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ABSTRACT

We address the problem of unsupervised image auto-annot-
ation with probabilistic latent space models. Unlike most
previous works, which build latent space representations as-
suming equal relevance for the text and visual modalities, we
propose a new way of modeling multi-modal co-occurrences,
constraining the definition of the latent space to ensure its
consistency in semantic terms (words), while retaining the
ability to jointly model visual information. The concept is
implemented by a linked pair of Probabilistic Latent Seman-
tic Analysis (PLSA) models. On a 16000-image collection,
we show with extensive experiments that our approach sig-
nificantly outperforms previous joint models.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods
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Algorithms, Theory, Languages
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1. INTRODUCTION

The potential value of large image collections can be fully
realized only when effective methods for access and search
exist. Image users often prefer to formulate intuitive text-
based queries to retrieve relevant images [1], which requires
the annotation of each image in the collection. Automatic
image annotation has thus emerged as one of the key re-
search areas in multimedia information retrieval [3, 4, 2], as
an alternative to costly, labor-intensive manual captioning.

Motivated by the success of latent space models in text
analysis, generative probabilistic models for auto-annotation
have been proposed, including variations of PLSA [5], and
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Latent Dirichlet Allocation (LDA) [2]. Such models use a
latent variable representation for unsupervised learning of
co-occurrences between image features and words in an an-
notated image collection, and later employ the learned mod-
els to predict words for unlabeled images [4, 2, 6]. The latent
space representation can capture high-level relations within
and across the textual and visual modalities.

Specific assumptions introduce variations in the ways in
which co-occurrence information is captured. However, with
a few exceptions [2], most previous works assume that words
and visual features should have the same importance in
defining the latent space [4, 6]. There are limitations with
this view. First, the semantic level of words is much higher
than the one of visual features extracted even by state-of-
the-art methods. Second, in practice, visual feature co-
occurrences across images often do not imply a semantic re-
lation between them. This results in a severe degree of visual
ambiguity that in general cannot be well handled by existing
joint models. For auto-annotation, we are ultimately inter-
ested in defining a latent space that is consistent in semantic
terms, while able to capture multimodal co-occurrences.

We present a novel approach to achieve the above goal,
based on a linked pair of PLSA models. We constrain the
definition of the latent space by focusing on textual features
first, and then learning visual variations conditioned on the
space learned from text. Our model consistently outper-
forms previous latent space models [6], while retaining the
elegant formulation of annotation as probabilistic inference.

The paper is organized as follows. Section 2 describes
our representation of annotated images. Section 3 presents
the key PLSA concepts. Section 4 introduces our approach,
motivated by the limitations of previous models. Section 5
presents experiments. Section 6 concludes the paper.

2. DATA REPRESENTATION

Annotated images are documents combining two comple-
mentary modalities, each one referring to the other: while an
image potentially illustrates hundreds of words, its caption
specifies the context. Both textual and visual modalities are
represented in a discrete vector-space form.

Caption. The set of captions of an annotated image
collection defines a keywords vector-space of dimension W,
where each component indexes a particular keyword w that
occurs in an image caption. The textual modality of a par-
ticular document d is thus represented as a vector tg =
(tdty---stdw,---,taw) of size W, where each element ¢, is
the count of the corresponding word w in document d.



Image. We use two common image representations.

RGB [6]: 6%6x6 RGB histograms are computed from three
distinct regions in the image, and only values higher than a
threshold value are kept. This amounts at keeping only the
dominant colors. The RGB vector-space is then built from
the bin values found in the whole image set with respect
to the three regions. The visual modality of document d is
then vg = (v, ..., Vdb, - --,VdB), & vector of size B = 62 % 3.

Blobs [3] : The normalized cut segmentation algorithm
is applied to the image set, and the resulting regions are
represented by color, texture, shape, size, and position de-
scriptors. The K-means clustering algorithm is applied to all
the computed descriptors, quantizing the image regions into
a B-dimensional blob vector-space (same notation as RGB).

3. THE PLSA MODEL

In a collection of discrete data such as the annotated
image dataset described in Section 2, a fundamental prob-
lem might occur: different elements from the vector-space
can express the same concept (synonymy) and one element
might have different meanings depending on the context
(polysemy). If this semantic issue is well known for text,
visual data share similar ambiguities: one color might have
different meanings if occurring with different sets of color
and two colors could represent the same concept.

