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Abstract
There is an error in “Stability and Hy-
pothesis Transfer Learning” (Kuzborskij &
Orabona, 2013) which appeared in proceed-
ings of ICML 2013. The Leave-One-Out
generalization bound for Hypothesis Trans-
fer Learning algorithm through Regularized
Least Squares with biased regularization does
not have the right convergence rate with re-
spect to the regularization parameter λ and
the source risk on the target domain, Rµ(f ′).
This erratum describes the error and proves
the correct generalization guarantees. The
correct rate is in O

(
1

mλ1.5

)
, instead of in-

correctly claimed O
(

1
mλ

)
. However, the cor-

rect rate is still better than the usual one for
Regularized Least Squares obtained via algo-
rithmic stability analysis. Finally, corrected
analysis still preserves the main contribution,
that is, the relatedness of the source and tar-
get domains accelerates the convergence of
the Leave-One-Out error to the generaliza-
tion error.

1. Description of Error

The error was committed in the proof of Theo-
rem 3 (Kuzborskij & Orabona, 2013), where Lemma 2
was applied incorrectly. This rendered Theorem 2,
proving generalization guarantees for Hypothesis
Transfer Learning (HTL) algorithm analyzed, invalid.
Theorem 3 proves an upper-bound on hypothesis sta-
bility (Bousquet & Elisseeff, 2002) with respect to the
square loss,

∀i ∈ {1, . . . ,m},
ES,(x,y)

[∣∣(fS(x)− y)2 − (fS\i(x)− y)2
∣∣] ≤ γ .

Here (x, y) assumed to be any example drawn i.i.d.
from p.d.f. µ. However, Lemma 2 proves an upper

bound on the quantity (fS\i(xi)−yi)2, where (xi, yi) ∈
S, in other words, belongs to the training set. That
is, in Theorem 3, (fS\i(xi) − yi)2 appears instead of
(fS\i(x)− y)2.

To use the correct quantity (fS\i(x)−y)2, we first ob-
tain a closed form solution to fS\i(x), considering lin-
ear hypotheses f(x) := x>w and fS\i(x) := x>wS\i .
The derivation is given in Lemma 1.

A very similar error also appears in the proof of
Lemma 4 (Kuzborskij & Orabona, 2013), first result.
The nature of error is the same, and we fix it in the
proof of the Theorem 1.

Lemma 1. Let wS be the hypothesis produced by
the Regularized Least Squares (RLS) algorithm given

training set S. For any sample (x, y)
i.i.d.∼ µ and

(xi, yi) ∈ S, such that ‖x‖, ‖xi‖ ≤ 1, we have that
the hypothesis wS\i produced by the same RLS algo-
rithm on a training set S\i ∀i ∈ {1, . . . ,m}, satisfies

|x>wS − x>wS\i | ≤
1

mλ
|x>i wS\i − yi| .

Proof. Define X = [x1, . . . ,xi−1,xi+1, . . . ,xm], M =
X>X +mλI . It is straightforward to see that x>wS

is equal to

[
x>X x>xi

] [ M X>xi
x>i X ‖xi‖2 +mλ

]−1 [
y
yi

]
.

(1)
Expanding the middle term and using the block-wise
matrix inversion property (Petersen & Pedersen, 2008)
we get[

M X>xi
x>i X ‖xi‖2 +mλ

]−1
=

[
M−1 0
0> 0

]
+

1

a

[
M−1X>xi
−1

] [
x>i XM−1 −1

]
,

where a := ‖xi‖2 + mλ− x>i XM−1X>xi. Plugging
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this result into (1) yields

x>wS = x>wS\i+

x>
(
I −XM−1X>

)
xi

a
(yi − x>i wS\i) .

Using result of Lemma 2, we have that mλ ≤ a and in
addition by Cauchy-Schwarz inequality we have that

x
(
I −XM−1X>

)
xi ≤ 1, since ‖x‖, ‖xi‖ ≤ 1.

Lemma 2. For all X ∈ Rm×d, m, λ ≥ 0, we have
that the matrix

I −X
(
X>X +mλI

)−1
X>

is PSD and its maximum eigenvalue is less than 1.

Proof.

I −X
(
X>X +mλI

)−1
X>

=I −
(
XX> +mλI

)−1
XX> (2)

=I −U (Σ +mλI)
−1

U>UΣU>

=U
(
I − (Σ +mλI)

−1
Σ
)
U>,

where we used identity (XX> + mλI)−1X =
X(X>X + mλI)−1 to obtain (2). Subsequently we
use decomposition XX> = UΣU>.

