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Abstract— Particle �ltering is now established as one of the
most popular methods for visual tracking. Within this frame-
work, there are two important considerations.The �rst onerefers
to the generic assumption that the observations are temporally
independent given the sequenceof object states. The second
consideration, often made in the literatur e, uses the transition
prior as proposal distrib ution. Thus, the curr ent observations
are not taken into account, requesting the noise processof this
prior to be large enough to handle abrupt trajectory changes.
As a result, many particles are either wasted in low lik elihood
regionsof the statespace,resulting in low sampling ef�ciency, or
more importantly , propagatedto distractor regionsof the image,
resulting in tracking failur es.In this paper, we proposeto handle
both considerationsusing motion. We �rst argue that in general
observations are conditionally correlated, and propose a new
model to account for this correlation allowing for the natural
intr oduction of implicit and/or explicit motion measurements
in the lik elihood term. Secondly, explicit motion measurements
are used to dri ve the sampling processtowards the most lik ely
regionsof the state space.Overall, the proposedmodel allows to
handle abrupt motion changesand to �lter out visual distractors
when tracking objects with generic models based on shape
or color distrib ution. Experimental results obtained on head
tracking, using several sequenceswith moving camera involving
large dynamics, and compared against the CONDENSATION
algorithm, have demonstratedsuperior tracking performance of
our approach.1

Index Terms— Visual tracking, particle �lter , sequentialmonte
carlo, importance sampling, motion.

I . INTRODUCTION

V ISUAL tracking is an important problem in computer
vision, with applications in teleconferencing,visual

surveillance,gesturerecognition,and vision basedinterfaces
[2]. Although tracking has been intensively studied in the
literature, it still representsa challenging task in adverse
situations, due to the presenceof ambiguities (e.g. when
tracking an object in a cluttered scene or when tracking
multiple instancesof thesameobjectclass),thenoisein image
measurements(e.g.lighting chnages),andthevariability of the
objectclass(e.g.posevariations).

In the pursuit of robust tracking, SequentialMonte Carlo
methods[2]–[4] have shown to be a successfulapproach.
In this temporalBayesianframework, the probability of an
object con�guration given the observationsis representedby
a set of weighted random samples,called particles. This
representationallows in principle to simultaneouslymaintain
multiple hypothesesin the presenceof ambiguities,unlike
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1A shorterversionof this paperappearedat the ICPR2004conference[1].

algorithmsthat keeponly one con�guration state[5], which
are thereforesensitive to single failures in the presenceof
ambiguitiesor fastor erraticmotion.

In this paper, we addresstwo important issuesrelatedto
tracking with a particle �lter . The �rst issue refers to the
speci�c form of the observation likelihood, that relies on the
conditional independenceof observationsgiven the statese-
quence.The secondonerefersto the choiceof an appropriate
proposaldistribution,which,unlike theprior dynamicalmodel,
should take into account the new observations. To handle
theseissues,we proposea new particle�lter trackingmethod
basedon visualmotion.Our methodrelieson a new graphical
model allowing for the natural introduction of implicit or
explicit motion informationin the likelihoodterm,andon the
exploitation of explicit motion measurementsin the proposal
distribution. theabove issues,our approach,andtheir bene�ts,
is given in the following paragraphs.

The de�nition of the observation likelihood distribution is
perhapsthe most importantelementin visual trackingwith a
particle �lter . This distribution allows for the evaluation of
the likelihood of the current observation given the current
object state,and relies on the speci�c object representation.
The object representationcorrespondsto all the information
thatcharacterizestheobjectlike the targetposition,geometry,
appearance,color, etc.Parametrizedshapeslike splines[2] or
ellipses[6], andcolor distributions [5]–[8], areoften usedas
targetrepresentation.Onedrawbackof thesegenericrepresen-
tationsis thatthey canbequiteunspeci�c,whichaugmentsthe
chancesof ambiguities.Oneway to improve therobustnessof
a tracker consistsof combininglow-level measurementssuch
asshapeandcolor [6].

Thegenericconditionalform of thelikelihoodtermrelieson
a standardhypothesisin probabilisticvisual tracking,namely
the independenceof observationsgiventhestatesequence[2],
[6], [9]–[13]. In this paper, we arguethat this assumptioncan
be inaccuratein the caseof visual tracking.As a remedy, we
proposea new modelthatassumesthatthecurrentobservation
dependson the currentand previous object con�gurationsas
well ason thepastobservation.We show thatunderthis more
generalassumption,the obtainedparticle �ltering algorithm
hassimilar equationsthanthealgorithmbasedon thestandard
hypothesis.To our knowledge,this hasnot beenshown before,
and so it representsthe �rst contribution of this article.
The new assumptioncan thus be usedto naturally introduce
implicit or explicit motion information in the observation
likelihood term. The introduction of such data correlation
betweensuccessive images will turn generic trackers like
shapeor color histogramtrackers into morespeci�c ones.
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Another importantdistribution to de�ne when designinga
particle �lter is the proposaldistribution, that is, the function
that predictsthe new statehypotheseswherethe observation
likelihood will be evaluated.In general,an optimal choice
[3], [14] consistsof drawing samplesfrom the more likely
regions taking into accountboth the dynamicalmodel,which
characterizesthe prior on the state sequence,and the new
observations. However, simulating from the optimal law is
often dif�cult when using standardlikelihood terms. Thus,
a commonassumptionin particle �ltering consistsin using
the dynamicsas proposaldistribution. With this assumption,
the varianceof the noise processin the dynamical model
implicitly de�nes a searchrangefor thenew hypotheses.This
assumptionraisesdif�culties in modelingdynamicssincethis
term shouldful�ll two contradictoryobjectives.On onehand,
as prior distribution, dynamicsshould be tight to avoid the
tracker being confusedby distractorsin the vicinity of the
true object con�guration, a situation that is likely to happen
for unspeci�c objectrepresentationssuchasgenericshapesor
color distributions.On theotherhand,asproposaldistribution,
dynamicsshouldbebroadenoughto copewith abruptmotion
changes.Furthermore,this proposaldistribution doesnot take
into accountthemostrecentobservations.probablyhave a low
likelihood,which resultsin low samplingef�ciency. Overall,
sucha particle �lter is likely to be distractedby background
clutter. To addresstheseissues,we proposeto use explicit
motion measuresin the proposal function. One bene�t of
this approachwill be to increasethe samplingef�ciency by
handling unexpectedmotion, allowing for a reducednoise
variancein the prediction process.Combinedwith the new
observation likelihood term, using our proposaldistribution
will reducethe sensitivity of the particle �lter algorithm to
the differentnoisevariancessettingin the proposalandprior
since,when using larger values,potential distractorsshould
be �ltered out by the introducedcorrelationandvisualmotion
measurements.Finally, our proposalallows to implementthe
intuitive ideaaccordingto which thelikely con�gurationswith
respectto anobjectmodelareevolving in conformitywith the
visual motion.

The rest of the paperis organizedas follows. In the next
Section,we discussthe state-of-the-artand relate it to our
work. For sake of completeness,in SectionIII, we describethe
standardparticle �lter algorithm. Our approachis motivated
in Section IV, while SectionV describesthe speci�c parts
of our model in details.Experimentsand resultsare reported
in SectionVI. SectionVII concludesthe article with some
discussionand future work.

I I . RELATED WORK

In this article,the�rst contribution refersto theintroduction
of a new graphicalmodel for particle �ltering. This model
allows for the modeling of temporaldependenciesbetween
observations. In practice, it lead us to naturally introduce
motion observation within the datalikelihood.

The useof motion for tracking is not a new idea.Motion-
basedtrackers, essentiallydeterministic,integrate two-frame
motion estimatesover time. However, without any object

model, it is almost impossible to avoid some drift after a
few secondsof tracking. For long term tracking, the use of
appearence-basedmodelssuchastemplates[9], [15], [16] lead
to morerobust results.However, a templaterepresentationdo
not allow for large changesof appearenceover time.
To handle appearancechanges,an often dif�cult template
adaptationstepis needed[17], [18], or morecomplex global
appearencemodels are used (e.g. eigen-spaces[19] or ex-
amplars [13], [20]), which posesthe problem of learning
thesemodels,either off-line [10], [13] or on-line [20]. For
instance,in [17], a generative modelrelying on thepastframe
template,a long term template,and a non-Gaussiannoise
componentis proposed.Adaptationis performedthroughthe
estimationof the optimal state parameters-comprising the
spatial2D localizationandthelong-termtemplate-,via anEM
algorithmthat identi�es thestableregionsof the templateasa
byproduct.A similar approachis takenin [18], wherethegray
level of eachtemplatepixel is updatedusinga Kalman�lter ,
and the adaptationis blocked whenever the innovation is too
large. In thesetwo cases,althoughpartial and total occlusion
can be handled,nothing prevents the tracker from long term
drifts. This drift happenswhen the 2D visual motion does
not matchperfectly the real stateevolution. This corresponds
to the problematiccase,reportedin [17], of a turning head
remainingat the sameplace in the image; in [18], tracked
objects (mainly high resolution faces and people) undergo
very little posechanges.Anotherinterestingapproachtowards
adaptationusingmotionis proposedin [21] where,in aparticle
�lter framework, a color model is adaptedon-line. Assuming
a static camera,a motion detectionmodule is employed to
selectthe instantsmoresuitablefor adaptation,which leadsto
goodresults.

