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Abstract— Particle Itering is now establishedas one of the
most popular methods for visual tracking. Within this frame-
work, there are two important considerations.The rst onerefers
to the generic assumption that the obsewations are temporally
independent given the sequenceof object states. The second
consideration, often made in the literatur e, usesthe transition
prior as proposal distribution. Thus, the current obsewations
are not taken into account, requestingthe noise processof this
prior to be large enoughto handle abrupt trajectory changes.
As a result, many particles are either wasted in low lik elihood
regionsof the state space,resulting in low sampling ef ciency, or
more importantly, propagatedto distractor regionsof the image,
resulting in tracking failur es.In this paper, we proposeto handle
both considerationsusing motion. We rst arguethat in general
obsewations are conditionally correlated, and propose a new
model to account for this correlation allowing for the natural
intr oduction of implicit and/or explicit motion measuements
in the likelihood term. Secondly explicit motion measuements
are used to drive the sampling processtowards the most lik ely
regionsof the state space.Overall, the proposedmodel allows to
handle abrupt motion changesand to lter out visual distractors
when tracking objects with generic models based on shape
or color distribution. Experimental results obtained on head
tracking, using several sequenceswith moving camerainvolving
large dynamics, and compared against the CONDENSATION
algorithm, have demonstrated superior tracking performance of
our approach?

Index Terms— Visual tracking, particle lIter , sequentialmonte
carlo, importance sampling, motion.

I. INTRODUCTION

ISUAL tracking is an important problemin computer
vision, with applications in teleconferencing,visual
suneillance, gesturerecognition,and vision basedinterfaces
[2]. Although tracking has beenintensiely studiedin the
literature, it still representsa challengingtask in adwerse
situations, due to the presenceof ambiguities (e.g. when
tracking an object in a cluttered scene or when tracking
multiple instance®f the sameobjectclass) the noisein image
measurement&.g.lighting chnages)andthe variability of the
objectclass(e.g. posevariations).
In the pursuit of robust tracking, SequentialMonte Carlo

methods[2]-[4] have shawvn to be a successfulapproach.

In this temporal Bayesianframework, the probability of an
object con guration given the obsenrationsis representedby
a set of weighted random samples,called particles. This
representatiorallows in principle to simultaneouslymaintain
multiple hypothesesin the presenceof ambiguities, unlike
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algorithmsthat keep only one con guration state[5], which
are thereforesensitve to single failuresin the presenceof
ambiguitiesor fastor erratic motion.

In this paper we addresstwo importantissuesrelatedto
tracking with a particle lter. The rst issuerefersto the
speci ¢ form of the obsenration likelihood, that relies on the
conditionalindependencef obsenrations given the statese-
guence.The secondonerefersto the choiceof anappropriate
proposaMistribution, which, unlike the prior dynamicalmodel,
should take into accountthe nenv obsenrations. To handle
theseissueswe proposea new patrticle Iter trackingmethod
basedon visual motion. Our methodrelieson a new graphical
model allowing for the natural introduction of implicit or
explicit motioninformationin thelikelihoodterm,andon the
exploitation of explicit motion measurementim the proposal
distribution. the above issuespur approachandtheir bene ts,
is given in the following paragraphs.

The de nition of the obseration likelihood distribution is
perhapsthe mostimportantelementin visual trackingwith a
particle lter. This distribution allows for the evaluation of
the likelihood of the current obseration given the current
object state,and relies on the speci ¢ object representation.
The object representatiorcorresponddo all the information
thatcharacterizeshe objectlik e the target position,geometry
appearance;olor, etc. Parametrizedshapedike splines[2] or
ellipses[6], and color distributions [5]-[8], are often usedas
tamgetrepresentatiorOnedravbackof thesegenericrepresen-
tationsis thatthey canbe quiteunspeci c,which augmentghe
chance®f ambiguities.Oneway to improve the robustnesof
a tracker consistsof combininglow-level measurementsuch
as shapeandcolor [6].

Thegenericconditionalform of thelik elihoodtermrelieson
a standarchypothesisin probabilisticvisual tracking, namely
theindependencef obsenationsgiventhe statesequencé?],
[6], [9]-[13]. In this paper we arguethatthis assumptiorcan
be inaccuraten the caseof visual tracking. As a remedy we
proposea new modelthatassumeshatthe currentobsenation
depend=on the currentand previous object con gurationsas
well ason the pastobsenation. We shav that underthis more
generalassumptionthe obtainedparticle Itering algorithm
hassimilar equationghanthe algorithmbasedon the standard
hypothesisTo our knowledge,this hasnot beenshavn before,
and so it representsthe rst contritution of this article.
The new assumptioncan thus be usedto naturally introduce
implicit or explicit motion information in the obsenation
likelihood term. The introduction of such data correlation
betweensuccessie imageswill turn generic trackers like
shapeor color histogramtrackersinto more speci ¢ ones.



Anotherimportantdistribution to de ne when designinga
particle Iter is the proposaldistribution, that is, the function
that predictsthe new statehypothesesvherethe obsenration
likelihood will be evaluated.In general,an optimal choice
[3], [14] consistsof draving samplesfrom the more likely
regionstaking into accountboth the dynamicalmodel, which
characterizeghe prior on the state sequenceand the new
obsenations. However, simulating from the optimal law is
often dif cult when using standardlikelihood terms. Thus,
a commonassumptionin particle Itering consistsin using
the dynamicsas proposaldistribution. With this assumption,
the variance of the noise processin the dynamical model
implicitly de nes a searchrangefor the new hypothesesThis
assumptiorraisesdif culties in modelingdynamicssincethis
termshouldful Il two contradictoryobjectives.On onehand,
as prior distribution, dynamicsshould be tight to avoid the
tracker being confusedby distractorsin the vicinity of the
true object con guration, a situationthat is likely to happen
for unspeci c objectrepresentationsuchasgenericshapesor
color distributions.On the otherhand,asproposabistribution,
dynamicsshouldbe broadenoughto copewith abruptmotion
changesFurthermorethis proposaldistribution doesnot take
into accounthe mostrecentobsenations.probablyhave alow
likelihood, which resultsin low samplingefciency. Overall,
sucha particle lter is likely to be distractedby background
clutter To addresstheseissues,we proposeto use explicit
motion measuresin the proposal function. One benet of
this approachwill be to increasethe samplingef ciency by
handling unexpected motion, allowing for a reducednoise
variancein the prediction process.Combinedwith the new
obsenation likelihood term, using our proposaldistribution
will reducethe sensitvity of the particle Iter algorithm to
the different noisevariancessettingin the proposaland prior
since, when using larger values, potential distractorsshould
be Itered out by theintroducedcorrelationandvisual motion
measurementssinally, our proposalallows to implementthe
intuitive ideaaccordingto which thelikely con gurationswith
respecto anobjectmodelareevolving in conformity with the
visual motion.

The rest of the paperis organizedas follows. In the next
Section,we discussthe state-of-the-artand relate it to our
work. For sale of completenessn Sectionlll, we describethe
standardparticle Iter algorithm. Our approachis motivated
in SectionlV, while SectionV describesthe speci ¢ parts
of our modelin details.Experimentsand resultsare reported
in SectionVI. SectionVIl concludesthe article with some
discussionand future work.

Il. RELATED WORK

In this article,the rst contribution refersto theintroduction
of a new graphicalmodel for particle ltering. This model
allows for the modeling of temporal dependenciebetween
obsenations. In practice, it lead us to naturally introduce
motion obsenation within the datalik elihood.

The useof motion for trackingis not a new idea. Motion-
basedtraclkers, essentiallydeterministic,integrate two-frame
motion estimatesover time. However, without ary object

model, it is almostimpossibleto avoid some drift after a
few secondsof tracking. For long term tracking, the use of
appearence-basetbdelssuchastemplateq9], [15], [16] lead
to morerobust results.However, a templaterepresentatiomlo
not allow for large changesf appearencever time.

