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Abstract— In this work we present a robust detection method
in outdoor scenes under cast shadows using color based
invariant gradients in combination with HoG local features.
The method achieves good detection rates in urban scene
classification and person detection outperforming traditional
methods based on intensity gradient detectors which are sen-
sible to illumination variations but not to cast shadows. The
method uses color based invariant gradients that emphasize
material changes and extract relevant and invariant features
for detection while neglecting shadow contours. This method
allows to train and detect objects and scenes independently of
scene illumination, cast and self shadows. Moreover, it allows
to do training in one shot, that is, when the robot visits the
scene for the first time.

I. INTRODUCTION

This work proposes a robust detection method for robotics
applications, such as people and object detection or scene
classification under cast shadows. In outdoor vision tasks,
illumination conditions constraint the detector performance
due to varying features produced by cast shadows. This
method is focused to object detection in urban settings,
within the European Project URUS [1], where varying shad-
ows are present and illumination conditions are extreme
(Figure 1). In these environments, detection becomes a
challenging task for robots and network robot systems.

Recently, several techniques based on Histograms of
Oriented Gradients [2]-[6] have been developed, which are
robust and reliable for representing image local features.
The key point in using HoG descriptors is to capture or
encode feature appearance layout where each histogram cell
contains an oriented gradient distribution for pixels within
this cell. Although, successful detection results with HoG
based detectors are sensible to cast shadows because they
depend on intensity gradients. In cast shadows scenes, a
lot of false gradients are present making difficult to train
good reliable descriptors and perturbing object gradients
in the detection phase, see Figure 3. Dalal and Triggs [3]
proposed to use HoG descriptors for pedestrian detection
in static images and videos. They use an overlapping
local contrast normalization in order to improve detection
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performance giving certain invariance to illumination and
shadows. In Bosch et al. [2] pyramidal Histograms of
Oriented Gradients are used for object categorization. These
pyramidal descriptors encode features and their spatial
layout at several resolution levels, allowing robustness to
small feature shifts. Finer histogram levels are weighted
more than coarser ones, since finer resolutions have more
detailed feature shape description. This idea is inspired by
image pyramid representation of scenes [5]. The descriptor
matches measure the appearance and spatial correspondences
of features, i.e. oriented gradients. Pyramidal descriptors are
computed on Regions of Interest (ROIs) in order to suppress
background clutter and occlusions. This spatial pyramidal
representation is an extension to the Dalal and Triggs method
where Histograms of Oriented Gradients are restricted to
finer resolutions. In the same way, SIFT features [6] compute
fixed HoG descriptors in a grid of 4 x 4 cells and 8 gradient
orientations around key points. In Scandaliaris et al. [7], we
proposed to use color based invariant contours and compared
them against simple intensity contours in object detection
domain under shadows. The proposed method outperformed
classical methods and showed that invariant contours can
be extracted. The method is based on a physical model
of the image formation process and strives to remove the
effects of shadows, producing a contour image invariant
to shadows. Instead of calculating the gradient modulus
from the color images, we detect contours that correspond
to material changes using a modification to the approach
proposed by Gevers et al. [8] based on a combination
of photometric invariant contours and automatic local
noise-adaptive thresholding. Using these invariant contours
we compute and select discriminative Haar-like features
to build a simple but fast object detector. However, a
large number of contour Haar features had to be computed
because of the limited discriminative power of these features.

In this paper, we use pyramidal Histograms of Oriented
Gradients in order to have more discriminative and robust de-
scriptors with which to describe objects or scenes, and to face
up the drawback of cast shadows using color based invariant
gradients (referred to as invariant gradients from now on)
[7] that reduce illumination and shadow effects and improve
detection results in robotics applications. The descriptors
extracted during the learning phase (see section IV) encode
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Fig. 1. Barcelona Robot Lab. Change of illumination conditions at different
instances of daylight

relevant and invariant features useful for detection. As cast
shadows are reduced, this method uses few sample images to
train the detector. Therefore, it is possible to train the detector
using just one illumination condition, being able to detect
object or scenes with different illumination conditions. Then,
the process of learning (Boosting of HoG features) is limited
to the first time the robots visit the area (this is true when
the illumination conditions do not change dramatically). To
validate our method, we have carried out experiments in
scene classification and person detection under cast shadows
and compare them against using intensity gradient based
HoG descriptors (see section V). Our results outperform
intensity gradient based HoG descriptors and achieve good
detection rates.

II. COLOR BASED INVARIANT GRADIENT DETECTOR

In this work we assume the dichromatic reflection model
[9] for the physical interaction between the light incident
over the scene, the surfaces of the scene and the camera.
Moreover, we assume that the illumination source is white
or spectrally smooth and the interface reflectance is neutral.
Under these assumptions the reflection model is given by:

Vi = Gy (7,5)E /)L B(A)Fu(A)dA +Gi(i,5,7)ESF (1)

where V; is the kth sensor response, G;, and G; are geometric
terms denoting the geometric dependencies of the body and
surface reflection component. That is, surface normal, 7,
illumination direction, §, and viewing direction, V. B(A) is
the surface albedo, E denotes the illumination source, and
S denotes the Fresnel reflectance, both assumed independent
of A. Fi(A) denotes the kth sensor spectral sensitivity and
F=[,F(A)dA.