In the presentarticle, however, the methodwe proposeis
not template-based,i.e. no referenceappearencetemplateis
employed or adapted(seediscussionat the endof subsection
V-C.2). The implementationof our modelaimsat evaluating,
either explicitly or implicitly, the similarity between the
visual motion estimatedfrom low-level information and the
motion �eld induced by the state change.Our approachis
thus different from the above ones,and more similar to the
methodsproposedin [22], [23]. In particular, the work in
[22] addressesthe dif�cult problemof peopletracking using
articulated models, and their use of the motion measures
implicitly correspondsto thegraphicalmodelweproposehere.

In the introduction,we raisedthe problemslinked to the
choiceof the dynamicalmodel as proposal.In the literature,
severalapproacheshave beenproposedto addresstheseissues.
For instance,whenavailable,auxiliary informationgenerated
from color [11], [21], [24], motion detection[24], or audio
in the caseof speaker tracking [24], [25], can be used to
draw samplesfrom. Theproposaldistribution is thenexpressed
as a mixture of the prior and componentsof the likelihood
distribution. An important advantageof this approachis to
allow for automatic(re)initialization.However, onedrawback
of this approachis that,sincetheseadditionalsamplesarenot
relatedto theprevioussamples,theevaluationof thetransition
prior termfor onenew sampleinvolvesall pastsamples,which
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can becomevery costly [11], [25]. [24] avoids this problem
by de�ning theprior asa mixtureof distributionsthat includes
a uniform law component,and by relying on distinctive and
discriminative likelihoods,allowing for reinitialization using
thestandardparticle�lter equations.Anotherauxiliary particle
�lter proposedin [26] avoids this problem.The ideais to use
the likelihoodof a �rst setof predictedsamplesat time k + 1
to resamplethe seedsamplesat time k, and to then apply
the standardprediction and evaluation stepson theseseed
samples.Thefeedbackfrom thenew dataactsby increasingor
decreasingthe numberof descendentsof a sampleaccording
to its “predicted” likelihood.Sucha scheme,however, works
well only if thevarianceof the transitionprior is small,which
is usuallynot the casein visual tracking.
As an alternative, the work in [12] proposedto use the
unscentedparticle �lter to generateimportance densities.
Although attractive, it is still likely to fail in the presence
of abrupt motion changes,and the methodneedsto convert
likelihood evaluations(e.g. of shape)into state spacemea-
surements(e.g.translation,scale).This would bedif�cult with
color distribution likelihoodsand for somestateparameters.
In [12], only a translationstate is considered.In [9], [27],
all the equationsof the �lter are conditionedwith respect
to the images.This allows for the use of the inter-frame
motion estimatesas dynamical model instead of an auto-
regressive model to improve the stateprediction.Moreover,
in their application (point tracking), thanks to the use of a
linear observation model, the optimal proposalfunction can
beemployed.However, asin [12], measuresin statespaceare
needed,and only translationsare thus considered.Although
their utilization of explicit motionmeasuresis similar to what
we proposehere,it wasintroducedin a differentway (through
the dynamicsratherthan the likelihood),and was in practice
restrictedto translation.

I I I . PARTICLE FILTERING

Thereexist at leasttwo waysof introducingparticle�lters.
The�rst oneis throughSequentialImportanceSampling(SIS)
[3], [4], andthesecondoneis basedon factoredsampling[28]
appliedto the �ltering distribution [2]. While bothapproaches
lead to the samealgorithm with the standardassumptions,
it is interestingto notice that the two methodsdo not lend
themselves to the sameextensions.In this paper, we follow
the SIS approach,as it allows for the proposedextension.

Particle �ltering is a techniquefor implementinga recursive
Bayesian�lter by Monte Carlo simulations.The key idea is
to representtherequiredposteriorprobabilitydensityfunction
(pdf) p(c0:k jz1:k ) of the state sequencec0:k = f cl ; l =
0; : : : ; kg up to time k conditionally to the observation se-
quencez1:k = f zl ; l = 1; : : : ; kg, by a setof weightedsamples
f ci

0:k ; wi
k gN s

i =1 . Each sample (or particle) ci
0:k representsa

potential trajectoryof the statesequence,and wi
k denotesits

likelihoodestimatedfrom the sequenceof observationsup to
time k. The weightsarenormalized(

P
i wi

k = 1) in order to
obtaina discreteapproximationof the true posterior:

p(c0:k jz1:k ) ¼
N sX

i =1

wi
k ±(c0:k ¡ ci

0:k ) : (1)

Sucha representationthenallows to computethe expectation
of any function f with respectto this distribution using a
weightedsum:

Z
f (c0:k )p(c0:k jz1:k )dc0:k ¼

N sX

i =1

wi
k f (ci

0:k ) (2)

andin particular, themeanof thehiddenstatesequencecanbe
computedfrom the �rst order moment(i.e. by using f (x) =
x). More speci�cally, the samplesandthe weightshave to be
chosensuchthat,for any functionf , theright-handsideof (2)
convergesto theleft-handsidewhenNs tendstowardsin�nity ,
even though the Dirac delta probability density function in
the right-handside of Eq. 1 may not converge pointwise to
the truedensityp(c0:k jz1:k ). Sincesamplingdirectly form the
posterioris usually impossible,the weightsare chosenusing
the principle of ImportanceSampling(IS). This consistsin
simulating the samplesfrom an importance(a.k.a proposal)
function,andthenintroducinga correctionfactor(theweight)
to accountfor the discrepancy betweenthe proposaland the
true posterior. More precisely, denoting by q(c0:k jz1:k ) the
importancedensity, the properweightsin (1) aregiven by :

wi
k /

p(ci
0:k jz1:k )

q(ci
0:k jz1:k )

: (3)

The goal of the particle �ltering algorithm is the recursive
propagation of the samplesand estimationof the associated
weightsaseachmeasurementis received sequentially. Apply-
ing Bayes' rule, we obtain the following recursive equation
for the posterior:

p(c0:k jz1:k ) =
p(zk jc0:k ; z1:k ¡ 1)p(ck jc0:k ¡ 1; z1:k ¡ 1)

p(zk jz1:k ¡ 1)
£ p(c0:k ¡ 1jz1:k ¡ 1) (4)

Assuming a factorized form for the proposal (i.e.
q(c0:k jz1:k ) = q(ck jc0:k ¡ 1; z1:k )q(c0:k ¡ 1jz1:k ¡ 1)) we
obtain the following recursive updateequation[3], [4]:

wi
k =

~wi
k

p(zk jz1:k ¡ 1)
with

~wi
k = wi

k ¡ 1
p(zk jci

0:k ; z1:k ¡ 1)p(ci
k jci

0:k ¡ 1; z1:k ¡ 1)

q(ci
k jci

0:k ¡ 1; z1:k )
: (5)

where ~wi
k is the unnormalizedweight of the particle i . The

factorp(zk jz1:k ¡ 1) is constantwith respectto thestatevalues,
and it is easyto show that this factor can be approximated
by

P N s
i =1 ~wi

k , so that the weights wi
k are indeed correctly

normalized.In order to simplify the generalexpressionof
Eq. 5, conditionaldependenciesbetweenvariablesareusually
modeledaccordingto thegraphicalmodelof Figure1a,which
correspondsto the following assumptions:

H1 : The observationsf zk g, given the sequenceof states,
are independent.This leads to p(z1:k jc0:k ) =Q k

i =1 p(zk jck ), which requiresthe de�nition of the
data-likelihood p(zk jck ). In Eq. 5, this assumption
translatesin p(zk jc0:k ; z1:k ¡ 1) = p(zk jck ).

H2 : The state sequence c0:k follows a �rst-order
Markov chain model. In Eq. 5, this means that
p(ck jc0:k ¡ 1; z1:k ¡ 1) = p(ck jck ¡ 1).
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(a)

kk-1 k+1

observations

states

(b)

k+1kk-1

states

observations

Fig. 1. Graphicalmodelsfor tracking.(a) standardand(b) proposedmodel.