To handle appearancechanges,an often dif cult template
adaptationstepis needed17], [18], or more comple global
appearencanodels are used (e.g. eigen-space$19] or ex-
amplars[13], [20]), which posesthe problem of learning
thesemodels, either off-line [10], [13] or on-line [20]. For
instancejn [17], ageneratie modelrelying on the pastframe
template,a long term template,and a non-Gaussiamoise
components proposed Adaptationis performedthroughthe
estimation of the optimal state parameters-comprising the
spatial2D localizationandthe long-termtemplate-yvia anEM
algorithmthatidenti es the stableregionsof thetemplateasa
byproduct.A similar approachis takenin [18], wherethe gray
level of eachtemplatepixel is updatedusinga Kalman lter,
andthe adaptationis blocked whenever the innovation is too
large. In thesetwo casesalthoughpartial and total occlusion
can be handled,nothing preventsthe tracker from long term
drifts. This drift happenswhen the 2D visual motion does
not matchperfectly the real stateevolution. This corresponds
to the problematiccase,reportedin [17], of a turning head
remaining at the sameplace in the image;in [18], tracked
objects (mainly high resolution facesand people) undego
very little posechangesAnotherinterestingapproachowards
adaptatiorusingmotionis proposedn [21] where,in aparticle
Iter framework, a color modelis adaptedon-line. Assuming
a static camera,a motion detectionmodule is employed to
selecttheinstantsmore suitablefor adaptationwhich leadsto
goodresults.

In the presentarticle, however, the methodwe proposeis
not template-based,e. no refeence appearencéemplateis
employed or adaptedseediscussionat the end of subsection
V-C.2). The implementatiorof our modelaims at evaluating,
either explicitly or implicitly, the similarity between the
visual motion estimatedfrom low-level information and the
motion eld inducedby the state change.Our approachis
thus different from the abose ones,and more similar to the
methodsproposedin [22], [23]. In particular the work in
[22] addresseshe dif cult problemof peopletracking using
articulated models, and their use of the motion measures
implicitly correspondso thegraphicaimodelwe proposehere.

In the introduction, we raisedthe problemslinked to the
choiceof the dynamicalmodelas proposal.In the literature,
severalapproachebave beenproposedo addressheseissues.
For instance when available, auxiliary information generated
from color [11], [21], [24], motion detection[24], or audio
in the caseof spealer tracking [24], [25], can be usedto
draw sampledrom. The proposaHistributionis thenexpressed
as a mixture of the prior and componentsof the likelihood
distribution. An important advantageof this approachis to
allow for automatic(re)initialization. However, one dravback
of this approacthis that, sincetheseadditionalsamplesarenot
relatedto the previous samplesthe evaluationof the transition
prior termfor onenew sampleinvolvesall pastsampleswhich



can becomevery costly [11], [25]. [24] avoids this problem
by de ning the prior asa mixture of distributionsthatincludes
a uniform law componentand by relying on distinctive and
discriminative likelihoods,allowing for reinitialization using
thestandardparticle Iter equationsAnotherauxiliary particle
Iter proposedn [26] avoids this problem.Theideais to use
thelikelihoodof a rst setof predictedsamplesattime k + 1
to resamplethe seedsamplesat time k, and to then apply
the standardprediction and evaluation stepson these seed
samplesThefeedbackrom the new dataactsby increasingor
decreasinghe numberof descendentsf a sampleaccording
to its “predicted” likelihood. Sucha schemehowever, works
well only if the varianceof the transitionprior is small, which
is usually not the casein visual tracking.

As an alternatve, the work in [12] proposedto use the
unscentedparticle lter to generateimportance densities.
Although attractve, it is still likely to fail in the presence
of abruptmotion changesand the methodneedsto corvert
likelihood evaluations(e.g. of shape)into state spacemea-
surementge.g.translation scale).This would be dif cult with
color distribution likelihoodsand for some state parameters.
In [12], only a translationstateis considered.n [9], [27],
all the equationsof the Iter are conditionedwith respect
to the images. This allows for the use of the inter-frame
motion estimatesas dynamical model instead of an auto-
regressie model to improve the state prediction. Moreover,
in their application (point tracking), thanksto the use of a
linear obsenation model, the optimal proposalfunction can
be emplo/ed. However, asin [12], measuredn statespaceare
needed,and only translationsare thus considered Although
their utilization of explicit motion measuress similar to what
we proposehere,it wasintroducedin a differentway (through
the dynamicsratherthanthe likelihood),and wasin practice
restrictedto translation.

I1l. PARTICLE FILTERING

Thereexist at leasttwo ways of introducingparticle lters.
The rst oneis throughSequentialmportanceSampling(SIS)
[3], [4], andthe secondoneis basedon factoredsampling[28]
appliedto the Itering distribution [2]. While bothapproaches
lead to the samealgorithm with the standardassumptions,
it is interestingto notice that the two methodsdo not lend
themseles to the sameextensions.In this paper we follow
the SIS approachasit allows for the proposedextension.

Particle ltering is atechniquefor implementinga recursve
Bayesian Iter by Monte Carlo simulations.The key ideais
to representherequiredposterior probability densityfunction
(pdf) p(cokjzik) of the state sequencecyx = fg;l =

fc.;Wig\s . Each sample (or particle) c, representsa
potentialtrajectory of the statesequenceandwj, denotesits
likelihood estimatedirom the sequer]ge)f obserationsup to
time k. The weightsare normalized( ; w, = 1) in orderto
obtain a discreteapproximationof the true posterior:

Xs .
p(CO:kal:k) Ya W;(i(CO:k i CIO:k) :
i=1

1)

Sucha representatiothen allows to computethe expectation
of ary function f with respectto this distribution using a
weightedsum:

z s
f (CO:k)p(CO:kal:k)dCO:k Ya WLf (Cb:k) (2)

i=1
andin particular the meanof the hiddenstatesequenceanbe
computedfrom the rst ordermoment(i.e. by usingf (x) =
X). More speci cally, the samplesandthe weightshave to be
chosenrsuchthat, for ary functionf , theright-handsideof (2)
corvergesto theleft-handsidewhenN tendstowardsin nity ,
even though the Dirac delta probability density function in
the right-handside of Eq. 1 may not corverge pointwiseto
the true densityp(co:xjz1:x). Sincesamplingdirectly form the
posterioris usually impossible,the weightsare chosenusing
the principle of ImportanceSampling(IS). This consistsin
simulating the samplesfrom an importance(a.k.a proposal)
function, andthenintroducinga correctionfactor (the weight)
to accountfor the discrepang betweenthe proposaland the
true posterior More precisely denoting by g(co.xjz1:x) the
importancedensity the properweightsin (1) aregiven by :
W, / P(CodZuik) | 3)
a(Cokiza)
The goal of the particle Itering algorithm is the recursie
propagtion of the samplesand estimationof the associated
weightsaseachmeasuremernis receved sequentially Apply-
ing Bayes' rule, we obtain the following recursve equation
for the posterior:
P(ZkjCo:k; Za:ki 1)P(CkiCo:ki 15 Za:k; 1)
p(zkal:ki 1)

£ p(CO:ki 1j21:ki l)
Assuming a factorized form for

P(CokjzZik) =
(4)

the proposal (i.e.

d(cokjzak) =  d(CjCok; 1;Zu:k)d(Cok; 1jZ1k; 1)) We
obtainthe following recursve updateequation[3], [4]:
. Wi
wl = ——K— with
“ p(zjzak 1)

p(zkjclo;k;zlzki l)p(clkjclo;ki 11 Z1:k;j 1) .
A(CiCork; 15 Z1:k) '

where w, is the unnormalizedweight of the particlei. The
factorp(zxjzi.x; 1) is constanwith respecto the statevalues,
andF'gt is easyto shaw that this factor can be approximated
by i Wi, so that the weights wi, are indeed correctly
normalized.In order to simplify the general expressionof
Eq. 5, conditionaldependenciebetweervariablesare usually
modeledaccordingto the graphicalmodelof Figure 1a, which
correspondso the following assumptions

H1: Theobsenationsfzg, giventhe sequencef states,
6e independent. This leads to p(zi.kjCok) =

ikzl p(zkjck), which requiresthe de nition of the
data-likelihood p(zkjck). In Eqg. 5, this assumption
translatesin p(z«jCox; Zuk; 1) = P(ZciC).
The state sequence cyx follows a rst-order
Markov chain model. In Eq. 5, this meansthat
P(CkjCok; 15 Z1:ki 1) = P(CkiCk; 1)-

T
W = Wi 1

®)

H2 :
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Fig. 1. Graphicalmodelsfor tracking.(a) standardand (b) proposednodel.