When this ambiguities occur, a disambiguate latent space
representation could potentially be extracted from the data,
which is the goal of PLSA [5]. This model assumes the exis-
tence of a latent variable z (aspect) in the generative process
of each element z; in a particular document d;. Given this
unobserved variable, each occurence z; is independent from
the document it was generated from, which corresponds to
the following joint probability: P(z;, zk,d;) = P(d:)P(zk |
d;)P(z; | z). The joint probability of the observed variables
is obtained by marginalization over the K latent aspects zx,

P(zj,di) = P(di) Y Pl | di)P(x; | 2k). (1)

Model parameters. The PLSA parameters are the two
conditional distributions in equation 1, and are computed by
an Expectation-Maximization algorithm on a set of training
documents [5]. For a vector-space representation of size N,
P(z | z) is a N-by-K table that stores the parameters of the
K multinomial distributions P(z | zx). To give an intuition
of P(z | z), Figure 3 (b) shows the posterior distribution of
the 10 most probable words for a given aspect, for a model
trained on a set of image captions. The keywords distribu-
tion refers to a people and costume-related set of keywords.
P(z | z) characterizes the aspect, and is valid for documents
out of the training set [5].

On the contrary, the other K-by-M table P(z | d) is only
relative to the M training documents. Storing the param-
eters of the M multinomial distributions P(z | d;), it does
not carry any a priori information about the probability of
aspect zr beeing expressed in any unseen document.

Learning. The standard Expectation-Maximization ap-
proach is used to compute the model parameters P(z | z)
and P(z | d) by maximizing the data likelihood.
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where n(d;, x;) is the count of element z; in document d;.

E-step : P(z | d,z), the probabilities of latent aspects given
the observations are computed from the previous esti-
mate of the model parameters (randomly initialized).

M-step : The parameters P(z | z) and P(z | d) are up-
dated with the new expected values P(z | d,x).

Inference: PLSA of a new document. For an unseen
document dpeqw, the conditional distribution over aspects
P(z | dnew) has to be computed. The method proposed
in [5] consist in maximizing the likelihood of the document
dnew With a partial version of the EM algorithm described
above, where P(x | z) is kept fized (not updated at each
M-step). In doing so, P(z | dnew) maximizes the likelihood
of document dne., with respect to the previously trained
P(z | z) parameters.

4. PLSA-BASED ANNOTATION

PLSA has been recently proposed as a model for auto-
matic image annotation [6]. Referred here as PLSA-MIXED,
it somewhat showed surprisingly poor annotation perfor-
mance with respect to very basic non probabilistic meth-
ods [6]. We propose here a new application of PLSA to
automatic image annotation and motivate our approach by
an analysis of PLSA-MIXED, which then leads to the new
method.

4.1 PLSA-mixed

The PLSA-MIXED system applies a standard PLSA on
a concatenated representation of the textual and the visual
modalities of a set of annotated images d: zq = (ta,vq).
Using a training set of captioned images, P(z | z) is learned
for both textual and visual co-occurrences, which is an at-
tempt to capture simultaneous occurrence of visual features
(regions or dominant colors) and words. Once P(z | z) has
been learned, those parameters can be used for the auto-
annotation of a new image.

The new image dycw is represented in the concatenated
vector space, where all keywords elements are zero (no an-
notation): Znew = (0,Vnew). The multinomial distribu-
tion over aspects given the new image P(z | dnew) is then
computed with the partial PLSA steps described in Sec-
tion 3, and allows the computation of P(x | dnew). From
P(z | dpew), the marginal distribution over the keyword
vector-space P(t | dnew) is easily extracted. The annotation
of dpew results from this distribution, either by selecting
a predefined number of the most probable keywords or by
thresholding the distribution P(t | dnew)-

4.2 Problems with PLSA-mixed

Using a concatenated representation, PLSA-MIXED at-
tempts to simultaneously model visual and textual modal-
ities with PLSA. It means that intrinsically, PLSA-MIXED
assumes that the two modalities have an equivalent impor-
tance in defining the latent space. This has traditionally
been the assumption in most previous work [4]. However, an
analysis of the captions and the image features in the Corel
dataset (described in Section 5) emphasizes the difference
between the keywords and the visual features occurrences.
Figure 1 shows two similarity matrices for a set of annotated
images ordered by topics, as in human-based CD organiza-
tion provided by Corel. They represent the cosine similarity
between each document in the keyword space (left), and the



visual feature space (Right). The keywords similarity ma-
trix has sharp block-diagonal structure, each corresponding
to a consistent cluster of images, while the second similarity
matrix (visual features) consist in a less contrasted pattern.