We thenobtain the simpli�ed weight updateequation:

wi
k / wi

k ¡ 1
p(zk jci

k )p(ci
k jci

k ¡ 1)

q(ci
k jci

0:k ¡ 1; z1:k )
( and

X

i

wi
k = 1 ) : (6)

The set f ci
0:k ; wi

k gN s
i =1 is then approximatelydistributed ac-

cording to p(c0:k jz0:k ).
It is known that importancesamplingis inef�cient in high-

dimensionalspaces[14], which is the caseof the statespace
c0:k as k increases.In practice,this leadsto the continuous
increaseof the weight variance,concentratingthe massof the
weightsonto a few particlesonly. To solve this problem,it is
necessaryto applyanadditionalresamplingstep,whoseeffect
is to eliminatethe particleswith low importanceweightsand
to multiply particleshaving high weights.Several resampling
schemesexist [14]. In our implementation,we usedthe one
describedin [3], and perform a systematicresampling.We
�nally obtain the particle �lter displayedin Fig. 2.

1) Initialization
- for i = 1; : : : ; Ns, sampleci

0 » p(c0) andsetk = 1.
2) Diffusion/propagation :

- for i = 1; : : : ; Ns, sample~ci
k » q(ci

k jci
0:k ¡ 1; z1:k ).

3) Weight updating
- for i = 1; : : : ; Ns, evaluate the weight wi

k with
Equation(5)

4) Selection resamplewith replacementNs particles
- f cj

k ; 1
N s

g Ã resample(f ~ci
k ; wi

k g)
- setk = k + 1 andgoto step2.

Fig. 2. The genericparticle �lter algorithm.

The ef�ciency of a particle �lter algorithm relies on the
de�nition of a goodproposaldistribution. A temporallylocal
strategy consistsof choosing the importancefunction that
minimizes the weight varianceof the new samplesat time
k conditionally to trajectoriesci

1:k ¡ 1 andobservationsz1:k . It
canbe shown [14] that this optimal function is given by

q(ck jci
0:k ¡ 1; z1:k ) = q(ck jci

k ¡ 1; zk ) = p(ck jci
k ¡ 1; zk )

/ p(zk jck )p(ck jci
k ¡ 1) ; (7)

which leadsto the following weight updateequation:

wi
k / wi

k ¡ 1 p(zk jci
k ¡ 1) : (8)

In practice, sampling from p(ck jci
k ¡ 1; zk ) and evaluating

p(zk jci
k ¡ 1) are only achievable in particularcases,involving

for instanceGaussiannoiseandlinearobservationmodels[3],
[14], [27]. As an alternative, a choiceoften madeconsistsof

selectingthe prior as importancefunction. In that case,we
have :

wi
k / wi

k ¡ 1 p(zk jci
k ) : (9)

Although this model is intuitive and simple to implement,
this choice, which does not take into account the current
observations, has several drawbacks, especially with high-
dimensionalvectorspacesor narrow likelihoodmodels.
Finally, noticethatwhile theweightedsetf ci

0:k ; wi
k gN s

i =1 allows
for the representationof the posterior pdf p(c0:k jz0:k ), the
set f ci

k ; wi
k gN s

i =1 , that can be obtained from it, is also a
representative sampleof the �ltering distribution p(ck jz0:k ),
thanksto simplemarginalization.

IV. OUR APPROACH

In this Section, we proposea new method that embeds
motion in the particle �lter . This is �rst obtainedby incorpo-
rating motion informationinto the measurementprocess.This
canbe achieved by modifying the traditionalgraphicalmodel
representedin Fig. 1a, by making the current observation
dependentnot only on thecurrentobjectcon�gurationbut also
on the object con�guration and observation at the previous
instant (see Fig. 1b). Secondly, we proposeto use explicit
motion measurementsin order to obtain a better proposal
distribution. In the following Subsections,we motivate our
approachby pointing out the limitations of the basicparticle
�lter .

A. Revisiting the hypothesesin particle �ltering

The �lter describedin Fig. 2 is basedon the standard
probabilistic model for tracking displayed in Fig. 1a and
correspondingto hypothesesH1 and H2 of the previous
section.

In visual tracking, hypothesisH1 of conditional indepen-
denceof temporalmeasurementsgiven the statesmay not be
very accurate.Keepingonly two time instantsfor simplicity,
the assumptionimplies that for all statesequencesck ¡ 1:k and
datasequenceszk ¡ 1:k ,

p(zk ; zk ¡ 1jck ; ck ¡ 1) = p(zk jck ; ck ¡ 1)p(zk ¡ 1jck ; ck ¡ 1) :

This is a very strong assumption:in practice, some state
sequencesck ¡ 1:k of interest(e.g. the ”true” or ”target” state
sequences,or statesequencescloseto themeanstatesequence)
for which the data are correlated,and hence,for which the
standardassumptiondoesnot hold. This canbe illustratedas
follows.
In most tracking algorithms, the state space includes the
parametersof a geometrictransformationT . Then, the mea-
surementsconsistof implicitly or explicitly extracting some
part of the imageby :

~zck (r ) = zk (Tck r ) 8r 2 R ; (10)

where ~zck = zk jck , r denotesa pixel position,R denotesa
�x ed referenceregion, andTck r representsthe applicationof
the transformT parameterizedby ck to the pixel r . The data
likelihood is then usually computedfrom this local patch :
p(zk jck ) = p(~zck ). However, if ck ¡ 1 and ck correspondto
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Fig. 3. Imagesat time t andt + 3. The two local patchescorrespondingto
the headandextractedfrom the two imagesarestronglycorrelated.

two consecutive statesof a given object, it is reasonableto
assumethat :

~zck (r ) = ~zck ¡ 1 (r ) + ´ (r ) 8r 2 R : (11)

where ´ (r ) are prediction noise randomvariables,assumed
to be symmetricwith zero mean.This point is illustrated in
Figure3. Equation(11) is at thecoreof all motionestimation
and compensationalgorithms like MPEG and is indeed a
valid hypothesis[29]. More formally, if we considerthepatch
~z² as a vector of i.i.d components,we can compute the
normalizedcross-correlation(NCC) betweentwo datavectors
~zck ¡ 1 and ~zck , for statecouplesck ¡ 1:k of interest,to study
their dependencies.The NCC of two patches~z1 and ~z2 is
given by :

NCC(~z1; ~z2) =

P
r2 R (~z1(r ) ¡ ¹~z1) ¢(~z2(r ) ¡ ¹~z2)

p
Var(~z1)

p
Var(~z2)

; (12)

where ¹~z1 representsthe meanof ~z1.
To performexperiments,we de�ned, asgroundtruth (GT) ob-
ject sequences,ellipsesmanually�tted to the headof persons
in 2 sequencesof 300 imageseach.Next, we consideredstate
couples(ck ¡ 1; ck ) = (cgt

k ¡ 1; cgt
k + ~±), wherecgt denotesa GT

object imageposition,and~± correspondsto an offset around
the GT state.Furthermore,the dimensionsof the ellipse at
time k ¡ 1 areusedto de�ne the ellipseat time k.
Thedependency betweenmeasurementsis illustratedin Fig. 4a
and4b,wheretheaverageNCCis plotedagainsttheamplitude
of ~±, measuredeitherin numberof pixels,or in percentageof
objectsize,whereobjectsizeis de�ned astheaveragebetween
the two ellipse's axis lengths.In the training data,objectsize
rangesbetween30 and 80 pixels, and thereare between600
and 12000measurementsper ± value.As can be seen,when
theoffsetdisplacementreaches50%of objectsize,correlation
becomesclose to 0. When the displacementis greaterthan
100%, the NCC shouldbe 0 in average,as thereis no more
overlap betweenthe two measurementvectors.Fig. 4c and
4d illustratesthis further by displaying the histogramof the
NCC for different valuesof ±. Again, while the histograms
arepeakedaround1 for small valuesfor ±, it graduallymoves
towardsa symmetrichistogramcenteredat 0 with the increase
of ±.

This issue bearssimilarities with the work on Bayesian
correlation[30]. In suchwork, the dependence/independence
of measurements(in this case,the outputof a setof �lters) at
differentspatialpositions,given the objectstate,wasstudied.
It was shown that independencewas achieved as long as the
supportsof the �lters were distant enough.For foreground
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Fig. 4. (a)and(b) Averageof theNCC coef�cient for statecouplesat varying
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in pixels, while in (b) it is measuredin proportion of object size. (c) and
(d) Empirical distribution of the NCC coef�cients for differentdisplacement
distance,measuredeither in pixel (c), or in proportionof objectsize (d).

object modeling, however, the obtainedmeasurementdistri-
butions were not speci�c enough.The work in [31] further
showed that the independencestill holds conditionedon the
availability of some form of object templateto predict the
�lter output. In tracking terms, the patch extracted in the
previous frame from the state at time k ¡ 1 plays the role
of the conditioning template,as shown by Eq. (11), and the
independenceresultof [31] statesthat thenoisevariableś (r )
and´ (r0) are independentwhen jr ¡ r 0j is large enough.

