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Resumen

Este art́ıculo presenta un sistema para el re-
conocimiento de objetos basado en caracterı́sticas lo-
cales simples invariantes a escala y orientación, que
al ser entrenado con un mecanismo de clasificación
supervisada produce clasificadores robustos para un
número limitado de clases de objetos. El sistema ex-
trae las caracterı́sticas ḿas relevantes de un conjun-
to de muestras de entrenamiento y construye una es-
tructura jeŕarquica de ellas, concentrándose primero
en caracterı́sticas comunes entre las clases y posterior-
mente, en aquellas caracterı́sticas especı́ficas de cada
clase. Para lograr invariancia a rotación de forma efi-
ciente se propone el uso de filtros orientados no Gaus-
sianos, junto con una Imagen Integral de Orientación
para un ćalculo ŕapido de la orientación local.

1. Introducción

La deteccíon de objetos es crucial para la mayorı́a
de tareas de visión por ordenador; particularmente, en
aplicaciones que requieren el posterior reconocimien-
to de estos. Los primeros enfoques para la solución
del reconocimiento de objetos por ordenador se basan
en la b́usqueda de correspondencia entre modelos ge-
ométricos del objeto y caracterı́sticas en la imagen.
Para evitar la necesidad de poseer tales modelos a pri-
ori, surgío en laśultimas dos d́ecadas el paradigma del
reconocimiento de objetos basado en apariencia, us-
ando t́ecnicas de reducción de dimensionalidad tales
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jo el proyecto TIC2003-09291, y es también patrocinado en
parte por el proyecto europeo PACO-PLUS FP6-2004-IST-
4-27657. Los autores pertenecen al Grupo de Investigación
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como el ańalisis de componentes principales. Desafor-
tunadamente, la correspondencia basada en apariencia
es propensa a fallar en situaciones con pequeñas oclu-
siones o bajo distintas condiciones de iluminación o
del fondo. Recientemente, el reconocimiento de ob-
jetos se ha beneficiado de estrategias que combinan
la combinacíon de caracterı́sticas geoḿetricas locales,
aśı como de apariencia. El ḿas popular de estos méto-
dos, es quiźa, el uso de descriptores SIFT [4].

A diferencia de usar reglas de saliencia para la selec-
ción de caracterı́sticas como en el caso del descriptor
SIFT, el uso de t́ecnicas deboostingha demostrado
beneficios al seleccionar las caracterı́sticas geoḿetric-
as y de apariencia ḿas relevantes sobre conjuntos de
muestras de entrenamiento. A pesar de su poder para
alcanzar un reconocimiento correcto con los datos del
entrenamiento, las primeras técnicas deboostingco-
mo [9], fueron confeccionadas para el reconocimiento
de una sola clase de objetos, y por consiguiente no son
adecuadas para el reconocimiento multiclase, dada la
gran cantidad de caracterı́sticas que se necesitan al en-
trenar independientemente cada clase de objetos.Últi-
mamente han aparecido algunas extensiones a la idea
general de clasificación conbootingque permiten el
entrenamiento combinado de múltiples clases [3, 1].
En visión por ordenador, Torralbaet al. [7] propuso
una extensíon al algoritmo deboosting(gentleboost),
con el proṕosito de compartir caracterı́sticas a trav́es
de ḿultiples clases de objetos y reducir el número total
de clasificadores. Al ḿetodo se le llaḿo JointBoost, y
seǵun este enfoque, todas las clases objetos son entre-
nadas conjuntamente, donde para cada posible subcon-
junto de clases (2n−1 excluyendo el conjunto fondo),
la caracteŕıstica ḿas útil es seleccionada para distin-
guir aquel subconjunto de la clase fondo. El proceso
es repetido hasta que el error global de clasificación
alcanza un ḿınimo, o hasta alcanzar un número limite
de clasificadores.

El tipo de clasificadores usados en [7] están basados en
la correspondencia de simples patrones, que presumi-



blemente fallaŕıa si el objeto se encuentra a diferentes
orientaciones de las cuales fue entrenado. En este tra-
bajo se investiga sobre la selección de caracterı́sticas
multiclase de forma similar, pero con un fuerte interés
en el ćalculo ŕapido de clasificadores débiles invari-
antes a orientación [8], con el fin de obtener un sis-
tema de reconocimiento de múltiples objetos que sea
invariante a rotación.