Figure 1: Similarity matrices for a set of manually
ordered documents (9 CDs from Corel). The left
matrix is the textual modality, the right matrix is
the visual modality (Blobs features are used).

Of course, Figure 1 does not prove that no latent represen-
tation exists for the visual features, but it strongly suggests
that in general, two PLSA separately applied on each modal-
ity would define two distinct latent representations of the
same document. For example, color co-occurrence happens
across images, but does not necessarily mean that the cor-
responding images are semantically related. PLSA-MIXED
thus might model aspects mainly based on visual features,
which results in a prediction of almost random keywords if
these aspects have high probabilities given the image to an-
notate. Moreover, assuming that no particular importance
is given to any modality, the amount of visual and textual
information need to be balanced in the concatenate repre-
sentation of an annotated image. This constrains the size
of the visual representation, as the number of keywords per
image is usually limited (an average of 3 for the data we
used). A typical aspect from PLSA-MIXED where images
are relatively consistent in terms of visual features, but not
semantically (dominant colors: green, red, yellow, black) is
shown in Figure 2.
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Figure 2: One semantically meaningless aspect from
PLSA-MIXED: the 9 most probable images in the
training set and the 10 most probable keywords with
their corresponding probability P(¢ | z).

4.3 Our approach: PLSA-words

Given the above observations, we propose to model a set of
documents d with two linked PLSA models sharing the same
distribution over aspects P(z | d). Contrarily to PLSA-
MIXED, this formulation allows to treat each modality dif-
ferently and give more importance to the captions in the
latent space definition. The idea is to capture meaningful
aspects in the data and use those for annotation. Both pa-
rameters estimation and annotation inference involve two
linked PLSA steps’.

LComputational complexity is discussed at
www.idiap.ch/~monay /acmm04/

Learning parameters

1. A first PLSA model is completely trained on the set of
image captions to learn both P(¢ | z) and P(z | d) param-
eters. Figure 3 illustrates one aspect automatically learned
on the textual modality, with its most probable training im-
ages (a ) and their corresponding distribution over keywords
P(t | z) (b). This example® shows that this first PLSA can
capture meaningful aspects from the data.

2 . We then consider that the aspects have been observed
for this set of documents d and train a second PLSA on the
visual modality to compute P(v | z), keeping P(z | d) from
above fixed. Note that this technique is very similar to the
process described in Section 3, where P(z | z) was kept fixed
and P(z | d) was computed by likelihood maximization.
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Figure 3: One aspect from PLSA learned on words:
the 9 most probable images in the training set (from
P(z | d)) and the 10 most probable keywords with
their corresponding probability P(¢ | z).

Annotation by inference

1. Given new visual features vnew and the previously
calculated P(v | z) parameters, P(z | dnew) is computed for
a new image dpeq using the standard PLSA procedure for a
new document (Section 3).

2. The posterior probability of keywords given this new
image is then inferred by:

K
P(t| dnew) = ZP(t | zk) * P(zk | dnew) (3)
k
If a new image has a high probability of belonging to one
aspect, then a consistent set of keywords will be predicted.
The PLSA-wORDS method thus automatically builds a kind
of language model for the set of training images, which is
then applied for auto-annotation. It is also interesting to
notice that PLSA is applied here on very small textual doc-
uments, given that each annotation is about 3 words long.

5. PERFORMANCE EVALUATION
5.1 Data

The data used for experiments are comprised of roughly
16000 Corel images split in 10 overlapping subsets, each de-
vided in training (~5200 images) and testing sets (~1800
images). The average vocabulary size per subset is 150 key-
words, and the average caption size is 3. Both RGB and
Blobs features described in Section 2 are tested. Blob fea-
tures were downloaded from Kobus Barnard’s website [4].

*Find more examples at www.idiap.ch/~monay/acmm04,/



5.2 Performance measures

No commonly agreed image auto-annotation measure ex-
ists. We evaluated our method on three different measures,
but restrict the discussion to the two measures described
below for space reasons®.

Annotation accuracy : When predicting exactly the
same number of keywords as the ground truth, the annota-
tion accuracy for one image is defined as Acc = r/n, where
r is the number of correctly predicted keywords and n is the
size of the ground truth caption. The average annotation
accuracy is computed over a set of images.