We then obtainthe simpli ed weight updateequation:
I CACALICACI)
KOG jChy 1 Z1k)

X
(and Wi
i

wi /w =1): (6)
The set fc,,;wiglly is then approximatelydistributed ac-
cordingto p(Co:xjZo:k)-

It is known thatimportancesamplingis inef cient in high-
dimensionalspaceq14], which is the caseof the statespace
Co:k ask increasesin practice,this leadsto the continuous
increaseof the weight variance concentratinghe massof the
weightsonto a few particlesonly. To solve this problem,it is
necessaryo apply anadditionalresamplingstep,whoseeffect
is to eliminatethe particleswith low importanceweightsand
to multiply particleshaving high weights.Several resampling
schemesexist [14]. In our implementationwe usedthe one
describedin [3], and perform a systematicresampling.We
nally obtainthe particle Iter displayedin Fig. 2.

1) Initialization

- fori =
Equation(5)

4) Selection resamplewith replacemeniNg particles
-foi -9 A resampléf e ; wi g)
- setk = k + 1 andgoto step2.

Fig. 2. The genericparticle Iter algorithm.

The efciency of a particle Iter algorithm relies on the
de nition of a good proposaldistribution. A temporallylocal
stratgy consistsof choosingthe importancefunction that
minimizes the weight varianceof the new samplesat time
k conditionallyto trajectories:c‘l:ki , andobsenrationszy. It
can be shavn [14] that this optimal function is given by

A(CkiChux; 13 Zu:k) = A(CiCk; 152k) = P(CiCk; 1:2k)

I p(zkic)P(cich; 1) ; (7)
which leadsto the following weight updateequation:
Wi /W 1 P(ZG 1) : 8)

In practice, sampling from p(ckjc{(i 1:2Z¢) and evaluating
p(z«jc, 1) areonly achievablein particularcasesjnvolving
for instanceGaussiamoiseandlinear obsenation models[3],
[14], [27]. As an alternatve, a choice often madeconsistsof

selectingthe prior as importancefunction. In that case,we
have : ' . _

Wi I Wi 1 P(ZijG) : )
Although this model is intuitive and simple to implement,
this choice, which does not take into accountthe current
obsenations, has several dravbacks, especially with high-
dimensionalvector spacer narrov likelihood models.
Finally, noticethatwhile theweightedsetf .., ; wi g5 allows
for the representatiorof the posterior pdf p(co.xjzox), the
set fc;wigls , that can be obtained from it, is also a
representatie sampleof the Itering distribution p(ckjzo:),
thanksto simple maginalization.

IV. OUR APPROACH

In this Section, we proposea new method that embeds
motionin the particle Iter. Thisis rst obtainedby incorpo-
rating motion informationinto the measuremernrocessThis
canbe achieved by modifying the traditionalgraphicalmodel
representedn Fig. la, by making the current obsenation
dependenhot only onthe currentobjectcon guration but also
on the object con guration and obseration at the previous
instant (see Fig. 1b). Secondly we proposeto use explicit
motion measurementsn order to obtain a better proposal
distribution. In the following Subsectionswe motivate our
approachby pointing out the limitations of the basicparticle
Iter .

A. Revisiting the hypotheseén particle ltering

The Iter describedin Fig. 2 is basedon the standard
probabilistic model for tracking displayedin Fig. 1a and
correspondingto hypothesesH1 and H2 of the previous
section.

In visual tracking, hypothesisH1 of conditional indepen-
denceof temporalmeasurementgiven the statesmay not be
very accurate Keepingonly two time instantsfor simplicity,
the assumptiorimplies thatfor all statesequencesy; 1.x and
datasequencesgy; 1.,

P(Zk; Zk; 1JCk; Ck; 1) = P(ZkjCk; Cki 1)P(Zk; 1jCk; Ckj 1)

This is a very strong assumption:in practice, some state
sequencesy; 1.x Of interest(e.g.the "true” or "target” state
sequencesyr statesequencesloseto the meanstatesequence)
for which the dataare correlated,and hence,for which the

standardassumptiordoesnot hold. This canbe illustratedas

follows.

In most tracking algorithms, the state spaceincludes the

parameter®f a geometrictransformationT . Then,the mea-

surementsconsistof implicitly or explicitly extracting some
part of the imageby :

Z, (1) = z(Tg, 1) 8r2 R; (20)

wherez;, = zjc, r denotesa pixel position,R denotesa
x ed referenceregion, and T, r representshe applicationof
the transformT parameterizedby ¢k to the pixel r. The data
likelihood is then usually computedfrom this local patch:
p(zkjck) = p(Z, ). However, if c; 1 andcg correspondto



Fig. 3.

Imagesattime t andt + 3. The two local patchescorrespondingo
the headand extractedfrom the two imagesare strongly correlated.

two consecutie statesof a given object, it is reasonableo
assumehat :

zo, (1) = %, () + () 8r2R: (12)

where ” (r) are prediction noise random variables,assumed
to be symmetricwith zero mean.This point is illustratedin

Figure3. Equation(11) is at the core of all motion estimation
and compensationalgorithms like MPEG and is indeed a

valid hypothesig29]. More formally, if we considerthe patch
Z as a vector of i.i.d components,we can compute the

normalizedcross-correlatiofNCC) betweentwo datavectors
%, , and %, , for statecouplescy; 1:x of interest,to study
their dependenciesThe NCC of two patchesz and 2 is

given by :

P
rar (B0 2) Sz i 2) (12)
" Varz) Varz) ’

where#; representshe meanof z.
To performexperimentswe de ned, asgroundtruth (GT) ob-
ject sequencesllipsesmanually tted to the headof persons
in 2 sequencesf 300imageseach.Next, we consideredstate
couples(c; 1:6) = (G 1;¢ + ¥), wherec® denotesa GT
objectimageposition,and £ correspondgo an offset around
the GT state. Furthermore,the dimensionsof the ellipse at
time ki 1 areusedto de ne the ellipse at time k.
Thedependencbetweermeasurements illustratedin Fig. 4a
and4b, wherethe averageNCC s plotedagainsttheamplitude
of ¥ measurecitherin numberof pixels, or in percentagef
objectsize,whereobjectsizeis de ned asthe averagebetween
the two ellipse’s axis lengths.In the training data,objectsize
rangesbetween30 and 80 pixels, and there are between600
and 12000 measurementper + value. As canbe seen,when
the offsetdisplacementeache$0% of objectsize,correlation
becomescloseto 0. When the displacemenis greaterthan
100%, the NCC shouldbe 0 in average,asthereis no more
overlap betweenthe two measuremenvectors. Fig. 4c and
4d illustratesthis further by displayingthe histogramof the
NCC for different valuesof +. Again, while the histograms
arepealed aroundl for small valuesfor #, it graduallymoves
towardsa symmetrichistogramcenterecht O with theincrease
of +.

This issue bears similarities with the work on Bayesian

NCC(z1; %) =

—— NCC : mean and mean+/ std —— NCC : mean and mean+/ std
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Fig.4. (a)and(b) Averageof theNCC coefcient for statecouplesatvarying
distancefrom the groundtruth statevalues.In (a), the distanceis measured
in pixels, while in (b) it is measuredn proportion of object size. (c) and
(d) Empirical distribution of the NCC coefcients for differentdisplacement
distance measureckitherin pixel (c), or in proportionof objectsize (d).

object modeling, however, the obtainedmeasurementlistri-
butions were not speci ¢ enough.The work in [31] further
shaved that the independencstill holds conditionedon the
availability of someform of object templateto predict the
Iter output. In tracking terms, the patch extracted in the
previous frame from the stateat time kj 1 plays the role
of the conditioning template,as shavn by Eg. (11), and the
independenceesultof [31] stateghatthe noisevariables (r)
and” (r% areindependentvhenjr j rY is large enough.