En [9], Viola introdujo la Imagen Integral para la eval-
uacíon ŕapida de caracterı́sticas. Una vez calculada,
la Imagen Integral permite la respuesta de una im-
agen a la convolución con una base de Haar [5] a
cualquier posicíon y escala en tiempo real. Desafor-
tunadamente, tal sistema no es invariante a cambios
de orientacíon del objeto ni a oclusiones. Otros sis-
temas de reconocimiento que funcionan bien en es-
cenas complejas son los basados en el cómputo de
caracteŕısticas locales multi-escala tales como el de-
scriptor SIFT [4] mencionado anteriormente. Una idea
importante en el descriptor SIFT es que incorpora
orientacíon local para cada punto de interés, permi-
tiendo invariancia a escala y orientación durante el
reconocimiento. Incluso, cuando un gran número de
caracteŕısticas SIFT pueden ser calculadas en tiempo
real para unáunica imagen, la correspondencia en-
tre la muestra y las iḿagenes de prueba es realizada
mediante la b́usqueda del vecino ḿas cercano y por
votacíon con la transformada de Hough generalizada,
seguido por la solución de la relacíon de afinidad entre
vistas, lo cual podrı́a terminar en un proceso computa-
cionalmente costoso.

Yokono and Poggio [10, 11] prefieren el uso de es-
quinas Harris a varios niveles de resolución como
puntos de inteŕes, y de estas, seleccionan como car-
acteŕısticas del objeto aquellas que son más robustas
a filtros de derivadas de la Gausiana bajo rotación y
escala. Como las derivadas de la Gausiana no son in-
variantes a rotación, ellos utilizan filtros orientados [2]
para orientar todas las respuestas de las caracterı́sti-
cas seǵun la orientacíon local de gradientes alrededor
del punto de inteŕes. En la fase de reconocimiento, el
sistema áun requiere correspondencia de caracterı́sti-
cas locales, e iterar sobre todos las correspondencias
en grupos de 6, buscando la mejor homografı́a, usan-
do RANSAC para eliminar valores atı́picos. Desafor-
tunadamente, el coste computacional de este enfoque
no se reporta.

En [8] hemos reportado que la respuesta del filtro a
convoluciones con bases de Haar no solo se puede cal-
cular eficientemente con una Imagen Integral, sino que
puede ser aproximadamente rotada con algunas sim-
plificaciones de los filtros orientados de Gausianas. Lo
cual permite el ćalculo eficiente de la respuesta a filtros
invariantes a rotaciones, y su uso como clasificadores
débiles.

En este artı́culo, hemos incorporado estas dos ideas,

boostingmulticlase e invariancia a rotación, para la se-
lección de caracterı́sticas comunes y especı́ficas para
construir una estructura jerárquica que permita re-
conocer ḿultiples objetos independientemente de su
posicíon, escala y orientación utilizando un reduci-
do conjunto de caracterı́sticas. En nuestro sistema, los
puntos de inteŕes son seleccionados como aquellas re-
giones en la imagen que tienen la respuesta más dis-
criminante bajo la convolución con un conjunto de
funciones basewaveletsa varias escalas y orienta-
ciones. En la Sección 2 se explica como las carac-
teŕısticas ḿas relevantes son seleccionadas y combi-
nadas para clasificar ḿultiples objetos. La selección se
basa enJointBoost, en el cual una estructura jerárquica
es formada por conjuntos de clasificadores comunes y
espećıficos. Una combinación lineal de estos clasifi-
cadores d́ebiles produce un clasificador fuerte para ca-
da clase de objetos, el cual es usado en la fase de detec-
ción. La invariancia a rotación es posible al convolu-
cionar cada muestra con funciones base orientadas. La
rotacíon del filtro se calcula de forma eficiente con la
ayuda de los filtros orientados, que es a su vez la com-
binacíon lineal de filtros base, tal y como se indica en
la Seccíon 3.

Durante la fase de reconocimiento, cada región de la
imagen debe ser rotada a una orientación cańonica,
obtenida durante el entrenamiento, antes de hacer la
correspondencia. Tal orientación es dictada por la mo-
da del histograma de orientaciones de gradientes de-
scrito en la Sección 4. En la Sección 5 se explica
nuestra Imagen Integral de orientaciones, la cual pro-
ponemos para un cálculo ŕapido de orientación, y en la
seccíon 6 se presentan algunos experimentos.