A. Color Models

The invariant gradient detector that we propose is based on
the work of Gevers [8] and the modifications proposed in [7].
This detector uses three color models that have different and
complementary properties regarding their response: RGB,
clc2¢3 and 0l102. In the RGB color model {R,G,B} values

TABLE I
COLOR MODEL SENSITIVITY TO PARAMETERS OF THE IMAGE
FORMATION PROCESS. + DENOTES SENSITIVITY AND - INVARIANCE OF
THE COLOR MODEL TO A PARTICULAR PARAMETER.

shadow  geometry material  highlights
RGB + + + +
clec2ce3 - - + +
olo2 + + + -

correspond directly with V; in (1). The clc2¢3 color model
is defined by

c1(R,G,B) = arctan(R/max (G, B)) 2
¢2(R,G,B) = arctan(G/max(R,B)) 3)
¢3(R,G,B) = arctan(B/max(R,G)) 4)

and the 0l02 color model is defined by

01(R,G,B) = (R—G)/2 (5)
02(R,G,B) = (R+G)/4—B/2 (6)

It follows from (1) that the RGB color model is sensitive
to all parameters of the dichromatic reflection model, the
clc2c3 color model depends only on the sensor spectral
sensitivities and the surface albedo or material for dull
objects, being independent of shadows and geometry (E and
Gp in the model) and the ol02 color model is invariant
to highlights for shiny objects under the same assumptions.
0lo2 is still dependent on geometry (Gj). These results can
be seen in Table L.

B. Color Invariant Gradient

The invariant gradient is computed by calculating the x and
y derivatives for each channel of the three aforementioned
color models using Gaussian derivatives and the gradient
magnitude for each color model is computed using the
Euclidean metric over the various channel derivatives:

N 8c,~ 2 8c,- 2

e EG)G)] o

with C representing each color model, N being their dimen-
sionality, and ¢; the particular color channels.

However, the presence of noise in the images can lead
to maxima in the gradient modulus that are not related to
the parameters of the image formation process. One way
to eliminate these maxima is propagating the uncertainties
associated to the color models as well as the different
gradient moduli. In order to do this, we calculate the gradient
magnitude of the RGB, clc2c3 and o0l02 color models, and
then, we propagate (see [7] for details) the RGB uncertainties,
assumed to be known, through the various color models up
to the gradient magnitudes, using the uncertainties associated
with the gradient magnitude of each color space, oy,.. Finally
we define the gradient product

M =VRGB-Vclc2c¢3-Volo2 ()



M will have a maximum value when the gradient moduli of
all color models are simultaneously maximum, and will have
low values when the gradient modulus of any of the color
models is low. By looking at Table I it is evident that the
response of M emphasizes material changes in the image, in
contrast to those in shadows, geometry and highlights.

Then, the uncertainty in the function M is also computed
to yield

oM
oy < Zj: I(VC)) Ovc, 9)

where the summation is over the three color models, RGB,
clc2c3 and olo2, and with Oy, dropping the j subindex,
being calculated for each color model using

J) ()]

with C representing each color model and ¢; the particular
color channels. The uncertainties 05, and 05, are computed

ac;
dx

dc;
- Ooc; + i,’
a9

(10)

by approximating the derivatives ggz ﬁlterirfgy with a mask,
Gaussian in this case.

Finally, we obtain a local noise-adaptive threshold for
removing noisy measurements from M.

M M >3
M = M (1)
0  otherwise
The final result emphasizes the contribution of material
changes and at the same time reduces that of shadow-
geometry and highlights on the input images.

III. PYRAMIDAL HOG DESCRIPTOR

Methods based on Histograms of Oriented Gradients
(HoG) have shown successful results in object detection and
classification [2], [4], [5], [10]. Although they have been
tested in outdoor scenes for object detection, such as cars,
these methods have not been tested under extreme illumi-
nation conditions, such as varying shadows. We address
detection under these conditions and compare the results by
using the invariant gradient for detecting the main features
of the scene object contours that do not belong to a cast
shadow. In this work, the pyramidal HoG [2] is used as local
descriptor using its spatial histogram resolution pyramid,
see Figure 2. With this representation, features (oriented
gradients) can be matched at several spatial grid resolu-
tions, which improves the detection of features, unlike other
methods which have a fixed spatial histogram resolution
[3], [6]. This implementation allows a certain invariance
to image transformations, i.e. feature shifts. The pyramidal
HoG descriptor is similar to the well known SIFT descriptor
[6], however the last one has fixed spatial grid resolution
(4 x 4) with descriptors located around key points (blobs).
We opt for localizing local descriptors in multiple scales and
locations.