The above analysisillustratesthat the independencef the
datagiven the sequenceof statesis not a true assumptiorin
general.More precisely:

P(zkjzak; 1;Co:k) 6 P(Zkjck) ; (13)

which meansthat we can not reducethe left hand side to
the right one as usually donewith the standardderivation of
the particle lter equationsA moreaccuratenodelfor visual
trackingis thusrepresentedyy the graphicalmodelof Fig. 1b.

The nev model can be easily incorporatedin the particle
Iter framawork. First, note that all computationleading to
Eqg. 5 in Section Il are general and do not dependon
assumptiondH1 and H2. Starting from there, replacing H1
by the nev model gives:

P(ZxjZyk; 1)Cok) = P(ZkjZki 1:C:C; 1) (14)

If we keepH2, it is easyto seethat the new weight update
equationis given by :

i P(Zkjzk; 1'CII<'CII<. 1)p(cll<lcll<. 1)
kit q(clkde:ki 1;Zlik)

in replacementf equation(6).

Wi /oW, (15)

correlation[30]. In suchwork, the dependence/independence

of measurement8n this casethe outputof a setof lters) at
differentspatialpositions,given the object state,was studied.
It was shavn that independencavas achieved aslong asthe
supportsof the Iters were distant enough.For foreground

B. Proposaldistribution and dynamicalmodel

According to our nen graphicalmodel, and following the
sameargumentsasin [3], [14], we canshav that the optimal



proposaldistribution and the correspondingupdaterule are
given by :
(CiCh; 15Z1:k) = PGz Zk; 15 C; 1)
I p(zkjc; zk; 1;Ci<; 1)p(ijC||<i 1)
and WL / W;(i 1p(ijC'ki 12k 1)

(16)
17)

As their homologousEquations(7) and (8), theseequations ) 50

aredif cult to be usedin practice.

A possibility then consistsof using the dynamicalmodel
(i.e. the prior) asthe proposal.This suffers from the generic
drawbacksmentionedin the introduction,andin visual track-
ing, from the unspeci city of somestatechangesyhich often
plays in favor of the use of simple dynamicalmodels(e.g.
constantspeedmodels).Also, the low temporalsamplingrate

and the presenceof fastand unexpectedmotions, due either ¢) o 50 w10
to cameraor object movements,renderthe noise parameter

estimationproblemdif cult.

An alternatve, thatwe adoptin this paper consistsof using
as proposala mixture model built from the prior, the output
of severaltrackers[32], or obsenation likelihooddistributions
[24]. In our case,the likelihood term p(zyjck; zk; 1;0{<i 1)
comprisesan object-relatedterm and one motion term (see
paragraphV-C). In this article, we will constructa proposal
distribution from the latter Moreover, asmotivatedby the rest
of this section this termhappengo be moreadaptedo model
statechangeghan dynamicsrelying only on statevalues.

The relevance of using a visual motion-basedproposal
rather than the dynamicsis illustrated by the following ex-
periments.Consideras statec the horizontal position of the
headof the foreground personin the sequencelisplayedin
Fig. 6, which has been hand held recordedand featuresa
personmaving aroundin an of ce, anddenoteby c9' the GT
value obtainedfrom a manualannotationof the headposition
in 200 images.Furthermore,let us denoteby », the state
predictionerror, whoseexpressionis given by

w= i & (18)

where ¢ denotesthe state prediction, computed by two
methods.The rst oneusesa simple AR model:

chgt;l*'gkilwnh%l:cgt;li"lgtiz? (19)

wherec denoteghe statederivative and modelsthe evolution

of the state.In the secondmethod,¢ is computedby exploit-
ing the inter-frame motion to predictthe new statevalue:

&= ¢ o+ A (20)
wheregﬁ“io“f” is computedusingthe coefcients of an afne
motionmodelrobustly estimatedntheregion de ned by cﬁtl 1
(seeSectionV-B).

Fig. 5a reportsthe prediction error obtainedwith the AR
model. As canbe seen.this predictionis noisy The standard
deviation of the predictionerror, %, is equalto 2.7. Further

more, there are large peak errors (up to 30% of the head
width)?. To copewith thesepeaks,the noise variancein the

2Higher order models were also tested.Although they usually led to a
variancereductionof the predictionerror, they alsoincreasedhe amplitude
anddurationof the error peaks.

15 prediction error (using AR model, 15 prediction error (using image based motion

10| 10|

X position
)

X position
o

&r?\% 150 200 b) 0 50

15 prediction error (using AR model, 15 prediction error (using image based motion
5

200 d) B 0 50 t2‘l00 150 200

thO 150 200
ime

X position
IS

X position
o

10 10

Fig. 5. (a) Predictionerror of the x position, when usingan AR2 model .
(b) Predictionerror, but exploiting the inter-framemotion estimation.(c) resp.
(d), sameas (a) resp. (b) but nov addinga randomGaussiamoise (std=2
pixels) on the GT measurementsisedfor prediction. With the AR model
(Fig. c¢) both the previous stateand statederivative estimatesare affectedby
noise(%,=5.6), while with visual-motion(Fig. d) the noisemainly affectsthe
previous measurement®s, =2.3).

Fig. 6. Exampleof motion estimatedetweentwo imagesfrom noisy states.
The 3 ellipsescorrespondo different statevalues.Although the estimation
supportregionsonly cover part of the headandenclosetextured background,
the headmotion estimateis still good.

dynamicshasto be overestimatedo avoid particleslying near
thegroundtruth to be too disfavored.Otherwise pnly particles
lying near the -erroneous-predictedstatesmay survive the
resamplingstep.However, alarge noisevariancehasthe effect
of wastingmary particlesin low likelihoodareasor spreading
themon local distractorswhich canultimatelyleadto tracking
failures.On the otherhand,exploiting the inter-frame motion
leadsto a reductionof both the noisevariance(¥5=0.83) and
the error peaks(Fig. 5b).
There is another advantage of using image-basedmotion
estimatesLet us rst notethatthe previous statevalues(here
C«; 1; Ck; 2) usedto predictthe new statevalue¢, areaffected
by noise, due to measuremenerrors and uncertainty Thus,
in the standardAR approach both the statecy; 1 and state
dervative ¢; 1 in Eq. 19 areaffectedby this noise,resulting
in large errors (Fig. 5¢). When using the inter-frame motion
estimates the estimation c_:{("i"“f“ is almost not affected by
noise (whoseeffect is to slightly modify the supportregion
usedto estimatethe motion), asillustratedin Fig. 6, resulting
again in a lower noisevarianceprocesqFig. 5d).

Thus, despiteneedingmore computationresourcesjnter-
frame motion estimatesare usually more precisethan auto-
regressie modelsto predict new state values; as a conse-



Fig. 7. Speci ¢ graphicalmodelfor our implementation.

guence,they are a better choice when designinga proposal
function. This obsenation is supportedby experimentson
other stateparametersvertical position, scale-,and on other
sequenced:inally, this obsenation canalsobeappliedto a set
of particles.If thesearelocalizedon modesof a distribution
relatedto visual measurementgheir predictionaccordingto
the visual motion will generallyplace them aroundthe new
modesassociatedvith the currentimage.

V. THE IMPLEMENTED MODEL

Thegraphicalmodelof Fig. 1bis generic.In this paper our
speci ¢ implementatiorwill be basedon the graphicalmodel
of Fig. 7, whoseelementsare describednore preciselyin the
restof this section.