2. Seleccíon de Caracteŕısticas

El conjunto de caracterı́sticas locales que mejor dis-
criminan un objeto se obtiene gracias a la convolu-
ción de muestras de iḿagenes positivas con un con-
junto simplificado de funciones baseswavelets[5] a
diferentes escalas y orientaciones. Estos filtros tienen
selectividad a la orientación espacial como también
a frecuencia, y producen caracterı́sticas que capturan
el contraste entre regiones representando contornos,
puntos y ĺıneas. El conjunto de operadores usados se
muestra en la Figura 1. La respuesta del filtro es equiv-
alente a la diferencia de intensidad en la imagen orig-
inal entre la regíon oscura y la clara. La figura 1 d)
ilustra como un objeto puede ser representado por un
pequẽno conjunto de caracterı́sticas relevantes.

La convolucíon de estos operadores a una orientación
deseada se realiza al orientar el filtro (Sección 3), y
la convolucíon ŕapida sobre cualquier región de la im-
agen original es eficientemente obtenida mediante la
Imagen Integral (Sección 5).

La seleccíon de caracterı́sticas se lleva a cabo de man-



(a) f0 (b) f1

(c) f2 (d)

Figura 1: Conjunto de baseswaveletsimplificado. a)
punto b) contorno, c) lı́nea, y d) caracterı́sticas locales
del objeto

era similar aJointBoost[7], escogiendo el clasificador
débil h(I, s) que mejor discrimina cualquier subcon-
junto s de la clase fondo, con2n − 1 subconjuntos
de clasesc = 1...n (excluyendo el mismo conjunto
fondo), El clasificador d́ebil se define por los parámet-
ros del filtro, tamãno, posicíon, orientacíon y umbral,
tomando valores de decisión binaria

h(I, s) =
{

1 : I ∗ f > t
0 : otros casos

(1)

dondeI es una imagen de entrenamiento perteneciente
a la clasec en el subconjuntos, f es el filtro con todos
sus paŕametros,∗ indica la operacíon de convolucíon,
y t es el umbral de la respuesta del filtro.

En cada iteración durante la fase de entrenamiento, el
algoritmo debe buscar para todos los2n − 1 subcon-
juntos, el clasificador d́ebil que mejor discrimine aquel
subconjunto de la clase fondo, minimizando el error
cuadŕatico sobre las muestras ponderadas de todas las
clases en aquel subconjunto.

Jwse =
n∑

c=1

m∑
s=1

wc
i (z

c
i − h(I, s))2 (2)

dondezc
i y wc

i son la etiqueta y el peso de la muestra
i para la clasec respectivamente, ym el número total
de muestras de entrenamiento. El algoritmo también
actualiza los conjuntos de pesos sobre las muestras de
entrenamiento. El ńumero de conjuntos corresponde
con el ńumero de clases a aprender. Inicialmente, to-
dos los pesos son iguales, pero en cada iteración, los
pesos de las muestras mal clasificadas son incremen-
tados para que el algoritmo sea forzado a concen-
trarse en las muestras difı́ciles del conjunto de entre-
namiento que han sido mal clasificadas por los anteri-
ores clasificadores. Finalmente, se selecciona el clasi-

ficador d́ebil para el subconjunto que tiene el mı́nimo
error cuadŕaticoJ , y se ãnade iterativamente al clasi-
ficador fuerte para cada clasec ens, H(I, c).

H(I, c) := H(I, c) + h(I, s) (3)

La invariancia a escala se obtiene al iterar también
sobre filtros escalados. El escalado del los filtros se
puede efectuar en tiempo constante con la Imagen In-
tegral computada previamente.

3. Filtros Orientados

Para obtener invariancia a orientación, los filtros lo-
cales deben ser rotados antes de realizar la convolu-
ción. Una buena alternativa, es computar estas rota-
ciones con filtros orientados [2], o con su versión com-
pleja [6]. Un filtro orientado es un filtro rotado a partir
de la combinacíon lineal de un conjunto de filtros base
a orientaciones especı́ficas.

I ∗ f(θ) =
n∑

ki(θ)I ∗ f(θi) , (4)

dondef(θi) son los filtros base orientados, yki son
los coeficientes de las bases.

Considere por ejemplo, la función Gausiana
G(u, v) = e−(u2+v2), y su primera y se-
gunda derivadas G′u = −2ue−(u2+v2) y
G′′u = (4u2 − 2)e−(u2+v2). Estos filtros pueden
ser orientados como la combinación lineal de los
filtros base. El ńumero de filtros base es uno más que
el orden de diferenciación.

