computational social media

lecture 3: tweeting

part 2

daniel gatica-perez
a human-centric view of twitter

1. introduction
2. twitter users & uses
3. understanding large-scale human behavior
4. inferring real-world events & trends
5. spreading information in the real world
+ ML + NLP to infer:

- Box office revenues [1]
- Stock market [2]
- Election outcomes [3]
- Influenza [4]
- Cascades [5]
- Fake news [6]
- Hate speech [7]
- Bots [8]
- etc. etc.

[1] Asur & Huberman, Predicting the future with social media. In Proc. IEEE Int. Conf. on Web Intelligence, 2010
case study: twitter & the flu
Some husbands bring their wives flowers. I get NyQuil. And I’m super happy about it. #flu

Ok, so I’m a week into this #flu and can safely say that at this point I am nothing but Gatorade and NyQuil #dying

Periodic Pennsylvania #flu update; season has wound down greatly, but is not yet past. (As I’ve said so many times, this season is depicted by the mountainous red line.)

Show this thread

Parents the FREE #flu vaccine for children aged 6 months to <5 years is now available. Here are top 4 reasons to vaccinate your child.
1. “Tweets matching hundreds of health-related keywords passed 3 classification filters to remove irrelevant tweets.

2. Locations are identified with geolocation system and only tweets in the location of interest are saved.

3. The volume of tweets is normalized by the total volume of tweets from a random Twitter sample to produce a prevalence measure.”
1. data & filters to extract flu-infection tweets

Start: 30.09.2012 (first week of 2012-2013 influenza season defined by US CDC: Centers for Disease Control and Prevention)
End: 31.05.2013

Filter 1 (health-relevant vs. irrelevant): “combination of keyword filtering and support vector machine (SVM) trained on 5,128 annotated tweets; 90% precision, 32% recall.”

Filter 2 (discussed influenza vs. not): “logistic regression trained on 11,990 tweets. Features: unigrams, bigrams, trigrams & linguistic information about semantics, syntax, and writing style; 67% precision, 87% recall”

Filter 3 (indicated infection vs. just awareness): “logistic regression trained on same 11,990 labeled tweets, and same features: have 74% precision, 87% recall”

570,000 influenza infection tweets during 8 months
2. extracting location of flu-infection tweets

Challenges
* GPS existing for only small fraction of tweets
* Self-reported location from users’ public profile: “New York, NY”, “NYC,” “Candy Land”

Location filter output
(country, state, county, city)

Results
Identified location for 22% of tweets.
In evaluation set: 56,000 tweets, two locations:
USA: 92% accuracy
NYC 61% accuracy (within 50 miles of NYC)

104,200 US influenza infection tweets
3. extracting normalized influenza prevalence

Normalized Influenza Prevalence Measure:

“Weekly number of infection tweets divided by total number of tweets in the general stream for same week and location”

Gold standard:

“US CDC Outpatient Influenza-Like Illness Surveillance Network: number of visits for influenza-like illness (ILI)”
results: correlation for national influenza rates between Twitter and CDC

National Level (104,200 influenza infection tweets from USA)
* Weekly # tweets indicating *influenza infection* is correlated with weekly CDC ILI outpatient counts ($r = 0.93; p < 0.001$)
* Weekly # tweets containing *influenza keywords* provided by US Dept. of Health and Human Services is less strongly correlated ($r = 0.75; p < 0.001$)
* 45% reduction in mean absolute error over the keyword filter

Municipal Level (4,800 influenza infection tweets from NYC)
* Weekly # tweets indicating *influenza infection* is correlated with NYC city’s weekly emergency department visits for ILI ($r = 0.88; p < 0.001$)
* Weekly # tweets containing *influenza keywords* is less strongly correlated ($r = 0.72; p < 0.001$)
results: national influenza weekly rates
(Twitter vs. CDC)

“Dashed blue line: measure estimated by simple model
(keyword matching)

Solid blue line: measure estimated by infection
detection model

Black line: CDC data

Twitter estimates neither lead nor lag the ILI rates, yet they are available up to two weeks earlier than CDC data.”

D. Broniatowski, M. Paul & M. Dredze, National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic, PLOS ONE, 2013
Twitter Improves Influenza Forecasting

OCTOBER 28, 2014 · RESEARCH ARTICLE

AUTHORS
Michael J. Paul Mark Dredze David Broniatowski

ABSTRACT
Accurate disease forecasts are imperative when preparing for influenza epidemic outbreaks; nevertheless, these forecasts are often limited by the time required to collect new, accurate data. In this paper, we show that data from the microblogging community Twitter significantly improves influenza forecasting. Most prior influenza forecast models are tested against historical influenza-like illness (ILI) data from the U.S. Centers for Disease Control and Prevention (CDC). These data are released with a one-week lag and are often initially inaccurate until the CDC revises them 3 to 4 weeks later. Since previous studies utilize the final, revised data in evaluation, their evaluations do not properly determine the effectiveness of forecasting. Our experiments using ILI data available at the time of the forecast show that models incorporating data derived from Twitter can reduce forecasting error by 17-30% over a baseline that only uses historical data. For a given level of accuracy, using Twitter data produces forecasts that are two to four weeks ahead of baseline models. Additionally, we find that models using Twitter data are, on average, better predictors of influenza prevalence than are models using data from Google Flu Trends, the leading web data source.
In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. *Nature* reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States (1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data (3, 4), what lessons can we draw from this error?