A. Objectrepresentatiorand statespace

We follow an image-basedstandardapproach,where the
objectis representetly aregion R centeredat the coordinates
origin, subjectto somevalid geometrictransformation,and
characterize@itherby a shapeor by a color distribution. In the
experimentalSection,we illustrate and evaluate our method
on face tracking sequenceswhich usesan elliptical region
as objectregion R. For geometrictransformationswe have
chosena subspacef the af ne transformationgomprisinga
translationT = (Tx;Ty), a scaling factor s, and an aspect
ratioe : H

Ty + XS
T®I': x x

wherer = (Xx;y) denotesa point position in the reference
frame,®= (T;s;e), and:
—SX+Sy;e: S_X;SX: E andsy: A
2 Sy l+e 1+
A stateis thende ned ascq = (®;®; 1). Note that we
did not employ a rotation parameterin our state-spaceThis
is due to the fact that an elliptical region remainsglobally
almost unchangedunder rotation when the aspectratio is
closeto one. Thus, the estimationof such parametemould
be ratherunderconstrainediven the objectlikelihood models
we will employ (edge measurement®r color histograms).
In addition, increasingthe size of the state-spacenales the
samplingmoredif cult, without ary particularbene tsin our
case Neverthelesswith othershapesor in otherapplications,

s= (22)

B. Motion estimation

As mentionedin the previous Section,we useinterframe
motion estimatedoth as obsenationsandto samplethe new
statevalues.More precisely we estimatean af ne displace-
ment model d; parameterizedby £ = (&);i = 1:6 and
de ned by:

ap + aX + agy

Gl = 4+ asx+ agy

(23)
Suchamodel,thoughlessgenerathanfull 3D onesyrepresents
a goodcompromisebetweernintra-framemotion modelingand
the efciency of its estimation.

The estimation of the parameterf relies on a gradient-
basedmultiresolutionrobust estimationmethod describedin
[33]°. To ensurethe goal of robustnesswe minimize an M-
estimator criterion with a hard-redescendindunction [34].
The constraintis given by the usualassumptiorof brightness
constang of a projectedsurface elementover its 2D trajec-
tory [35]. As displacementbetweentwo framescanbe large,
we use a discreteformulation of this constraint. Thus, the
estimatedparametewnectoris de ned as:

A{DFDg (r)) (24)
M2R(ck; 1)

B¢ 1) = amgmin E(£) = agmin

with DFDg (r) = I (r+ dzr)i I 1(r), (25)
wherely; 1 andly arethe images,and%¢ is a robust esti-
mator boundedfor high valuesof its agument(speci cally,
we use Tukey's biweight function). The minimization takes
adwantageof a multiresolutionframenork andan incremental
schemebasedon the Gauss-Neton method.More precisely
at eachincrementalkstepl (at a givenresolutionlevel, or from
a resolutionlevel to a ner one),we have: £ = b. + ¢£ .
Then, a linearizationof DFDg (r) around®; is performed,
leadingto a residualquantityresg |, (r) linearw.r.t. ¢£ ;:

rege (r)=rl(r+dp r)dee 1+ 1(r+dp r)i li; 2(r) (26)

where 1 (r) denotesthe spatial gradient of the intensity
function at location r and at time k. Finally, we substitute
for the minimization of E(£) the minimization of an ap-
oximate expressionE,, which is given by E,(¢£ |) =
Yrese ,(r)). This error function is minimized using an
Iterative-Raveighted-Least-Squargsrocedure,with 0 as an
initial valuefor ¢£ |. For more detailsaboutthe methodand
its performancesthe readeris referredto [33].
This algorithm allows us to get a robust and accuratees-
timation of the motion model. Owing to the robustnessof
the estimatoy an imprecisede nition of the region R(cy; 1)
involved in EQ.24 due to a noisy state value doesnot sen-
sibly affect the estimation(see Fig. 6). From thesemotion
estimateswe can measurethe variation @’ ; of our state-
spacecoefcients betweenthe two instants. Assuming that
the coordinatesin Eq. 23 are expressedwith respectto the

the useof the rotationparameteraswell asotherparameters- objectcenter(accordingto the de nition of T, translatedrom

might be necessaryand the methodology provided belov
could then easily be adapted.

3We usethe codeavailable at http://wwwirisa.fr/vista



the origin to the position T in the image), we proposethe

following derivative estimates
Y Y2
Li=a .

Ly=as’
(27)

Thus, the measureof the parametewariationscan be de ned
as®" = (I; T,;s; €). Additionally, thevalueof the predicted
geometricparametersgenotedby ®®, is thengiven by:

®fz®ml+®ml

Although not usedin the reportedexperimentsthe covariance
matrix of the estimatecparametersanalsobe computedWith
model-base@pproacheivolving more stateparametersthis
would be useful to accountfor uncertainty and undercon-
strainedoptimization.

Ya

Sy = A2S8x and

Sy = @Sy

Tre(@e+ ap)

S_:
e=e@ as)

(28)

C. Data likelihood modeling

To implementthe new particle lter, we assumethat the
measurementgy are of two types: object measurementsgy
(i.e. edgesor color), and patchgray level measurementg;, .
Then,we considerthe following datalikelihood:

P(Zkizki 16 O 1) = P(ZR; 28020, 1528, 156 O 1)
= p(Zz5 28, 1528 150 O 1)P(ZRIZR; 1524, 13065 & 1)
= p(Zo)P(Z0Zg, 15 O i 1) (29)

where the last derivations exploit the properties of the
graphical model of Fig. 7. Two assumptionswere made
to derive this model. The rst one assumedthat object
obsenations are independentof patch obserations given
the state sequenceameasurementslhis choice decoupleshe
modelof the dependeng existing betweerntwo imageswhose
implicit goalis to ensurethatthe objecttrajectoryfollows the
optical ow eld implied by the sequencef imagesfrom the
shapeor appearencebjectmodel. Whenthe objectis modeled
by a shape,our assumptioris valid since shapeobsenations
will mainly involve measurementon the border of the
object, while the correlationterm will apply to the regions
inside the object. When a color representations employed,
the assumptionis valid as well, as color measurementsan
usually be consideredas being independentof gray-scale
measurementd he secondassumptiorwe madeis that object
measurementare uncorrelatedover time. When considering
shape measurementsthe assumptionis quite valid as the
temporal auto-correlationfunction of contoursis pealed.
However, with the color representation5], [8], the temporal
independencassumptiormight not hold. Better modelsneed
to be searchedor to handlethis case.

We describethe speci ¢ obserationsmodelsasfollows.

1) Visual object measuement For the experimentswe
consideredboth contourmodelsor color models.
Shapemodel:

The obsenation model assumesghat objects are embedded
in clutter Edge-basedneasurementare computedalong L
normallinesto a hypothesizectontour resultingfor eachline
| in a vector of candidatepositionsf®/ g relative to a point

lying on the contour®,. With someusualassumptiong2], the

shapelikelihood canbe expressedas

N2 H kw\rln i o(l)kz ﬂ
max  Ksn;exp( W) ;

1=1
where "”,'n is the nearestedgeon |, and K4, is a constant
usedwhenno edgesare detected.

p(zice) / (30)

Color model:
As color modelswe usedcolor distributions representedy
normalizedhistogramsn the HSV spaceand gatheredinside
the candidateregion R(ck) associatedvith the stateck. To
be robust to illumination effects, we only consideredhe HS
values.Then, a normalizedmultidimensionalhistogramwas
computedresultingin avectorb(cg) = (b’ (c))j=1:n , Where
N = Np£ Ng with N, andNg representinghenumberof bins
along the hue and saturationdimensionsrespectiely (N, =
Ns = 8), andwheretheindex j corresponds$o acouple(h;s)
with h ands denotinghueandsaturatiorbin numbersAt time
k, the candidatecolor modelb(cy) is comparedo a reference
color model b, ¢ . As a distancemeasurewe employed the
Bhattacharyyalistancemeasurg5], [8]:

0 1.

b (Ck)b]ref A
j=1

Donat (b(ck); bref) = @1 (31)

and assumedhat the probability distribution of the squareof
this distancefor a given objectfollows an exponentiallaw,

P(zRjck) I expfi , bhat Dinar (0k(G); brer )9: (32)

We used the histogram computed in the rst frame as
referencemodel, which implicitely assumesthat the color
distribution hasto remain constantthroughoutthe sequence.
This is a reasonableassumptionwhen dealing with cases
when lighting doesnot changedramatically over time, and
color distributions are known to be robust to deformationof
the object [5], [8]. However, in more complec situations, it
might be useful to employ several referencedistributions to
modelcompletelydifferentobjectappearancege.g.faceseen
from front or back), or to useonline adaptation6], [21].