Spatial Histogram Pyramid

Fig. 2. Pyramidal HoG descriptor

We use the pyramid match kernel similarity measure
between two HoG descriptors H,,H, [11]. This measure is
defined as a weighted sum of feature matches that occur
in each resolution level. Feature matching in each level is
carried out using histogram intersection [12] and its level
weight assigned according to histogram resolution. Matches
in coarser levels have lower weight than finer ones. This
technique is robust to clutter since additional features do not
affect the pyramid matching. Additionally, pyramid matching
computation is linear in the number of local features [11].
The matching can be expressed as :

I'(Hy, Hy)  (12)

1, L
kL(nyHy) = ﬁl (Hx,Hy) +; W
where I'(Hy,Hy) = Y2, min(HL(i),H.(i)) is the intersection
measure between descriptor histograms H, and H,, of di-
mension D, at level [.

IV. IMPLEMENTATION DETAILS

In order to compute and select local descriptors a boosting
algorithm is used [13]. This algorithm selects the most
discriminative HoG descriptors to build a robust classifier
by means of a weighted linear combination of them. At each
iteration a weak classifier is selected which better classifies
the training images from positive and negative samples.
Each weak classifier is defined by one pyramidal HoG
descriptor and its location, scale and threshold. The threshold
is calculated automatically inside the boosting algorithm as
the threshold where the classification rate is maximum. In
our experiments 280 weak classifiers are boosted to form a
strong classifier.

The minimum and maximum descriptor scales are 16 x
16 pixels and 0.6 of training image size, respectively. The
training image size depends on the target to detect and its
aspect ratio. In our case, for person detection, 120 x 100
images are used and for scene classification 180 x 240 images
are used. Our experiments show that scene classification can
be efficiently done in low resolution images.



V. EXPERIMENTS

This section describes experiments carried out to show
the proposed detector performance under cast shadows and
diverse illumination conditions, and to compare these re-
sults with the same method but using intensity gradient
descriptors. False gradients resulting from cast shadows
affect the detector performance and make difficult to train
the detector. In the experiments, it is possible to observe
how the proposed method extracts and selects more robust
features to shadows than using traditional intensity gradient
methods. These intensity gradient based descriptors can only
detect objects or scenes under similar illumination conditions
as the training images. The experiments are performed on
scene classification and person detection that are typical
applications in robotic vision systems and are part of the
URUS project [1].

A. Person detection

In this experiment, we have a sequence of images of a
person that moves through a scene with shadows caused
by trees and buildings. The images show the upper body
part of the person. We have used the first 20 images for
training and the rest of the images, about 100, for tests. These
images have cast shadows (see Figure 3 d-f), the upper body
presents some shifts and also some 3D body rotations. The
experiments were carried out as follows: the same sequence
of images has been filtered by an intensity gradient and a
invariant gradient (Figure 3). Then a HoG descriptor has been
used in both sequences of filtered images, and the measure
distance described in section III and boosting classifier have
been used for detection on the scenes. The results are shown
in the detection curves (ROC) shown in Figure 4. The axes
represent true positive ratio and false positive ratio; both
ratios are in the interval [0,1]. As we can see, our proposed
invariant gradient outperforms the traditional gradient filter
method. Moreover, the maximum detection rate of the HoG
descriptor is obtained when we use 8 gradient orientations
and 3 levels in the pyramid representation (16 x 16 cell grid).

B. Scene Classification

The same method has also been used for urban scenes.
In this case the images were taken by four cameras of the
Barcelona Robot Lab (experimental site for urban robots at
UPC, Barcelona). Figure 5 shows some examples of these
images. The training of each detector was done with the
images captured from one of the four scenes in a short
time interval in the morning. In this case, we used about
10 images for each camera taken within an interval of 5
minutes. The aim is to classify the images from a negative
image dataset and test images from the four scenes in order
to measure scene detector performance and discrimination
among scenes. 500 negative samples were extracted from
images with high contrast. Around 100 test images per
scene were selected from the scene camera sequence to
test the detectors. The results are shown in Figures 6 and
7. These curves were obtained testing each learned scene
detector (rows) with negative images and test images from

(g) seq 50 (h) seq 115 (i) seq 200

(j) seq 50

(k) seq 115 (1) seq 200

Fig. 3. Person image sequence. a-c) training samples d-f) test samples g-i)
intensity contours j-1) shadow invariant contours

the four scenes (columns). What we expect is that curves in
the diagonal must have maximum detection with minimum
false positive rate. We can see that this is true for Figure
7 for where the invariant gradient detector was used. This
fact shows that learned scene detectors respond better with
images of their own class. Therefore, it is possible to perform
robust and reliable classification in images with varying
cast shadows, even having similiar scenes patterns. As this
method is based on local descriptors, it can withstand mild
occlusions. In cases with a moderate amount of unknowns
elements (bikes, people, etc.), some descriptors would fail
but other carry on with the supporting decision, thanks to
the boosted classifier (section IV).

VI. CONCLUSIONS

In this paper, we have shown that detection performance in
outdoor scenes under cast shadows improves when combin-
ing invariant gradients with pyramidal HoG descriptors. The
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(n) scene 5
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Fig. 5.

method has been tested in person detection and scene classi-
fication achieving high detection rates and outperforming the
pyramidal HoG descriptors based on intensity gradients. The
descriptors based on the invariant gradients are more robust
to shadows and changes in illumination conditions, and thus
the proposed method allows for training with a small number
of sample images taken at any time of the day.
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