The above analysisillustratesthat the independenceof the
datagiven the sequenceof statesis not a true assumptionin
general.More precisely:

p(zk jz1:k ¡ 1; c0:k ) 6= p(zk jck ) ; (13)

which meansthat we can not reducethe left hand side to
the right one as usually donewith the standardderivation of
the particle�lter equations.A moreaccuratemodelfor visual
trackingis thusrepresentedby thegraphicalmodelof Fig. 1b.

The new model can be easily incorporatedin the particle
�lter framework. First, note that all computationleading to
Eq. 5 in Section III are general and do not depend on
assumptionsH1 and H2. Starting from there, replacingH1
by the new modelgives :

p(zk jz1:k ¡ 1; c0:k ) = p(zk jzk ¡ 1; ck ; ci
k ¡ 1) : (14)

If we keepH2, it is easyto seethat the new weight update
equationis given by :

wi
k / wi

k ¡ 1
p(zk jzk ¡ 1; ci

k ; ci
k ¡ 1)p(ci

k jci
k ¡ 1)

q(ci
k jci

0:k ¡ 1; z1:k )
(15)

in replacementof equation(6).

B. Proposaldistribution and dynamicalmodel

According to our new graphicalmodel, and following the
sameargumentsasin [3], [14], we canshow that the optimal
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proposaldistribution and the correspondingupdaterule are
given by :

q(ck jci
k ¡ 1; z1:k ) = p(ck jzk ; zk ¡ 1; ci

k ¡ 1)

/ p(zk jck ; zk ¡ 1; ci
k ¡ 1)p(ck jci

k ¡ 1) (16)

and wi
k / wi

k ¡ 1p(zk jci
k ¡ 1; zk ¡ 1) : (17)

As their homologousEquations(7) and (8), theseequations
aredif�cult to be usedin practice.

A possibility then consistsof using the dynamicalmodel
(i.e. the prior) as the proposal.This suffers from the generic
drawbacksmentionedin the introduction,andin visual track-
ing, from theunspeci�city of somestatechanges,which often
plays in favor of the use of simple dynamicalmodels(e.g.
constantspeedmodels).Also, the low temporalsamplingrate
and the presenceof fast and unexpectedmotions,due either
to cameraor object movements,renderthe noise parameter
estimationproblemdif�cult.

An alternative, thatwe adoptin this paper, consistsof using
as proposala mixture model built from the prior, the output
of several trackers[32], or observation likelihooddistributions
[24]. In our case, the likelihood term p(zk jck ; zk ¡ 1; ci

k ¡ 1)
comprisesan object-relatedterm and one motion term (see
paragraphV-C). In this article, we will constructa proposal
distribution from the latter. Moreover, asmotivatedby therest
of this section,this termhappensto bemoreadaptedto model
statechangesthandynamicsrelying only on statevalues.

The relevance of using a visual motion-basedproposal
rather than the dynamicsis illustrated by the following ex-
periments.Consideras statec the horizontalposition of the
headof the foreground personin the sequencedisplayedin
Fig. 6, which has been hand held recordedand featuresa
personmoving aroundin an of�ce, anddenoteby cgt the GT
valueobtainedfrom a manualannotationof the headposition
in 200 images.Furthermore,let us denoteby »k the state
predictionerror, whoseexpressionis given by

»k = cgt
k ¡ ĉk ; (18)

where ĉk denotes the state prediction, computed by two
methods.The �rst oneusesa simpleAR model :

ĉk = cgt
k ¡ 1 + _ck ¡ 1 with _ck ¡ 1 = cgt

k ¡ 1 ¡ cgt
k ¡ 2 ; (19)

where _c denotesthe statederivative andmodelsthe evolution
of thestate.In thesecondmethod,ĉk is computedby exploit-
ing the inter-framemotion to predict the new statevalue :

ĉk = cgt
k ¡ 1 + _cmotion

k ¡ 1 (20)

where _cmotion
k ¡ 1 is computedusingthe coef�cients of an af�ne

motionmodelrobustlyestimatedontheregionde�ned by cgt
k ¡ 1

(seeSectionV-B).
Fig. 5a reportsthe prediction error obtainedwith the AR

model.As canbe seen,this predictionis noisy. The standard
deviation of the predictionerror, ¾», is equalto 2.7. Further-
more, there are large peak errors (up to 30% of the head
width)2. To copewith thesepeaks,the noisevariancein the

2Higher order models were also tested.Although they usually led to a
variancereductionof the predictionerror, they also increasedthe amplitude
anddurationof the error peaks.
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Fig. 5. (a) Predictionerror of the x position,when using an AR2 model .
(b) Predictionerror, but exploiting theinter-framemotionestimation.(c) resp.
(d), sameas (a) resp. (b) but now adding a randomGaussiannoise (std=2
pixels) on the GT measurementsused for prediction. With the AR model
(Fig. c) both the previous stateandstatederivative estimatesareaffectedby
noise(¾»=5.6),while with visual-motion(Fig. d) thenoisemainly affectsthe
previous measurement(¾»=2.3).
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Fig. 6. Exampleof motionestimatesbetweentwo imagesfrom noisystates.
The 3 ellipsescorrespondto different statevalues.Although the estimation
supportregionsonly cover part of the headandenclosetexturedbackground,
the headmotion estimateis still good.

dynamicshasto beoverestimatedto avoid particleslying near
thegroundtruth to betoo disfavored.Otherwise,only particles
lying near the -erroneous-predictedstatesmay survive the
resamplingstep.However, a largenoisevariancehastheeffect
of wastingmany particlesin low likelihoodareasor spreading
themon localdistractors,whichcanultimatelyleadto tracking
failures.On the otherhand,exploiting the inter-framemotion
leadsto a reductionof both the noisevariance(¾»=0.83)and
the error peaks(Fig. 5b).
There is another advantage of using image-basedmotion
estimates.Let us �rst notethat the previous statevalues(here
ck ¡ 1; ck ¡ 2) usedto predictthenew statevalueĉk areaffected
by noise,due to measurementerrors and uncertainty. Thus,
in the standardAR approach,both the stateck ¡ 1 and state
derivative _ck ¡ 1 in Eq. 19 areaffectedby this noise,resulting
in large errors(Fig. 5c). When using the inter-frame motion
estimates,the estimation _cmotion

k ¡ 1 is almost not affected by
noise (whoseeffect is to slightly modify the supportregion
usedto estimatethe motion),asillustratedin Fig. 6, resulting
again in a lower noisevarianceprocess(Fig. 5d).

Thus, despiteneedingmore computationresources,inter-
frame motion estimatesare usually more precisethan auto-
regressive models to predict new state values; as a conse-
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ck ¡ 1
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ck +1
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k +1

Fig. 7. Speci�c graphicalmodel for our implementation.

quence,they are a better choice when designinga proposal
function. This observation is supportedby experimentson
other stateparameters-vertical position,scale-,and on other
sequences.Finally, this observationcanalsobeappliedto a set
of particles.If theseare localizedon modesof a distribution
relatedto visual measurements,their predictionaccordingto
the visual motion will generallyplace them aroundthe new
modesassociatedwith the currentimage.

V. THE IMPLEMENTED MODEL

Thegraphicalmodelof Fig. 1b is generic.In this paper, our
speci�c implementationwill be basedon the graphicalmodel
of Fig. 7, whoseelementsaredescribedmorepreciselyin the
restof this section.

A. Object representationand statespace

We follow an image-basedstandardapproach,where the
objectis representedby a region R centeredat thecoordinates
origin, subject to somevalid geometrictransformation,and
characterizedeitherby ashapeor by acolordistribution.In the
experimentalSection,we illustrate and evaluateour method
on face tracking sequences,which usesan elliptical region
as object region R. For geometrictransformations,we have
chosena subspaceof the af�ne transformationscomprisinga
translationT = (Tx ; Ty ), a scaling factor s, and an aspect
ratio e :

T®r =
µ

Tx + xsx

Ty + ysy

¶
, (21)

where r = (x; y) denotesa point position in the reference
frame,® = (T; s;e), and :

s =
sx + sy

2
; e =

sx

sy
; sx =

2es
1 + e

and sy =
2s

1 + e
(22)

A state is then de�ned as ck = (®k ; ®k ¡ 1). Note that we
did not employ a rotation parameterin our state-space.This
is due to the fact that an elliptical region remainsglobally
almost unchangedunder rotation when the aspectratio is
close to one. Thus, the estimationof such parameterwould
be ratherunderconstrainedgiven the object likelihoodmodels
we will employ (edge measurementsor color histograms).
In addition, increasingthe size of the state-spacemakes the
samplingmoredif�cult, without any particularbene�ts in our
case.Nevertheless,with othershapes,or in otherapplications,
theuseof the rotationparameter-aswell asotherparameters-
might be necessary, and the methodologyprovided below
could theneasilybe adapted.