2) Image correlation measuement To modelthis term,

we usedtwo possibilities:

= The rst one consistsof extracting measuresin the
parametespacelUsually, thisis achieved by thresholding
and/orextractinglocal maximaof someinterestfunction
[24], [27]. In our case this correspondgo the extraction
of peaksof a correlationmap,asdonein [27] for trans-
lations. One advantageof sucha methodis to provide a
well-behaed likelihood (i.e. involving only a few well
identi ed modes).One dravback is that the extraction
processcan be time consumming.

2 |n the secondapproach,gray-lesel patchesare directly
comparedafterhaving warpedthemaccordingo the state
values(seeEg.(10)). Theadwantage®f this methodareto
supplymore“detailed” likelihoodsthat canbe computed
directly from the data.



In this paper we employ both options, by assumingthat
obsenations are made of the measurecbarametewariations
@[} ; obtainedusing the estimatedmotion, and of the local
patcheszg . We modelthe correlationterm as:

P(Z{ize; 136 O 1)/ Per (B 13 ®; By 1)Pea(2, 28, )

(33)
To modelthe rst term,we assumehefollowing measurement
equation:

®F ;= ®&  ®; 1+ noise

Givenboththe previousandcurrentstatevalues,andassuming
a Gaussiamoise,the pdf of this measuremernis given by:

pcl(c’@{(ni l!®(1®(| 1) =N ((Rj: 11®( i ®(i l;c»p)
N (Gf; ®; =)

whereN (:;1; a) representaGaussiardistritutionWith mean
! and covariancematrix o, @, = diag (%2 ;) is the co-
varianceof the measurementsand the derivation of the last
expressionin the equationexploits Eqg. 28. The secondterm
in Eqg. 33 is modeledby:

(34)

(39)

5 cor Dc (Z' Ckl 1)

zit

exp'
5 p

pc2( ck' Ck. 1) = (36)

z

exp - o Dc?(2%2%) 30400 (37)
70:700
where D, denotesa distancebetweentwo image patches,
Z is a normalizationconstantwhosevalue can be computed
from (37), wherethe integral runs over pairs of consecutie
patchescorrespondingto the sametracked object extracted
in training sequence$13]. In practice,however, we did not
computethis valueandassumedt to be constanfor all object
patches.The rst probability term in Eq. 33 comparesthe
predictedparametersvith the sampledvaluesusinga Gaussian
noiseprocesycf last expressionin Eq. 35). The secondterm
introducesa non-Gaussiamodel, by comparingdirectly the
patchesde ned by ¢, andcy; 1 usingthe similarity distance
D.. It has beenderived by assumingthat all patchesare
equally probable. Although the use of those two terms is
somevhatredundantijt provedto be a goodchoicein practice
and its purposecan be illustrated using Fig. 6. While all
the three predicted con gurations will be weighted equally
accordingto p,,, thesecondermp,, will downweightthetwo
predictions (green and white ellipses) whose corresponding
supportregion is covering part of the backgroundwhich is
undegoing a differentmotion thanthe head.

The de nition of p,, requiresthe speci cation of a patch
distance Mary suchdistanceshave beende ned and usedin
theliterature[13], [15], [22]. The choiceof thedistanceshould
take into accountthe followings considerations

1) the distanceshould still model the underlying motion
content,i.e. the distanceshouldincreaseasthe errorin
the predictedcon guration grows;

2) therandomnatureof the predictionprocessn the SMC

Itering will rarely producecon gurations correspond-
ing to exactmatchesThisis particularlytruewhenusing
a small numberof samples;

3) particles covering both backgroundand object, each
undegoing different motions, should have a low like-
lihood.

For these purposes,we found out in practice that it was
preferablenot to use robust norms such as L1 saturated
distanceor a Haussdorfistancq13]. Additionally, we needed
to avoid distanceswhich might a priori favor patcheswith
speci ¢ content. This is the caseof the L2 distance,which
correspondgo an additive Gaussiamoise modelin Eq.(11)
and generallyprovides lower scoresfor tracked patcheswith
large uniform area$. Instead we useda distancebasedon the
normalized-crossorrelationcoefcient (Eqg.(12)) de ned as:

Dc(z1,2) = 1i NCC(z1; %) (38)

Regarding the abore equation,it is importantto emphasize
again thatthe methodis not performingtemplatematching,as
in [15]. No objecttemplateis learnedoff-line or de ned atthe
begining of the sequenceand the tracker doesnot maintain
a single templateobject representatiorat eachinstantof the
sequenceThus, the correlationterm is not object specic
(except through the de nition of the referenceregion R).
A particle placed on the backgroundwould thus receve a
high weight if the predictedmotion is in adequationwith
the backgroundmotion. Neverthelessthe methodologycanbe
extendedto be more objectdependenthby using more object
speci ¢ regionsR andby allowing the region R to vary over
time, asis donein articulatedobjecttracking[22].

D. Dynamicsde nition

To model the prior, we use a standardsecondorder AR
model (Eqg. 19) for eachof the componentsof ®. However,
to accountfor outliers (i.e. unexpectedand abrupt changes)
and reducethe sensitvity of the prior in the tail, we model
the noise processwith a Caucly distribution, Ya(x; ¥%) =

%(XZS%/;). This leadsto

i . : 2 ¢
Yo @i (28 1 i ®h2)i¥%y5)

=1 : . : .
where %dz.j denotesthe dynamicsnoise varianceof the j 1
component.

p(ckjcki 1) = (39)

E. Proposaldistribution

As motivatedin SectionlV-B, the de nition of the proposal
function q(ckjcy.; 1:21k), given a past trajectory cy,, 5,
relies on the estimatedmotion. More precisely a newv state
samplec, = (®;®; 1) is drawn by letting ®; 1 = ®k1 1
anddrawing ® from q(®j®; ;;z; Z; 1), de ned by:

ABJ®L, 152k 2k; 1) = N (B ®Q(®), 1);8,)  (40)

which meanghatwe samplenew transformparameteraround
the predictedvalue. Note that, as done by others[24], [25],
[32], we could have de ned our proposalas a mixture, with,
in our case,the prior model and the abore proposal as

4This issueis relatedto our assumptiorof equally probablepatchesGiven
our likelihood model for joint tracked patchesEqg. (36), this assumptionis
only approximate.
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componentsSuchan approachwould be interestingwhenthe
motionestimationprocesscould be susceptibldo failures,e.g.
whentrackingsmallor texturelessobjects,or in casesf strong
or total occlusion(assumingin this casethat the likelihood
modeling can handlesuch a situation). Similarly, thesefail-
ure conditions might be partially handledby exploiting the
covariancematrix of the estimatedmotion parametersywhich
would normally exhibit large valuesin such situations.The
proposalcovariancematrix valuesa ,, could be increasedo
re ect suchcasesHowever, this failure conditionswill not be
our case Besidesusingonly the visualmotion proposalalong
with a x ed covariancematrix will allow usto betterillustrate
its contrikution to the tracking performance.

V1. RESULTS

In this Sectionwe rst describehe differenttracker models
evaluatedand the parameterizationve used.We then present
gualitatve and quantitatve resultson ve differentsequences
involving headtracking. Visual resultsshould be appreciated
by looking directly at typical video resultsthat can be found
on our websité.

A. Trackers and setup

To differentiatethe different elementsof the model, we

consideredhreekinds of traclers:

2 condensationtracker M1: this tracker correspondsto
the standardCONDENSATION algorithm [2], with the
object likelihood p, (Eg. 30 or 32) combinedwith the
same AR model with Gaussiannoise for the proposal
andthe prior.

> implicit correlationtracker M2: it correspond4o CON-
DENSATION, with the addition of the implicit motion
likelihoodtermin thelik elihoodevaluation(i.e now equal
to p,:Pe2). This method does not use explicit motion
measurements.

2 motion proposaltracker M3: it is the full model. The
samplesare dravn from the motion proposal,Eq. 40,
and the weight updateis performedusing Eq. 5. After
simpli cation, the updateequationbecomes

25 p(Gdcg 1) (41)

(:'ki
For thismodel,themotionestimationis not performedor
all particlessinceit is robustto variationsof the support
region. At eachtime, the particlesare clusteredinto K ,
clusters.The motionis estimatedisingthe meanof each
clusterand exploited for all the particlesof the cluster
= deterministic robust motion tracker M4: this tracler,

whosestate-spacés the sameasfor the preceedingnes,
worksasfollows. At timet, giventhe currentvalueof the
state,an af ne motion modelis estimatedas described
in Subsection\B, and exploited to predict the value of
the stateattime t + 1, asgiven by Eq. 27 and 28.