Consecuentemente, la primera derivada de la función
Gausiana a cualquier orientaciónθ es

G′θ = cos θG′u + sin θG′v , (5)

y, la orientacíon de la segunda derivada de la Guasiana
puede ser obtenida con

G′′θ =
3∑

i=1

ki(θ)G′′θi
(6)

con ki(θ) = 1
3 (1 + 2 cos(θ − θi)); y G′′θi

son filtros
precalculados de segunda derivada aθ1 = 0, θ2 = π

3 ,
y θ3 = 2π

3 . Ver Figura 2.

El convolucionar con filtros de Gausiana es un proceso
computacionalmente costoso. En cambio, hemos prop-
uesto en [8] que es posible aproximar la respuestas de
tales filtros por la de filtros con bases Haar usando la
Imagen Integral, lo cúal es computacionalmente más
eficiente. Aśı, aproximamos la respuesta de la primera
derivada orientada con
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Figura 2: Filtros orientados de primer y segundo or-
den. (a-b) bases Gausianas, (c-d) filtros orientados de
la Gausiana, (e-f) bases de Haar, (g-h) filtros Haar ori-
entados.

I ∗ f1(θ) = cos θI ∗ f1(0) + sin θI ∗ f1(π
2 ) . (7)

y de la misma forma, el detector de lı́neas a cualquier
orientacíonθ se obtiene con

I ∗ f2(θ) =
3∑

i=1

ki(θ)I ∗ f2(θi) . (8)

La similitud de la respuesta a filtros con bases Gau-
sianas y de Haar nos permite usar estaúltima base co-
mo clasificadores d́ebiles para la detección de puntos,
contornos y ĺıneas, de igual forma que se podrı́a hacer
con los filtros Gausianos. La principal ventaja de este
enfoque es la velocidad de computo. Mientras que la
convolucíon con filtros Gausianos tiene una compleji-
dad computacional deO(n), conn el tamãno del fil-
tro, la convolucíon con las bases de Haar orientadas
puede ser calculada en tiempo constante usando la rep-
resentacíon de Imagen Integral. La Figura 3 muestras
algunos resultados.

4. Orientación Local

Considere que una sesión de entrenamiento ha pro-
ducido una constelaciónH de caracterı́sticas localesh
como se ilustra en la Figura 4. El objetivo es examinar
para ḿultiples posiciones y escalas en cada nueva im-
agen, si tal constelación pasa la pruebaH o no. Env́es
de intentar cada posible orientación de la constelación,
escojemos almacenar la orientación cańonicaθ0 deH
de una imagen de referencia del conjunto de entre-
namiento, y compararla con la orientación θ de cada
región de la imagen que está siendo examinada. La
diferencia de orientación entre las dos indica la can-
tidad que se debe reorientar la constelación de carac-
teŕısticas antes de examinar contra el clasificadorH.

Una forma para calcular la orientación de una región
es con la raźon de las primeras derivadas de la Gau-
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Figura 3: Respuesta a filtros de primer y segundo or-
den. a) imagen original , b-e) respuestas de los filtros

sianaG′u y G′v [11], tan θ = I∗G′v
I∗G′u . Otra t́ecnica, ḿas

robusta a oclusiones parciales es usar la moda del his-
tograma de orientaciones de los gradientes locales (ver
Figura 4 c-d), para lo cual es necesario calcular la ori-
entacíon del gradiente pixel a pixel, envés de una con-
volución con toda la región como en el caso previo.

5. Imagen Integral de Orientacíon

Una Imagen Integral es una representación de la ima-
gen que permite un cálculo ŕapido de caracterı́sticas,
debido a que no trabaja directamente con las inten-
sidades de la imagen original. En cambio, esta tra-
baja sobre una imagen incrementalmente construida
que ãnade valores de caracterı́sticas a lo largo de filas
y columnas. Una vez computada esta representación
de la imagen, cualquiera de nuestras caracterı́sticas
locales (clasificador d́ebil) puede ser computado en
cualquier localizacíon y escala en tiempo constante

En su forma ḿas simple, el valor de la Imagen Inte-
gral M en la coordenadau, v contiene la suma de los
valores de los pixeles superior e izquierda deu, v, in-
cluyendo estośultimos.