B. Motion estimation

As mentionedin the previous Section,we use inter-frame
motion estimatesboth asobservationsandto samplethe new
statevalues.More precisely, we estimatean af�ne displace-
ment model ~d£ parameterizedby £ = (ai ); i = 1::6 and
de�ned by:

~d£ r =
µ

a1 + a2x + a3y
a4 + a5x + a6y

¶
: (23)

Suchamodel,thoughlessgeneralthanfull 3D ones,represents
a goodcompromisebetweenintra-framemotionmodelingand
the ef�ciency of its estimation.
The estimation of the parameter£ relies on a gradient-
basedmultiresolutionrobust estimationmethoddescribedin
[33]3. To ensurethe goal of robustness,we minimize an M-
estimator criterion with a hard-redescendingfunction [34].
The constraintis given by the usualassumptionof brightness
constancy of a projectedsurfaceelementover its 2D trajec-
tory [35]. As displacementsbetweentwo framescanbe large,
we use a discreteformulation of this constraint.Thus, the
estimatedparametervector is de�ned as:

b£( ck ¡ 1) = argmin
£

E(£) = argmin
£

X

r2 R (ck ¡ 1 )

½(DFD£ (r )) (24)

with DFD£ (r ) = I k (r + ~d£ r ) ¡ I k ¡ 1(r ) , (25)

whereI k ¡ 1 and I k are the images,and ½(¢) is a robust esti-
mator, boundedfor high valuesof its argument(speci�cally,
we use Tukey's biweight function). The minimization takes
advantageof a multiresolutionframework andan incremental
schemebasedon the Gauss-Newton method.More precisely,
at eachincrementalstepl (at a given resolutionlevel, or from
a resolutionlevel to a �ner one), we have: £ = b£ l + ¢£ l .
Then, a linearizationof DFD£ (r ) around b£ l is performed,
leadingto a residualquantity res¢£ l (r ) linear w.r.t. ¢£ l :

res¢£ l (r )= ~r I k (r + ~db£ l
r ) ~d¢£ l r + I k (r + ~db£ l

r ) ¡ I k ¡ 1(r ) (26)

where ~r I k (r ) denotesthe spatial gradient of the intensity
function at location r and at time k. Finally, we substitute
for the minimization of E(£) the minimization of an ap-
proximate expressionEa , which is given by Ea(¢£ l ) =P

½(res¢£ l (r )) . This error function is minimized using an
Iterative-Reweighted-Least-Squaresprocedure,with 0 as an
initial value for ¢£ l . For moredetailsaboutthe methodand
its performances,the readeris referredto [33].
This algorithm allows us to get a robust and accuratees-
timation of the motion model. Owing to the robustnessof
the estimator, an imprecisede�nition of the region R(ck ¡ 1)
involved in Eq.24 due to a noisy statevalue doesnot sen-
sibly affect the estimation(seeFig. 6). From thesemotion
estimates,we can measurethe variation ®m

k¡ 1 of our state-
spacecoef�cients betweenthe two instants.Assuming that
the coordinatesin Eq. 23 are expressedwith respectto the
objectcenter(accordingto thede�nition of T , translatedfrom

3We usethe codeavailableat http://www.irisa.fr/vista
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the origin to the position T in the image), we proposethe
following derivative estimates:

½ _Tx = a1
_Ty = a4

;
½

_sx = a2sx

_sy = a6sy
and

½
_s = s

1+ e (a2e+ a6)
_e = e(a2 ¡ a6)

(27)
Thus,the measureof the parametervariationscanbe de�ned
as®m = ( _Tx ; _Ty ; _s; _e). Additionally, thevalueof thepredicted
geometricparameters,denotedby ®p, is thengiven by:

®p
k = ®k ¡ 1 + ®m

k¡ 1 (28)

Althoughnot usedin thereportedexperiments,thecovariance
matrixof theestimatedparameterscanalsobecomputed.With
model-basedapproachesinvolving morestateparameters,this
would be useful to account for uncertaintyand undercon-
strainedoptimization.

C. Data likelihoodmodeling

To implement the new particle �lter , we assumethat the
measurementszk are of two types: object measurementszo

k
(i.e. edgesor color), and patchgray level measurementszg

k .
Then,we considerthe following datalikelihood:

p(zk jzk ¡ 1; ck ; ck ¡ 1) = p(zo
k ; zg

k jzo
k ¡ 1; zg

k ¡ 1; ck ; ck ¡ 1)

= p(zo
k jzg

k ; zo
k ¡ 1; zg

k ¡ 1; ck ; ck ¡ 1)p(zg
k jzo

k ¡ 1; zg
k ¡ 1; ck ; ck ¡ 1)

= p(zo
k jck )p(zg

k jzg
k ¡ 1; ck ; ck ¡ 1) (29)

where the last derivations exploit the properties of the
graphical model of Fig. 7. Two assumptionswere made
to derive this model. The �rst one assumedthat object
observations are independentof patch observations given
the statesequencemeasurements.This choicedecouplesthe
modelof thedependency existing betweentwo images,whose
implicit goal is to ensurethat the objecttrajectoryfollows the
optical �o w �eld implied by thesequenceof images,from the
shapeor appearenceobjectmodel.Whentheobjectis modeled
by a shape,our assumptionis valid sinceshapeobservations
will mainly involve measurementson the border of the
object, while the correlation term will apply to the regions
inside the object. When a color representationis employed,
the assumptionis valid as well, as color measurementscan
usually be consideredas being independentof gray-scale
measurements.Thesecondassumptionwe madeis thatobject
measurementsare uncorrelatedover time. When considering
shapemeasurements,the assumptionis quite valid as the
temporal auto-correlationfunction of contours is peaked.
However, with the color representation[5], [8], the temporal
independenceassumptionmight not hold. Bettermodelsneed
to be searchedfor to handlethis case.
We describethe speci�c observationsmodelsas follows.

1) Visual object measurement: For the experiments,we
consideredboth contourmodelsor color models.
Shapemodel :
The observation model assumesthat objects are embedded
in clutter. Edge-basedmeasurementsare computedalong L
normallines to a hypothesizedcontour, resultingfor eachline
l in a vector of candidatepositionsf º l

m g relative to a point

lying on thecontourº l
0. With someusualassumptions[2], the

shapelikelihoodcanbe expressedas

p(zo
k jck ) /

LY

l =1

max
µ

K sh ; exp(¡
kº̂ l

m ¡ º l
0k2

2¾2
sh

)
¶

; (30)

where º̂ l
m is the nearestedgeon l, and K sh is a constant

usedwhenno edgesaredetected.

Color model :
As color modelswe usedcolor distributions representedby
normalizedhistogramsin the HSV spaceandgatheredinside
the candidateregion R(ck ) associatedwith the stateck . To
be robust to illumination effects,we only consideredthe HS
values.Then, a normalizedmultidimensionalhistogramwas
computed,resultingin avectorb(ck ) = (bj (ck )) j =1 ::N , where
N = Nh £ Ns with Nh andNs representingthenumberof bins
along the hue and saturationdimensionsrespectively (Nh =
Ns = 8), andwheretheindex j correspondsto a couple(h; s)
with h ands denotinghueandsaturationbin numbers.At time
k, thecandidatecolor modelb(ck ) is comparedto a reference
color model br ef . As a distancemeasure,we employed the
Bhattacharyyadistancemeasure[5], [8]:

Dbhat (b(ck ); br ef ) =

0

@1 ¡
NX

j =1

q
bj (ck )bj

r ef

1

A

1=2

(31)

andassumedthat the probability distribution of the squareof
this distancefor a given object follows an exponentiallaw,

p(zo
k jck ) / expf¡ ¸ bhat D 2

bhat (bk (ck ); br ef )g : (32)

We used the histogram computed in the �rst frame as
referencemodel, which implicitely assumesthat the color
distribution has to remainconstantthroughoutthe sequence.
This is a reasonableassumptionwhen dealing with cases
when lighting doesnot changedramaticallyover time, and
color distributions are known to be robust to deformationof
the object [5], [8]. However, in more complex situations,it
might be useful to employ several referencedistributions to
modelcompletelydifferentobjectappearances(e.g. faceseen
from front or back),or to useonline adaptation[6], [21].

2) Image correlation measurement: To model this term,
we usedtwo possibilities:

² The �rst one consists of extracting measuresin the
parameterspace.Usually, this is achievedby thresholding
and/orextractinglocal maximaof someinterestfunction
[24], [27]. In our case,this correspondsto the extraction
of peaksof a correlationmap,asdonein [27] for trans-
lations.Oneadvantageof sucha methodis to provide a
well-behaved likelihood (i.e. involving only a few well
identi�ed modes).One drawback is that the extraction
processcanbe time consumming.