The problems we identify are not limited to GFT. Research on whether search or social media can predict x has become commonplace (5–7) and is often put in sharp contrast with traditional methods and hypotheses. Although these studies have shown the ability and dependencies among data (12), the core challenge is that most big data that have received popular attention are not the run ever since, with a few changes announced in October 2013 (10, 15).

Although not widely reported until 2013, the new GFT has been persistently overestimating flu prevalence for a much longer time. GFT also missed by a very large margin in the 2011–2012 flu season and has missed high for 100 out of 108 weeks starting with August 2011 (see the graph). These errors are not randomly distributed. For example, last week’s errors predict this week’s errors (temporal autocorrelation), and the direction and magnitude of error varies with the time of year (seasonality). These patterns mean that GFT overlooks considerable information that could be extracted by traditional statistical methods.

Even after GFT was updated in 2009, the comparative value of the algorithm as a stand-alone flu monitor is questionable. A study in 2010 demonstrated that
Thank you for stopping by.

Google Flu Trends and Google Dengue Trends are no longer publishing current estimates of Flu and Dengue fever based on search patterns. The historic estimates produced by Google Flu Trends and Google Dengue Trends are available below. It is still early days for nowcasting and similar tools for understanding the spread of diseases like flu and dengue – we’re excited to see what comes next. Academic research groups interested in working with us should fill out this form.

Sincerely,

The Google Flu and Dengue Trends Team.

Google Flu Trends Data:

You can also see this data in Public Data Explorer

- World
- Argentina
- Australia
- Austria
- Belgium
- Bolivia

https://www.google.org/flutrends/about/
At the time of this writing, the novel coronavirus (COVID-19) pandemic outbreak has already put tremendous strain on many countries' citizens, resources and economies around the world. Social distancing measures, travel bans, self-quarantines, and business closures are changing the very fabric of societies worldwide. With people forced out of public spaces, much conversation about these phenomena now occurs online, e.g., on social media platforms like Twitter. In this paper, we describe a multilingual coronavirus (COVID-19) Twitter dataset that we have been continuously collecting since January 22, 2020. We are making our dataset available to the research community (this https URL). It is our hope that our contribution will enable the study of online conversation dynamics in the context of a planetary-scale epidemic outbreak of unprecedented proportions and implications. This dataset could also help track scientific coronavirus misinformation and unverified rumors, or enable the understanding of fear and panic — and undoubtedly more. Ultimately, this dataset may contribute towards enabling informed solutions and prescribing targeted policy interventions to fight this global crisis.
BERT-based analysis of covid-19 tweets

BERT (Bidirectional Encoder Representations from Transformers): deep learning technique for NLP pretraining (Devlin, 2018)

CT-BERT (COVID Twitter BERT):
- trained on a corpus of 160M tweets Jan-Apr 2020 (22.5M after cleaning)
- used for downstream classification tasks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Classes</th>
<th>Train</th>
<th>Dev</th>
<th>Labels</th>
<th>BERT-LARGE</th>
<th>CT-BERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 Category (CC)</td>
<td>2</td>
<td>3094</td>
<td>1031</td>
<td>Personal, News</td>
<td>0.931</td>
<td>0.949</td>
</tr>
<tr>
<td>Vaccine Sentiment (VC)</td>
<td>3</td>
<td>5000</td>
<td>3000</td>
<td>Neutral, Positive</td>
<td>0.824</td>
<td>0.869</td>
</tr>
<tr>
<td>Maternal Vaccine Stance (MVS)</td>
<td>4</td>
<td>1361</td>
<td>817</td>
<td>Disc, A, N, Promotional</td>
<td>0.696</td>
<td>0.748</td>
</tr>
<tr>
<td>Stanford Sentiment Treebank 2 (SST-2)</td>
<td>2</td>
<td>67349</td>
<td>872</td>
<td>Negative, Positive</td>
<td>0.937</td>
<td>0.944</td>
</tr>
<tr>
<td>Twitter Sentiment SemEval (SE)</td>
<td>3</td>
<td>6000</td>
<td>817</td>
<td>Neg, Neutral, Positive</td>
<td>0.620</td>
<td>0.654</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean F1 score</td>
<td>0.802</td>
<td>0.833</td>
</tr>
</tbody>
</table>

what to remember

inferring real-world trends from twitter

- influenza trend detection as a case study
- high-quality data annotation & pre-processing are essential
- overoptimistic expectations of full automation in the “early days”
- rather, a tool that could complement more established methods

beware of methodological limitations

- sampling biases: not everybody is on Twitter
- data pre-processing choices need to be made visible
- overemphasis on single platform
questions?
daniel.gatica-perez@epfl.ch