2. Weaker HTL Guarantees through
Correct Stability

The following HTL algorithm is analyzed by
Kuzborskij & Orabona (2013).

Algorithm 1. RLS transfer algorithm by altering
training set as {(xi, yi − f ′(xi)) : 1 ≤ i ≤ m} pro-
duces a hypothesis

fhtl
′

S (x) = TC(x>ŵS) + f ′(x),

where

ŵS := argmin
u

1

m

m∑
i=1

(u>xi − yi + f ′(xi))
2 + λ‖u‖2,

and the truncation function TC(ŷ) is defined as
TC(ŷ) = min(max(ŷ,−C), C).

We prove Theorem 1 which is corrected version of orig-
inally presented Theorem 2 in (Kuzborskij & Orabona,
2013).

Theorem 1. Set λ ≥ 1
m . If C ≥ B + ‖f ′‖∞, then for

Algorithm 1 we have

ES [(Rµ(fhtl
′

S )− R̂ loo(fhtl
′

S ))2]

= O

C2

√
Rµ(f ′)TC2

(
Rµ(f ′)
λ

)
+Rµ(f ′)2

mλ1.5

 .

If C =∞, then for Algorithm 1 we have

ES [(Rµ(fhtl
′

S )− R̂ loo(fhtl
′

S ))2]

= O
(
Rµ(f ′)(‖f ′‖∞ +B)2

mλ3

)
.

2.1. Implications of Weaker Result

The first and the main difference comes in weaker
bound on the second order moment of the Leave-One-
Out (LOO) error when one applies the truncation on
the predictions in the range [−B;B]. In (Kuzborskij &

Orabona, 2013) we have claimed it to be in O
(
B2

mλ

)
.

However in the following we obtain weaker corrected

rate in O
(

B2

mλ1.5

)
. Note that this rate is still better

than the one that can be obtained for RLS through
stability analysis, O

(
1

mλ3

)
(De Vito et al., 2005).

The second difference comes in dependence on the risk
of the source on the target domain. The correct bound

is in O
(√

Rµ(f ′)2+Rµ(f ′)

mλ1.5

)
, rather than O

(
Rµ(f

′)
mλ

)
,

incorrectly suggested earlier. Nevertheless, the impor-
tant behavior of HTL is still present, that is whenever
the source hypothesis f ′ performs well on the target

domain, in other words, for

√
Rµ(f ′)2+Rµ(f ′)

λ1.5 → 0, the
LOO error approaches expected risk with probability
1.

2.2. Proof of Theorem 1

In this section we give the proof of the main theorem.
First we prove utility Lemma 3.

Lemma 3. ∀a, b, ŷ ∈ R,

|(a− ŷ)2 − (b− ŷ)2| ≤ (a− b)2 + 2|(b− ŷ)(a− b)| .

Proof.

|(a− ŷ)2 − (b− ŷ)2|
=|a2 − b2 − 2ŷ(a− b)|
=|(a− b)2 − 2b2 + 2ab− 2ŷ(a− b)|
=|(a− b)2 + 2(b− ŷ)(a− b)|
≤(a− b)2 + 2|(b− ŷ)(a− b)| .
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The following Theorem upper-bounds the hypothesis
stability of the Algorithm 1.

Theorem 2. The hypothesis stability of Algorithm 1
is upper bounded as

γ ≤ T4C2

(
2Rµ(f ′)

m2λ2

(
1 +

1

λ

))
+ 2T2C

(√
2Rµ(f ′)

mλ

√
1 +

1

λ

)

·

√
2TC2

(
Rµ(f ′)

λ

)
+ 2Rµ(f ′) .

Proof. From Lemma 3 with a = TC(∆ + ε), b =
TC(∆), ŷ = y − f ′(x) and also using the fact that
|TC(∆ + ε)− TC(∆)| ≤ min(|ε|, 2C), we have

∣∣(TC(∆ + ε)− y + f ′(x))2 − (TC(∆)− y + f ′(x))2
∣∣

≤ min(ε2, 4C2) + 2 min(|ε|, 2C) |TC(∆)− y + f ′(x)| .