² In the secondapproach,gray-level patchesare directly
comparedafterhaving warpedthemaccordingto thestate
values(seeEq.(10)).Theadvantagesof thismethodareto
supplymore“detailed” likelihoodsthat canbe computed
directly from the data.
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In this paper, we employ both options, by assumingthat
observations are madeof the measuredparametervariations
®m

k¡ 1 obtainedusing the estimatedmotion, and of the local
patches~zg

ck
. We model the correlationterm as :

p(zg
k jzg

k ¡ 1; ck ; ck ¡ 1)/ pc1(®m
k¡ 1; ®k ; ®k ¡ 1)pc2(~zg

ck
; ~zg

ck ¡ 1
)
(33)

To modelthe�rst term,we assumethefollowing measurement
equation:

®m
k¡ 1 = ®k ¡ ®k ¡ 1 + noise (34)

Givenboththepreviousandcurrentstatevalues,andassuming
a Gaussiannoise,the pdf of this measurementis given by:

pc1(®m
k¡ 1; ®k ; ®k ¡ 1) = N (®m

k¡ 1; ®k ¡ ®k ¡ 1; ¤ »p )

= N (®p
k ; ®k ; ¤ »p ) (35)

whereN (:; ¹; ¤) representsa Gaussiandistribution with mean
¹ and covariancematrix ¤ , ¤ »p = diag(¾»

2
p ;j ) is the co-

varianceof the measurements,and the derivation of the last
expressionin the equationexploits Eq. 28. The secondterm
in Eq. 33 is modeledby:

pc2(~zg
ck

; ~zg
ck ¡ 1

) = Z¡ 1 exp¡ ¸ cor D c
2 ( ~zg

c k
; ~zg

c k ¡ 1
) (36)

Z =
Z

z0;z 00
exp¡ ¸ cor D c

2 (z0;z 00) dz0dz00 (37)

where D c denotesa distancebetweentwo image patches,
Z is a normalizationconstantwhosevalue can be computed
from (37), where the integral runs over pairs of consecutive
patchescorrespondingto the sametracked object extracted
in training sequences[13]. In practice,however, we did not
computethis valueandassumedit to beconstantfor all object
patches.The �rst probability term in Eq. 33 comparesthe
predictedparameterswith thesampledvaluesusingaGaussian
noiseprocess(cf last expressionin Eq. 35). The secondterm
introducesa non-Gaussianmodel, by comparingdirectly the
patchesde�ned by ck and ck ¡ 1 using the similarity distance
D c. It has been derived by assumingthat all patchesare
equally probable.Although the use of those two terms is
somewhat redundant,it provedto bea goodchoicein practice
and its purposecan be illustrated using Fig. 6. While all
the three predictedcon�gurations will be weighted equally
accordingto pc1, thesecondtermpc2 will downweightthetwo
predictions(green and white ellipses) whose corresponding
supportregion is covering part of the background,which is
undergoing a differentmotion than the head.

The de�nition of pc2 requiresthe speci�cation of a patch
distance.Many suchdistanceshave beende�ned andusedin
theliterature[13], [15], [22]. Thechoiceof thedistanceshould
take into accountthe followings considerations:

1) the distanceshould still model the underlying motion
content,i.e. the distanceshouldincreaseas the error in
the predictedcon�guration grows;

2) the randomnatureof thepredictionprocessin theSMC
�ltering will rarely producecon�gurations correspond-
ing to exactmatches.This is particularlytruewhenusing
a small numberof samples;

3) particles covering both backgroundand object, each
undergoing different motions,should have a low like-
lihood.

For these purposes,we found out in practice that it was
preferable not to use robust norms such as L1 saturated
distanceor a Haussdorfdistance[13]. Additionally, we needed
to avoid distanceswhich might a priori favor patcheswith
speci�c content.This is the caseof the L2 distance,which
correspondsto an additive Gaussiannoise model in Eq.(11)
and generallyprovides lower scoresfor tracked patcheswith
largeuniform areas4. Instead,we useda distancebasedon the
normalized-crosscorrelationcoef�cient (Eq. (12)) de�ned as:

D c(~z1; ~z2) = 1 ¡ NCC(~z1; ~z2) (38)

Regarding the above equation,it is important to emphasize
again that themethodis not performingtemplatematching,as
in [15]. No objecttemplateis learnedoff-line or de�ned at the
begining of the sequence,and the tracker doesnot maintain
a single templateobject representationat eachinstantof the
sequence.Thus, the correlation term is not object speci�c
(except through the de�nition of the referenceregion R).
A particle placed on the backgroundwould thus receive a
high weight if the predictedmotion is in adequationwith
thebackgroundmotion.Nevertheless,themethodologycanbe
extendedto be more object dependent,by using more object
speci�c regionsR andby allowing the region R to vary over
time, as is donein articulatedobject tracking [22].

D. Dynamicsde�nition

To model the prior, we use a standardsecondorder AR
model (Eq. 19) for eachof the componentsof ®. However,
to accountfor outliers (i.e. unexpectedand abrupt changes)
and reducethe sensitivity of the prior in the tail, we model
the noise processwith a Cauchy distribution, ½c(x; ¾2) =

¾
¼(x 2 + ¾2 ) . This leadsto

p(ck jck ¡ 1) =
4Y

j =1

½c
¡
®k ;j ¡ (2®k ¡ 1;j ¡ ®k ¡ 2;j ); ¾»

2
d ;j )

¢
: (39)

where ¾»
2
d ;j denotesthe dynamicsnoise varianceof the j th

component.

E. Proposaldistribution

As motivatedin SectionIV-B, thede�nition of theproposal
function q(ck jci

0:k ¡ 1; z1:k ), given a past trajectory ci
0:k ¡ 1,

relies on the estimatedmotion. More precisely, a new state
sampleck = (®k ; ®k ¡ 1) is drawn by letting ®k ¡ 1 = ®i

k ¡ 1,
anddrawing ®k from q(®k j®i

k ¡ 1; zk ; zk ¡ 1), de�ned by:

q(®k j®i
k ¡ 1; zk ; zk ¡ 1) = N (®k ; ®p

k (®i
k ¡ 1); ¤ »p ) (40)

whichmeansthatwesamplenew transformparametersaround
the predictedvalue. Note that, as doneby others[24], [25],
[32], we could have de�ned our proposalas a mixture, with,
in our case, the prior model and the above proposal as

4This issueis relatedto our assumptionof equallyprobablepatches.Given
our likelihood model for joint tracked patches,Eq. (36), this assumptionis
only approximate.
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components.Suchanapproachwould be interestingwhenthe
motionestimationprocesscouldbesusceptibleto failures,e.g.
whentrackingsmallor texturelessobjects,or in casesof strong
or total occlusion(assumingin this casethat the likelihood
modeling can handlesuch a situation).Similarly, thesefail-
ure conditionsmight be partially handledby exploiting the
covariancematrix of the estimatedmotion parameters,which
would normally exhibit large values in such situations.The
proposalcovariancematrix values¤ »p could be increasedto
re�ect suchcases.However, this failureconditionswill not be
our case.Besides,usingonly thevisualmotionproposalalong
with a �x edcovariancematrix will allow us to betterillustrate
its contribution to the trackingperformance.

VI . RESULTS

In this Section,we �rst describethedifferenttracker models
evaluatedand the parameterizationwe used.We thenpresent
qualitative andquantitative resultson � ve differentsequences
involving headtracking.Visual resultsshouldbe appreciated
by looking directly at typical video resultsthat canbe found
on our website5.

A. Trackers and setup

To differentiate the different elementsof the model, we
consideredthreekinds of trackers :

² condensationtracker M1: this tracker correspondsto
the standardCONDENSATION algorithm [2], with the
object likelihood po (Eq. 30 or 32) combinedwith the
sameAR model with Gaussiannoise for the proposal
and the prior.

² implicit correlationtracker M2: it correspondsto CON-
DENSATION, with the addition of the implicit motion
likelihoodtermin thelikelihoodevaluation(i.e now equal
to po:pc2). This method does not use explicit motion
measurements.

² motion proposaltracker M3: it is the full model. The
samplesare drawn from the motion proposal,Eq. 40,
and the weight updateis performedusing Eq. 5. After
simpli�cation, the updateequationbecomes:

wi
k / wi

k ¡ 1 po(zo
k jci

k )pc2(~zg
ci

k
; ~zg

ci
k ¡ 1

)p(ci
k jci

k ¡ 1) (41)

For thismodel,themotionestimationis notperformedfor
all particlessinceit is robust to variationsof the support
region. At eachtime, the particlesareclusteredinto K m

clusters.Themotion is estimatedusingthe meanof each
clusterandexploited for all the particlesof the cluster.

