada pixel en la Imagen Integral, hemos decidido tivas o de fondo. Estas @genes negativas fueron ex-
almacenar en ella informami de histogramas de ori- traidas de escenas exteriores e interiores. Lagenes
entacon enes de intensidades acumuladas. Una vez de los objetos de cada clase usadas para el entre-
construida esta Imagen Integral de Orientaciones, eshamiento presentaban algunas pétpse trasforma-
posible computar el histograma de oriendeciocal ciones como traslagn, orientadn y escala, como se
para cualquier regn rectangular dentro de la imagen Observa en la Figura 6.

en tiempo constante. Ver Figura Sb. La Figura 7 a) y b) muestra ejemplos de constela-

ciones de caractisticas extradas para cada objeto de
las distintas clases. Cada unaéefsrmada por 8 clasi-
Histograma(Area)= HistogramaA) + Histogram&D)  ficadores @biles (caractésticas Haar), con 4 de ellas
—Histogram#&B) — HistogramdC') (119omunes para ambas clases, y las 4 restantesiéspec
cas para cada clase. iAproduciendo una estructura
jerarquica de clasificadoreshiles. Imagenes c) y d)
6. Experimentos muestran solo estos 4 clasificadores comunes. Ellos
capturan informaéin local similar en ambas clases,
En este aftulo reportamos algunos resultados ini- separando estos de la clase fondo, sin la necesidad de
ciales para unimero limitado de objetos en agenes  ser espéifica.
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El clasificador fuerte puede ser expresado como la 20

combinacbn de clasificadoreséthiles comunes y es- =

pedficos. Considere el dado como la clase 1, la caja

de discos la clase 2, 412 el conjunto de muestras de Figura 9: Ejemplos de correcta detdéutide clasifi-

entrenamiento conteniendo uno o ambos objetos. En-cadores entrenados conjuntamente (dado y caja de dis-

tonces, cos). Lalltima imagen muestra tanén bajo que cir-
cunstancias puede ocurrir una falsa det@tci

H(l,e1) = Z (I, e12) + Z h(l,er)  (12) el sistema encuentra caradsticas comunes entre ob-

jetos y generaliza el problema de reconocimiento.
H(l,c2) = 3 Wl ei2) + ) hilie))  (13) Nuestro enfoque se basa en seleccionar de forma au-

) ] tomatica un conjunto de caractsticas locales. En
Las curvas de entrenamiento se muestran en la Figurg.gniraste con enfoques previos, hemos propuesto el

8. En ellas se mues_tra como la correcta clasif@aci |54 de filtros con bases de Haar y una nueva imagen
durante el entrenamiento es alcanzada. Algunos resu"lntegral de orientaén para la evaluaéh rapida de la

tad.os, en el proceso de detem:sqbre una secuencia grientacon local.
de imagenes se muestran en la Figura 9.
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