Set ∆ := x>wS\i , and ∆ + ε := x>wS . Taking the
expectation E [·] = E

S,(x,y)
[·], and using Jensen’s and

Cauchy-Schwarz’s inequalities, we have

E
[∣∣(TC(∆ + ε)− y + f ′(x))2 − (TC(∆)− y + f ′(x))2

∣∣]
≤ min

(
E
[
ε2
]
, 4C2

)
+ 2 min

(√
E [ε2], 2C

)
·

·
√
E [(TC(∆)− y + f ′(x))2]

≤ min
(
E
[
ε2
]
, 4C2

)
+ 2 min

(√
E [ε2], 2C

)
·

·
√
E [2TC2(‖ŵS‖2) + 2(f ′(x)− y)2] (3)

≤ min
(
E
[
ε2
]
, 4C2

)
+ 2 min

(√
E [ε2], 2C

)
·

·

√
2TC2

(
Rµ(f ′)

λ

)
+ 2Rµ(f ′) . (4)

In (3) we apply Cauchy-Schwarz inequality and ele-
mentary inequality (a + b)2 ≤ 2a2 + 2b2, while (4)
comes from the first result of Lemma 3 in (Kuzborskij
& Orabona, 2013).

We now use the fact that

E
[
ε2
]
≤ 1

m2λ2
E
[
(x>ŵS\i − yi + f ′(x))2

]
≤ 2

m2λ2
E
[
‖ŵS\i‖2 + (y − f ′(x))2

]
≤ 2Rµ(f ′)

m2λ2

(
m− 1

m

1

λ
+ 1

)
≤ 2Rµ(f ′)

m2λ2

(
1

λ
+ 1

)
.

Putting all together we have

E
S,(x,y)

[∣∣(TC(∆)− y + f ′(x))2 − (TC(∆ + ε)− y + f ′(x))2
∣∣]

≤ T4C2

(
2Rµ(f ′)

m2λ2

(
1 +

1

λ

))
+ 2T2C

(√
2Rµ(f ′)

mλ

√
1 +

1

λ

)

·

√
2TC2

(
Rµ(f ′)

λ

)
+ 2Rµ(f ′) .

Proof of Theorem 1. We apply Theorem 1 from
(Kuzborskij & Orabona, 2013). To apply this
theorem, we need to upper-bound quantities
M,E

S
[`(wS\i , (xi, yi))] and γ. As E

S
[`(wS\i , (xi, yi))]

is already correctly bounded in (Kuzborskij &
Orabona, 2013) as

ES [`(fS\i , (xi, yi))]

≤ 2

(
1 +

1

mλ

)2(
TC2

(
Rµ(f ′)

λ

)
+Rµ(f ′)

)
,

we use bound on γ given by Theorem 2.

By definition of Theorem 1 in (Kuzborskij & Orabona,
2013),

`(wS\i , (x, ŷ)) ≤M, ∀x ∈ X , ŷ ∈ Y .

So we have

sup
x,y

(
TC(x>wS\i)− ŷ + f ′(x)

)2
≤
(
TC

(
B + ‖f ′‖∞√

λ

)
+B + ‖f ′‖∞

)2

.

We have this result, because term TC(x>wS\i) can
be simultaneously upper-bounded by C and, using
Cauchy-Schwarz inequality, ‖wS\i‖ . Consequently,
‖wS\i‖ is bounded using second result of Lemma 3
in (Kuzborskij & Orabona, 2013).
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Putting it all together and applying Theo-
rem 1 (Kuzborskij & Orabona, 2013), we have
the stated result. The dominant rates in O(·) nota-
tion, in both truncated and untruncated cases, come
from the bound on the component Mγ in Theorem 1
in (Kuzborskij & Orabona, 2013).

3. Conclusions

For an Algorithm 1 we have obtained the generaliza-
tion bound of the form,

Rµ(fhtl
′

S ) ≤ R̂ loo(fhtl
′

S ) +O

(
4
√
Rµ(f ′)2 +Rµ(f ′)
√
mλ0.75

)
,

(5)
which is slightly weaker than originally claimed,

Rµ(fhtl
′

S ) ≤ R̂ loo(fhtl
′

S ) +O

(√
Rµ(f ′)

mλ

)
. (6)

The result is marginally worse in dependency on regu-
larization parameter λ and performance of the source
hypothesis on the target domain, Rµ(f ′). However,
corrected bound preserves the important message for
the scenario of transfer learning: for a stable algo-
rithm, good performance of the source hypothesis on
the target domain accelerates the convergence of the
error measured on the training set to the expected risk.

Obtaining bound of a form (6) remains an open prob-
lem.
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