² deterministic robust motion tracker M4: this tracker,
whosestate-spaceis thesameasfor thepreceedingones,
worksasfollows.At time t, giventhecurrentvalueof the
state,an af�ne motion model is estimated,as described
in SubsectionV-B, and exploited to predict the value of
the stateat time t + 1, asgiven by Eq. 27 and28.

For 200particles,theshape-basedM1 tracker runsin realtime
(on a 2.5GHzP IV machine),M2 at around20 image/s,and
M3 around8 image/s.Tracker M4 runs in real time.

5www.idiap.ch/» odobez/IPpaper/EmbeddingMotion.html

parameters L ¾sh K sh ¸ bhat ¸ cor K m

values 16 5 exp¡ 2 20 20 max(20; N s
10 )

TABLE I

PARAMETER SETTING.

B. Parametersetting

As in any othertrackingalgorithms,weneedto setthevalue
of several parameters,whosechoicecanhave an in�uence on
theresults.In this paper, we decidedto evaluatethesensitivity
of theresultsto themostin�uential parametersin our opinion:
thenoiseparametersin thedynamicalandproposalmodeland
thenumberof particlesNs, while keepingall otherparameters
�x ed.
The valuesof the commonparametersare given in Table I.
They were chosenbasedon previous experience( [25]), and
in accordancewith the valuesfound in other works [2], [8].
While theseparametersare by no meansuniversal, they are
sensiblefor many applications.
For the shapelikelihood,we usedthe sameparametersas in
[25], which dealt with the audio-visualtracking of human-
headsin a meetingroom. The numberof searchlines L is
relatedto theindependenceassumptionof edgemeasurements,
which is itself dependenton the expectedsize of the object
in the image. With a too large numberof lines, neighboor
measureswill becorrelated,which would violate the indepen-
dencehypothesis,while a too small numberwould result in a
poor modelingof the shape.The ¾sh parameterrelatesto the
precisionof our modeling of a headcontour as an ellipse,
where a small value would assumethat head is perfectly
elliptical. More generally, this term hasa direct in�uence on
the landscapeform of the shapelikelihood function: with a
small value, this function will exhibit sharpermodes,with
a higher selectivity with respectto the tracked object, but
also less chancesfor the particle �lter to keep track of
several modes,andhigherchancesof locking onto erroneous
distractors.In practice,we found that valuesrangingfrom 4
to 8 wereadequateanddid not affect importantly the results.
Given the chosenvalueof K sh , of ¾sh , andthe speci�c form
of the likelihood,Eq. 30, the utility searchrangealong each
line is 10 pixels insideandoutsidethecontour. Theparameter
K sh can be relatedto the probability of both not detecting
a contour despitebeing in a correct con�guration (e.g. due
to the absenceof contrast),andrandomlydetectinga contour
anywherealong the searchline (e.g.due to noise)[2]. Small
valuesof K sh lead to a shapelikelihood lesstolerant to the
occurenceof theabove eventswhile largevaluesleadto a less
discriminative likelihood in goodconditions.
The selectedvalueof the color parameteŗ bhat wasthe same
asin [8], whichusedasimilardiscretizationof thecolorspace,
andvalidatedby experience.As for the ¾sh parameter, ¸ bhat

actsdirectly on the sharpnessof the likelihood,andthe same
commentapplies.As the correlationdistanceis in the same
rangeandbehavessimilarly to theBhattacharyyadistance,we
usedthesamevalueas¸ bhat for ¸ cor . Finally, for K m , we did
not thoroughly test other valuesas the current one working
reasonably. In practice,it might be interestingto test lower
valuesto save computationalcost.
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(a) t1 (b) t10 (c) t11 (d) t13

(e) t12 (f) t24 (g) t45 (h) t63

(i) t12 (j) t24 (k) t45 (l) t63

Fig. 8. Headtracking1 : �rst row : shape-basedtracker M1. Secondrow : shape-basedtracker M2. Third row : shape-basedtracker M3. In dark gray (red),
meanstate;in mediumgray (green),modestate;in light gray (yellow), likely particles.

(a) t5 (b) t10 (c) t14 (d) t20

(e) t12 (f) t24 (g) t45 (h) t63

(i) t12 (j) t24 (k) t45 (l) t63

Fig. 9. Headtrackingsequence1 : color-basedmodel.First row : M1, second
row : M2, last row : M3. All experiments(including thoseof Fig. 8) with
N s =250and(¾T ; ¾s ) = (5; 0:01). In darkgray(red),meanstate;in medium
gray (green),modestate;in light gray (yellow), likely particles.

Finally, for the dynamic components,we will use the
following values.First, as the motion proposalterm is more
reliablethantheprior to constrainttrajectories,we will setthe
prior noise¾»d ;j to threetimesthe proposalnoise¾»p ;j in the
M3 tracker. In all experiments,thenoisestandarddeviationsin
theproposaldistribution(theGaussianprior in M1 andM2, the
motion proposal,Eq. 40, in M3) will be denoted¾T for each
of the translationcomponentsand¾s for the scaleparameter.
The aspectratio noisecomponentis kept �x ed, with a value
of 0:01.

C. Tracking results

Sequence1: The �rst sequence(Fig. 8 and9), containing64
imagesof size 240£ 320, illustratesqualitatively the bene�t

of the method in the presenceof strong ambiguities.The
sequencefeaturesa highly textured backgroundproducing
very noisy shapemeasurements,cameraand head motion,
change of appearenceof the head, and partial occlusion.
Whatever the numberof particlesor the noisevariancein the
dynamicalmodel,the shape-basedtracker M1 aloneis unable
to performa correcttrackingaftertime t12. In contrast,tracker
M2 is able to do the tracking correctly on a large majority
of runs when using small dynamics((¾T; ¾s) = (1; 0:005)).
However, with an increaseof the noisevariance,it fails (see
secondrow of Fig. 8) : theobservationsareclearlymultimodal,
and the headmotion is only occasionalydifferent from the
background,which makesit especiallyhardfor thecorrelation
term to keep con�gurations enclosingonly the head.Using
tracker M3, however, leadsto correcttracking,evenwith large
noise values.There might be two reasonsfor this. The �rst
oneconsistsof theuseof thecorrelationlikelihoodmeasurein
parameterspace.The secondoneis dueto its ability to better
maintainmultimodality6. Considera modethatis momentarily
representedby only a few particles.With a “blind” proposal,
theseparticlesare spreadwith few chancesto hit the object
likelihood mode, decreasingtheir probability of survival in
the next selectionstep.On the other hand,with the motion
proposal,thesechancesareincreased.Consideringnow color-
basedtrackers,we observe thatM1 usuallysucceedsfor small
dynamicsbut failswith standarddynamics(e.g.dynamicsused
in [24]), as shown in the �rst row of Fig. 9). This is due to
thepresenceof thebrick color andmoreimportantly, the face
of theboy. Exploiting correlationleadsto successfultracking,
but with a lower precisionwhen using M2 (seeimages9(e)

6In [36], it hasbeenshown on simulatedexperimentsthat even when the
true densityis a two Gaussianmixture modelwith the samemixture weight
for eachGaussian,and with the appropriatelikelihood model, the standard
particle �lter losesrapidly oneof the modes.
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(a) t12 (b) t24 (c) t45 (d) t63

Fig. 10. Headtrackingsequence1: deterministicmotion tracker M4.

(a) t1 (b) t8 (c) t15

(d) t20 (e) t60 (f) t165

(g) t250 (h) t295 (i) t305

(j) t20 (k) t60 (l) t165

(m) t250 (n) t295 (o) t305

Fig. 11. Headtrackingsequence2 (N s =500): top row : shape-basedtracker
M1. Secondandthird rows : shape-basedtracker M2. Last two rows : color-
basedtracker M2. In dark gray (red), meanshape.In light gray (yellow),
highly likely particles.

to 9(h)), thanwith M3 (images9(i) to 9(l)). Finally, asshown
in Fig.10, the deterministicmotion tracker works well. This
is due to the short length of the sequence,the presenceof
enoughstructurein the tracked object, and the precisionof
the estimator.
Sequence2: The secondsequenceis a 330 frame sequence
(Fig. 11) extractedfrom a hand-heldhomevideo. Figure 13
reportsthe trackingperformanceof the three�rst trackersfor
different dynamicsand numberof particles.At eachframe,
theresultingtrackedregion Rt (obtainedfrom themeanstate
value) is consideredas successfulif the recall and precision
areboth higher than25%, wheretheseratesarede�ned by :

R\ ;t = Rgt;t \ Rt ; r pr ec =
jR\ ;t j
jRt j

; r r ec =
jR\ ;t j
jRgt;t j

(42)

whereRgt;t is the ground truth region, and j ¢j denotesthe
setcardinalityoperator. Despitebeinglow, theselectedrateof

(a) t180 (b) t185 (c) t190

Fig. 12. Headtrackingsequence2 (N s =500) : failure casewith the color-
basedtracker M1.
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Fig. 13. Headtrackingsequence2 : successfultrackingrate(in %, computed
over 50 trials with differentrandomseeds).Experiments(a) to (e) : parameter
setsD1 to D4 correspondto N s =500,with dynamics(¾T ; ¾s ) : D1 (2,0.01),
D2 (3,0.01),D3 (5,0.01)D4 (8,0.02).Experiments(f) to (h), differentnumber
of particlesare tested(500/250/100/50)using the D3 (5,0.01)noisevalues.