For 200 particles the shape-basell1 tracler runsin realtime

(ona 2.5GHzP IV machine),M2 at around20 image/s,and

M3 around8 image/s.Tracker M4 runsin real time.

Wi 1 Wi 1 Po(20i6)Pea(Z

i
k

Swwwidiap.ch/» odobez/IPpaper/EmbeddingMotion.html

parameters] L %y Kgp , bhat | , cor Km
values 16 5 exp ? 20 20 | max(20; §¢)
TABLE |

PARAMETER SETTING.

B. Parametersetting

As in ary othertrackingalgorithms we needto setthevalue
of several parametersywhosechoicecanhave anin uence on
theresults.In this paper we decidedto evaluatethe sensitvity
of theresultsto the mostin uential parameteré our opinion:
the noiseparameterin the dynamicalandproposaimodeland
thenumberof particlesN s, while keepingall otherparameters
x ed.

The valuesof the commonparametersre given in Table I.
They were chosenbasedon previous experience( [25]), and
in accordancewith the valuesfound in otherworks [2], [8].
While theseparametersare by no meansuniversal, they are
sensiblefor mary applications.

For the shapelikelihood, we usedthe sameparameterasin
[25], which dealt with the audio-visualtracking of human-
headsin a meetingroom. The numberof searchlines L is
relatedto theindependencassumptiorof edgemeasurements,
which is itself dependenbn the expectedsize of the object
in the image. With a too large number of lines, neighboor
measuresvill be correlatedwhich would violate theindepen-
dencehypothesiswhile a too small numberwould resultin a
poor modelingof the shapeThe %4, parameterelatesto the
precisionof our modeling of a head contour as an ellipse,
where a small value would assumethat head is perfectly
elliptical. More generally this term hasa directin uence on
the landscapdorm of the shapelikelihood function: with a
small value, this function will exhibit sharpermodes,with
a higher selectvity with respectto the tracked object, but
also less chancesfor the particle Iter to keep track of
several modes,and higher chancef locking onto erroneous
distractors.In practice,we found that valuesranging from 4
to 8 wereadequateand did not affect importantly the results.
Giventhe chosenvalue of K ¢, of %, andthe speci ¢ form
of the likelihood, Eq. 30, the utility searchrangealong each
line is 10 pixelsinsideandoutsidethe contour The parameter
Ksh can be relatedto the probability of both not detecting
a contour despitebeing in a correct con guration (e.g. due
to the absenceof contrast),andrandomlydetectinga contour
arywherealong the searchline (e.g. dueto noise)[2]. Small
valuesof K, leadto a shapelikelihood lesstolerantto the
occurencef the abore eventswhile large valuesleadto aless
discriminatve likelihoodin good conditions.

The selectedvalue of the color parameter, p: Wasthe same
asin [8], which useda similar discretizatiorof the color space,
andvalidatedby experience As for the Y%y, parameter, pnat
actsdirectly on the sharpnes®f the likelihood,andthe same
commentapplies.As the correlationdistanceis in the same
rangeandbehaessimilarly to the Bhattacharyyalistance we
usedthe samevalueas, phat for , cor . Finally, for K, , we did
not thoroughly test other valuesas the currentone working
reasonablylIn practice,it might be interestingto test lower
valuesto save computationakost.
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Fig. 8. Headtrackingl: rst row : shape-basettacker M1. Secondrow : shape-basettacker M2. Third row : shape-basettacker M3. In dark gray (red),
meanstate;in mediumgray (green),modestate;in light gray (yellow), likely particles.
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Fig. 9. Headtrackingsequencd : color-basedmodel.Firstrow : M1, second
row : M2, lastrow : M3. All experiments(including thoseof Fig. 8) with

Ns=250and(%; ¥s) = (5;0:01). In darkgray (red), meanstate;in medium
gray (green),modestate;in light gray (yellow), likely particles.

Finally, for the dynamic components,we will use the
following values.First, as the motion proposalterm is more
reliablethanthe prior to constraintrajectorieswe will setthe
prior noise¥,; to threetimesthe proposalnoise¥s,;; in the
M3 tracker. In all experimentsthe noisestandardieviationsin
theproposaUistribution (the Gaussiamprior in M1 andM2, the
motion proposal,Eq. 40, in M3) will be denoted¥ for each
of the translationcomponentsand ¥ for the scaleparameter
The aspectratio noise componentis kept x ed, with a value
of 0:0L

C. Tracking results

Sequencel: The rst sequencgFig. 8 and9), containing64
imagesof size 24CE 320, illustrates qualitatvely the bene t

of the methodin the presenceof strong ambiguities. The
sequencefeaturesa highly textured backgroundproducing
very noisy shapemeasurementsgameraand head motion,
change of appearenceof the head, and partial occlusion.
Whatever the numberof particlesor the noisevariancein the
dynamicalmodel,the shape-basettacker M1 aloneis unable
to performa correcttrackingaftertimet;,. In contrasttracker
M2 is able to do the tracking correctly on a large majority
of runs when using small dynamics((%; %) = (1;0:005)).

However, with an increaseof the noisevariance,it fails (see
secondow of Fig. 8) : theobsenationsareclearlymultimodal,
and the head motion is only occasionalydifferent from the
backgroundwhich makesit especiallyhardfor the correlation
term to keep con gurations enclosingonly the head.Using
tracker M3, however, leadsto correcttracking,evenwith large
noise values. There might be two reasonsfor this. The rst

oneconsistof the useof the correlationlik elihoodmeasuren

parametespace.The secondoneis dueto its ability to better
maintainmultimodality’. Considera modethatis momentarily
representedy only a few particles.With a “blind” proposal,
theseparticlesare spreadwith few chancego hit the object
likelihood mode, decreasingtheir probability of survival in

the next selectionstep. On the other hand, with the motion
proposalthesechancesreincreasedConsideringhow color

basedraclers,we obsene thatM1 usuallysucceed$or small
dynamicshut fails with standardlynamicg(e.g.dynamicsused
in [24]), asshavn in the rst row of Fig. 9). This is dueto
the presencef the brick color andmoreimportantly the face
of the boy. Exploiting correlationleadsto successfutracking,
but with a lower precisionwhen using M2 (seeimages9(e)

6In [36], it hasbeenshavn on simulatedexperimentsthat even when the
true densityis a two Gaussiarmixture modelwith the samemixture weight
for eachGaussianand with the appropriatelikelihood model, the standard
particle Iter losesrapidly one of the modes.
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Fig. 10. Headtrackingsequencel: deterministicmotion tracker M4.
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Fig. 11. Headtrackingsequence (Ns=500): top row : shape-basettacker
M1. Secondandthird rows : shape-basettacler M2. Lasttwo rows : color-
basedtracker M2. In dark gray (red), meanshape.In light gray (yellow),
highly likely particles.

to 9(h)), thanwith M3 (images9(i) to 9(I)). Finally, asshavn
in Fig.10, the deterministicmotion tracker works well. This
is due to the short length of the sequencethe presenceof
enoughstructurein the tracked object, and the precision of
the estimator

Sequence2: The secondsequencas a 330 frame sequence
(Fig. 11) extractedfrom a hand-heldhome video. Figure 13
reportsthe tracking performanceof the three rst trackersfor
different dynamicsand numberof particles. At eachframe,
theresultingtracked region R; (obtainedfrom the meanstate
value) is consideredas successfulf the recall and precision
are both higherthan 25%, wheretheseratesare de ned by :

— jR\ ;tj .

JR\ ]
= frec = 5~ (42
Ry " " jRgut] 42)
where Ry is the groundtruth region, andj ¢j denotesthe
setcardinalityoperator Despitebeinglow, the selectedrate of

Ryt = Rgt;t \ Ry i Fprec

(b) t1gs (€) t1go

Fig. 12. Headtrackingsequence (Ns=500): failure casewith the color-
basedtracler M1.
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Fig. 13. Headtrackingsequence : successfutrackingrate(in %, computed
over 50 trials with differentrandomseeds)Experimentga) to (e) : parameter
setsD1 to D4 correspondo Ns=500,with dynamics(¥%; %) : D1 (2,0.01),
D2 (3,0.01),D3 (5,0.01)D4 (8,0.02).Experimentdf) to (h), differentnumber
of particlesare tested(500/250/100/50psingthe D3 (5,0.01)noisevalues.