M(u, v) =
∑

i≤u,j≤v

I(i, j) (9)

Entonces, es posible computar por ejemplo, la suma
de valores de intensidades en una región rectangular
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Figura 4: Orientacíon local. a) orientación cańonica, b)
constelacíon rotada, c) gradientes de Imagen, b) his-
tograma de orientaciones de gradientes.

Figura 5: Iḿagenes integrales, a) imagen integral b)
imagen integral de orientaciones.

simplemente ãnadiendo y sustraendo las intensidades
acumuladas en sus cuatro vértices en la Imagen In-
tegral(Figura 5a). Luego, la respuesta de filtros Haar
puede ser calculada de forma rápida independiente-
mente del tamãno y posicíon del filtro.

Area= A + D −B − C (10)

Extendiendo la idea de tener información acumulada
en cada pixel en la Imagen Integral, hemos decidido
almacenar en ella información de histogramas de ori-
entacíon env́es de intensidades acumuladas. Una vez
construida esta Imagen Integral de Orientaciones, es
posible computar el histograma de orientación local
para cualquier región rectangular dentro de la imagen
en tiempo constante. Ver Figura 5b.

Histograma(Area)= Histograma(A) + Histograma(D)
−Histograma(B)− Histograma(C) (11)

6. Experimentos

En este artı́culo reportamos algunos resultados ini-
ciales para un ńumero limitado de objetos en iḿagenes

a)

b)

c)

Figura 6: Clases de objetos a entrenar. a) imágenes del
dado, b) iḿagenes de la caja de discos , y c) imágenes
del fondo.

(a) (b)

(c) (d)

Figura 7: Constelaciones. a) constelación del dado b)
constelacíon de la caja de discos (c-d) clasificadores
comunes.

en escala de grises. El conjunto de entrenamiento tenı́a
100 imágenes para cada clase, y 500 imágenes nega-
tivas o de fondo. Estas iḿagenes negativas fueron ex-
tráıdas de escenas exteriores e interiores. Las imágenes
de los objetos de cada clase usadas para el entre-
namiento presentaban algunas pequeñas trasforma-
ciones como traslación, orientacíon y escala, como se
observa en la Figura 6.

La Figura 7 a) y b) muestra ejemplos de constela-
ciones de caracterı́sticas extráıdas para cada objeto de
las distintas clases. Cada una está formada por 8 clasi-
ficadores d́ebiles (caracterı́sticas Haar), con 4 de ellas
comunes para ambas clases, y las 4 restantes especı́fi-
cas para cada clase. Ası́, produciendo una estructura
jerárquica de clasificadores débiles. Iḿagenes c) y d)
muestran solo estos 4 clasificadores comunes. Ellos
capturan información local similar en ambas clases,
separando estos de la clase fondo, sin la necesidad de
ser espećıfica.



(a)

(b)

Figura 8: Desempẽno en el entrenamiento. a) dado b)
caja de discos.

El clasificador fuerte puede ser expresado como la
combinacíon de clasificadores débiles comunes y es-
pećıficos. Considere el dado como la clase 1, la caja
de discos la clase 2, yc12 el conjunto de muestras de
entrenamiento conteniendo uno o ambos objetos. En-
tonces,

H(I, c1) =
∑

h(I, c12) +
∑

h(I, c1) (12)

H(I, c2) =
∑

h(I, c12) +
∑

h(I, c2) (13)

Las curvas de entrenamiento se muestran en la Figura
8. En ellas se muestra como la correcta clasificación
durante el entrenamiento es alcanzada. Algunos resul-
tados en el proceso de detección sobre una secuencia
de imágenes se muestran en la Figura 9.

7. Conclusiones

En este artı́culo se ha introducido una selección de
estructura jeŕarquica de caracterı́sticas que reduce el
número total de clasificadores débiles necesarios para
detectar ḿultiples clases de objetos. Con este método

Figura 9: Ejemplos de correcta detección de clasifi-
cadores entrenados conjuntamente (dado y caja de dis-
cos). Laúltima imagen muestra también bajo que cir-
cunstancias puede ocurrir una falsa detección.

el sistema encuentra caracterı́sticas comunes entre ob-
jetos y generaliza el problema de reconocimiento.

Nuestro enfoque se basa en seleccionar de forma au-
tomática un conjunto de caracterı́sticas locales. En
contraste con enfoques previos, hemos propuesto el
uso de filtros con bases de Haar y una nueva imagen
integral de orientación para la evaluación ŕapida de la
orientacíon local.
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