25%is suf�cient to identify trackingfailures,which is thegoal
of this study. Oncethe trackingstatusis established,tracking
precisioncould be assessedwith variousmeasures[37].
As can be seen,while the shape-basedtracker M1 performs
quite well for tuned dynamics(parameterset D1), it breaks
down rapidly, even for slight increasesof dynamicsvariances
(parametersD2 to D4). Fig. 11 illustratesa typical failuredue
to the small sizeof the headat the begining of the sequence,
the low contrastat the left of the head,and the clutter. On
the other hand, the shape-basedtracker M2 performs well
underalmostall circumstances,showing its robustnessagainst
clutter, partial measurements(around time t250) and partial
occlusion(end of the sequence).Only when the numberof
samplesis low (seeFig. 13(g)) doesthe tracker fail. These
failuresareoccuringat differentpartsof thesequence.Finally,
in all experiments,the shape-basedtracker M3 producesa
correcttrackingrate.Whenlooking at the color-basedtracker
M1, we can seethat it performsmuch better than its shape
equivalent (compareFig. 13(d) and 13(a)). However, due to
the presenceof a personin the background,it fails around
25% of the time with standardnoisevaluesas illustrated in
Fig.12. Incorporating the motion leads to perfect tracking,
thoughleadingto lesspreciselylocatedestimatesthan in the
shapecase(seeFig.11(j) to Fig.11(o)).Besides,with a very
small numberof samples(Ns=50, see13(f)), the M2 tracker



13

(a) t60 (b) t100 (c) t120 (d) t140

Fig. 14. Headtrackingsequence2: deterministicmotion tracker M4.

(a) t1 (b) t65 (c) t170

(d) t446 (e) t640 (f) t660

(g) t710 (h) t745 (i) t800

Fig. 15. Headtrackingsequence3. Tracker with motionproposal(N s =500).
In darkgray (red),meanshape;in mediumgray (green),modeshape;in light
gray (yellow), likely particles.

sometimesfails while the full model is always successful.
Finally, Fig. 14 displays some imagesof the deterministic
M4 tracker, and shows that the robust motion tracker is
accurateenoughto follow theheadfor morethan100 frames.
However, as the man turns his head sideways, the motion
estimator tracks the frontal part of the face as it oughts,
which pushesthe tracked region over the backgroundand
leadto failure.This sequenceillustratesclearly that,while the
motion is useful for short term tracking, an object model is
necessaryto avoid drifting. Addingsuchanobjectmodelto the
motion componentraisesthe issueof the fusion of thesetwo
informationsources,an issueto which we provide a solution
in this paper.
Sequence3: The third sequence(Fig. 15) better illustrates
the bene�t of using the motion proposalapproach.This 72s
sequenceacquiredat 12 frame/sis speciallydif�cult because
of the occurenceof several head turns7(which prevents us
from using the color trackers), and abrupt motion changes
(translations,zoomsin and out), and importantly, due to the
absenceof head contoursas the head moves near (frames
160 to 200) or in front of the bookshelves (frames620 to
the end). Becauseof thesefactors, the shape-basedtracker
M1 fails due to a local ambiguitywith the whiteboardframe
(aroundframe65), or becauseof camerajitter (frame246) (cf

7Headturnsaredif�cult casesfor the new method,asin the extremecase,
the motion inside the headregion indicatesa right (or left) movementwhile
the headoutline remainsstatic, as illustrated by the failure of the motion
tracker in the secondexample,Fig.14.
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Fig. 16. Headtrackingsequence3 : successfultrackingrate(in %, computed
over 50 trials with different random seeds).Experiments16(a) to 16(c) :
parametersetsD1 to D4 correspondto N s =1000,with dynamics(¾T ; ¾s ) : D1
(2,0.01),D2 (3,0.01),D3 (5,0.01)D4 (8,0.02).In experiments16(d),different
numberof particlesare testedusing the D3 (5,0.01)noisevalues.

(a) t65 (b) t170 (c) t446 (d) t640

Fig. 17. Headtrackingsequence3: deterministicmotion tracker.

Fig.16(a)).The M2 tracker works better, handling correctly
the jitter situation when the dynamic noise is large enough,
but fails when the headmoves in front of the bookshelves,
due to the temporally lack of headcontours,combinedwith
backgroundclutter. In contrast,all theseissuesare resolved
by the M3 tracker, which bettercapturethe statevariations,
andallows a successfultrack of the headuntil the endof the
sequenceunderalmostall conditions(Fig. 16(c) and 16(d)).
Figure17 displaysimagesof the resultobtainedwith the M4
tracker. This tracker perfectly tracks the headuntil the �rst
headturn, which generatessomedrift error. However, owing
to the robustnessof the estimator, as explained in Fig. 6,
the tracker still partially follows the head,until a complete
failurehappens,asthedrift becomestoo largeandthetextured
content of the backgroundregion dominatesin the tracked
region.
Additional sequences:Fig. 18 displayssometrackingresults
we obtain for the tracking of people in meetingswith the
M3 tracker. Although thesesequencesare lessdynamic,they
illustrate the robustnessof the methodto heavy background
clutter, partial occlusion, and the large variations in head
appearanceandposethat canoccur in a naturalsetting.

VI I . CONCLUSION

We presenteda methodologyto embeddata-driven motion
measurementsinto particle �lters. This was �rst achieved
by proposinga new graphical model that accountsfor the
temporal correlation existing betweensuccessive imagesof
the sameobject.We show that this new model can be easily
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(a) t1075 (b) t1200 (c) t1225 (d) t1350

(e) t1450 (f) t1600 (g) t2100 (h) t2300

Fig. 18. Headtracking in meetingswith the M3 tracker, N s = 250.

handledby the particle �lter framework. The new introduced
observation likelihood term can be exploited to model the
visual motion using either implicit or explicit measurements.
Secondly, explicit motion estimateswereexploited to predict
morepreciselythenew statevalues.This data-drivenapproach
allows for designingbetter proposalsthat take into account
the new image. Altogether, the algorithm allows to better
handleunexpectedandfastmotion changes,to remove track-
ing ambiguitiesthat arisewhenusinggenericshape-basedor
color-basedobjectmodels,andto reducethesensitivity to the
differentparametersof the prior model.

The conductedexperimentshave demonstratedthe bene�t
of exploiting the proposedscheme.However, this shouldnot
obliteratethe fact that the tracking performancedependson
the choiceof a good and robust object model.This was also
illustratedin thereportedexperiments.Thecolor tracker, when
its useis appropriate,performsbetterthanits shapeequivalent.
However, the referencehistogram model in this case was
extractedby hand from the �rst frame of the sequence.In
practice,the tracking performancemay dependon how well
this referencehistogramhasbeenlearned,and the automatic
initialization and online adaptationof this model need to
be addressed,e.g. using similar schemesas in [6], [21]. In
addition,the developmentof a probability densitymodel that
jointly accountsfor temporal color consistency and object
modelingmay improve the results.This ideamight be worth
exploring in the future.More generally, thus,whendealingon
aspeci�c objecttracker, likeheadtracker for instance,building
morepreciseor adaptiveobjectlikelihoodmayfurtherimprove
the proposedmethod.This can be achieved by developing
better probability density functions to model the likelihood
of observations of different nature,or measuredat different
spatialor temporalpositions,aswell assimultaneouslymod-
eling in a principleway thetemporalcorrelationbetweenthese
observations.

Finally, we have showed that the exploitation of explicit
motion measurementsin the proposalimproved the tracking
ef�ciency. The describedapproachis general.For instance,
it can be usedto track deformableobjects,by exploiting the

integration of motion measurementsalong the shapecurve,
as describedin [38]. However, in this case,the usefulness
and the robustnessof the low-level motion measurementsto
model the temporal variation of �ne scaleparametersneed
to be demonstrated.The use of mixture of proposals[32]
relying on differentcues(prior, visualmotion,color), or of an
hybrid scheme,in which onepart of thestateparameters(e.g.
translation,scale,rotation,...)aresampledfrom a datadriven
motionproposal,while theotherpart is drawn from a standard
AR model,might be moreappropriatein thesesituations.
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