25%is sufcient to identify trackingfailures,whichis thegoal
of this study Oncethe tracking statusis establishedtracking
precisioncould be assessewith variousmeasure$37].

As can be seen,while the shape-basettacker M1 performs
quite well for tuned dynamics(parameterset D1), it breaks
down rapidly, evenfor slight increase®f dynamicsvariances
(parameter®?2 to D4). Fig. 11 illustratesa typical failure due
to the small size of the headat the begining of the sequence,
the low contrastat the left of the head,and the clutter On
the other hand, the shape-basedracker M2 performs well
underalmostall circumstancesshaving its robustnesagainst
clutter, partial measurementgaroundtime t,s9) and partial
occlusion (end of the sequence)Only when the number of
samplesis low (seeFig. 13(g)) doesthe tracker fail. These
failuresareoccuringat differentpartsof the sequencekinally,
in all experiments,the shape-basedracker M3 producesa
correcttrackingrate. Whenlooking at the color-basedtraclker
M1, we canseethat it performsmuch betterthan its shape
equivalent (compareFig. 13(d) and 13(a)). However, due to
the presenceof a personin the background,it fails around
25% of the time with standardnoise valuesasillustratedin
Fig.12. Incorporatingthe motion leadsto perfect tracking,
thoughleadingto lesspreciselylocatedestimateshanin the
shapecase(seeFig.11(j) to Fig.11(0)). Besides,with a very
small numberof samples(Ns=50, seel13(f)), the M2 tracker
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Fig. 14. Headtrackingsequence: deterministicmotion traclker M4.
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Fig. 15. Headtrackingsequence. Tracker with motion proposal(N s =500).
In dark gray (red), meanshapejn mediumgray (green) modeshapein light
gray (yellow), likely particles.

sometimesfails while the full model is always successful.
Finally, Fig. 14 displays some imagesof the deterministic
M4 tracker, and shavs that the robust motion tracker is

accurateenoughto follow the headfor morethan100 frames.
However, as the man turns his head sidevays, the motion

estimator tracks the frontal part of the face as it oughts,
which pushesthe tracked region over the backgroundand

leadto failure. This sequencdlustratesclearly that, while the

motion is useful for shortterm tracking, an object model is

necessaryo avoid drifting. Adding suchanobjectmodelto the

motion componentaisesthe issueof the fusion of thesetwo

information sourcesan issueto which we provide a solution

in this paper

Sequence3: The third sequencgFig. 15) better illustrates
the bene t of usingthe motion proposalapproach.This 72s

sequenceacquiredat 12 frame/sis speciallydif cult because
of the occurenceof several head turns’(which prevents us

from using the color trackers), and abrupt motion changes
(translations,zoomsin and out), and importantly due to the

absenceof head contoursas the head moves near (frames
160 to 200) or in front of the booksheles (frames 620 to

the end). Becauseof thesefactors,the shape-basedracker

M1 fails dueto a local ambiguity with the whiteboardframe

(aroundframe65), or becausef camergjitter (frame 246) (cf

"Headturnsaredif cult casedor the nev method,asin the extremecase,
the motion inside the headregion indicatesa right (or left) movementwhile
the headoutline remainsstatic, as illustrated by the failure of the motion
tracler in the secondexample, Fig.14.
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Fig. 16. Headtrackingsequenc® : successfutrackingrate(in %, computed
over 50 trials with different random seeds).Experiments16(a) to 16(c) :

parametesetsD1 to D4 correspondo N s=1000,with dynamicy¥%; ¥s) : D1

(2,0.01),D2 (3,0.01),D3 (5,0.01)D4 (8,0.02).In experimentsl6(d), different
numberof particlesare testedusingthe D3 (5,0.01)noisevalues.
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Fig. 17. Headtrackingsequences: deterministicmotion tracler.
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Fig.16(a)). The M2 tracker works better handling correctly
the jitter situation when the dynamic noiseis large enough,
but fails when the headmoves in front of the booksheles,
due to the temporallylack of headcontours,combinedwith
backgroundclutter. In contrast,all theseissuesare resohed
by the M3 tracker, which better capturethe statevariations,
and allows a successfutrack of the headuntil the end of the
sequencainderalmostall conditions(Fig. 16(c) and 16(d)).
Figure 17 displaysimagesof the resultobtainedwith the M4
tracker. This tracker perfectly tracks the headuntil the rst
headturn, which generatesomedrift error However, owing
to the rohustnessof the estimatoy as explained in Fig. 6,
the tracker still partially follows the head,until a complete
failure happensasthedrift becomegoo large andthetextured
content of the backgroundregion dominatesin the tracked
region.

Additional sequencesFig. 18 displayssometrackingresults
we obtain for the tracking of peoplein meetingswith the
M3 tracker. Although thesesequenceare lessdynamic,they
illustrate the robustnessof the methodto heary background
clutter, partial occlusion, and the large variations in head
appearancand posethat canoccurin a naturalsetting.

VII. CONCLUSION

We presenteca methodologyto embeddata-drven motion
measurementsnto particle lters. This was rst achiered
by proposinga new graphical model that accountsfor the
temporal correlation existing betweensuccessie images of
the sameobject. We shav that this new model can be easily
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Fig. 18. Headtrackingin meetingswith the M3 tracler, Ns = 250.
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handledby the particle Iter framework. The new introduced
obsenation likelihood term can be exploited to model the
visual motion using eitherimplicit or explicit measurements.
Secondly explicit motion estimatesvere exploited to predict
morepreciselythe new statevalues.This data-drvenapproach
allows for designingbetter proposalsthat take into account
the new image. Altogether the algorithm allows to better
handleunexpectedand fastmotion changesto remaove track-
ing ambiguitiesthat arisewhen using genericshape-basedr
colorbasedobjectmodels,andto reducethe sensitvity to the
different parameter®f the prior model.

The conductedexperimentshave demonstratedhe bene t
of exploiting the proposedscheme However, this should not
obliteratethe fact that the tracking performancedependson
the choice of a good and robust object model. This was also
illustratedin thereportedexperimentsThe color tracker, when
its useis appropriateperformsbetterthanits shapesquivalent.
However, the referencehistogram model in this case was
extracted by hand from the rst frame of the sequenceln
practice,the tracking performancemay dependon how well
this referencehistogramhasbeenlearned,and the automatic
initialization and online adaptationof this model need to
be addressede.g. using similar schemesas in [6], [21]. In
addition, the developmentof a probability densitymodelthat
jointly accountsfor temporal color consisteng and object
modelingmay improve the results.This ideamight be worth
exploring in the future. More generally thus,whendealingon
aspeci c objecttracler, like headtracker for instancepuilding
morepreciseor adaptve objectlikelihoodmayfurtherimprove
the proposedmethod. This can be achieved by developing
better probability density functions to model the likelihood
of obserationsof different nature,or measuredat different
spatialor temporalpositions,aswell assimultaneouslymod-
elingin a principleway thetemporalcorrelationbetweerthese
obsenations.

Finally, we have shaved that the exploitation of explicit
motion measurement the proposalimproved the tracking
efciency. The describedapproachis general.For instance,
it canbe usedto track deformableobjects,by exploiting the

(C) tazzs (d) tizso

(9) t2100 (h) t2300

integration of motion measurementslong the shapecurwe,
as describedin [38]. However, in this case,the usefulness
and the robustnessof the low-level motion measurement
model the temporalvariation of ne scale parameterseed
to be demonstratedThe use of mixture of proposals[32]
relying on differentcues(prior, visual motion, color), or of an
hybrid schemejn which onepart of the stateparameterge.g.
translation,scale,rotation,...)are sampledfrom a datadriven
motion proposalwhile the otherpartis drawn from a standard
AR model, might be more appropriaten thesesituations.
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