Normalized Score [4] : Sharing the same r and n values
with the above definition, the normalized score is defined as:
Nscore =r/n—(p—7)/(N —n), where N is the vocabulary
size and p is the number of predicted keywords. The aver-
age normalized score is computed over a set of images for a
varying number of predicted keywords and the maximum is
reported here.

5.3 Results

We compare the two PLSA-based methods described in
Section 4.1 and 4.3, and three other methods : EMPIRICAL,
LSA and PLSA-spLIT. EMPIRICAL simply uses the empir-
ical keywords distribution from the training set to predict
the same set of keywords regardless of the image content;
LSA was the best method reported in [6] in term of normal-
ized score, better than PLSA-MIXED; and PLSA-SPLIT is
the unlinked equivalent of PLSA-WORDS, for which two dis-
tinct sets of parameters Py(z | d) and P,(z | d) are learned
for each modality. The latent space dimensionality K = 100
has been used for all the reported results (except EMPIRI-
cAL). The average annotation accuracy results are presented
in Table 1 and Table 2 contains the maximum normalized
scores values. All results are averaged over the 10 subsets.

Method | BLOBS | RGB

EMPIRICAL 0.191 (0.012) | 0.191 (0.012)
LSA 0.140 (0.009) | 0.178 (0.009)
PLSA-spLIT 0.121 (0.019)

PLSA-MIXED | 0.221 (0.011
PLSA-woORDs | 0.292 (0.011

0.217 (0.024)

)
0.113 (0.017;
; 0.288 (0.014)

Table 1: Average annotation accuracy computed
over the 10 subsets. These values correspond to
an average number of 3.1 predicted keywords per
image. The variance is given in parantheses.

The RGB and Blobs features give similar annotation per-
formance for both measures. This suggests that the blob
representation is equivalent to the much simpler RGB fea-
tures when applied to this annotation task. One explanation
could be that the k-means algorithm applied on the concate-
nated color and texture representation of the image regions
converges to a color-only driven clustering.

As originally reported [6], the PLSA-MIXED maximum
normalized score is lower than the non-probabilistic LSA
one, while PLSA shows better performance than LSA for
textual data modeling [5]. Annotation accuracy, which mea-
sures the quality of smaller but more realistic annotation,
gives PLSA-MIXED as the best performing method.

The ranking of the three PLSA-based methods emphasizes
the importance of a well defined link between textual and
visual modalities. PLSA-SPLIT naively assumes no link be-
tween captions and images and models them separately. No

3Prec./Recall measures at www.idiap.ch/~monay/acmm04/

match between the two latent space definitions exist, which
explains why PLSA-SPLIT performs worse than the simplest
EMPIRICAL method. The PLSA-MIXED method introduces
a determining yet unclear interaction between text and im-
age by concatenating the two modalities. This connexion
translates in significant improvement over PLSA-SPLIT in
both annotation and normalized score measures.
PLSA-wORDS outperforms both PLSA-spLIT and PLSA-
MIXED, therefore justifing its design. PLSA-WORDS makes
an explicit link between visual features and keywords, learn-
ing the latent aspects distribution in the keywords space and
fixing these parameters to learn the distribution of visual
features. This results in the definition of semantically mean-
ingfull clusters, and forces the system to predict consistent
sets of keywords. Performing significantly better than all
the other methods for all the measures, it improves the per-
formance of the PLSA-MIXED and LSA methods for both
normalized score and annotation accuracy measures. The
relative annotation accuracy improvement for the Blobs fea-
tures is 108% with respect to LSA and 32% with respect to
PLSA-MIXED (respectively 66% and 33% for the RGB case).

Method \ BLOBS | RGB

EMPIRICAL 0.427 (0.016) [36.2] | 0.427 (0.016) [36.2]

LSA 0.521 (0.013) [40.6] | 0.540 (0.011) [37.9]

PLSA-spLIT | 0.273 (0.020) [43.8] | 0.298 (0.022) [36.3]

PLSA-MIXED | 0.463 (0.018) [37.2] | 0.473 (0.020) [36.4]
[

PLSA-worDs | 0.570 (0.013) [31.2] | 0.571 (0.013) [31.3]

Table 2: Average maximum normalized score value
over the 10 subsets. The variance is given in paran-
theses and the corresponding average number of
keywords predicted is in brackets.

6. CONCLUSION

We proposed a new PLSA-based image auto-annotation
system, which uses two linked PLSA models to represent the
textual and visual modalites of an annotated image. This
allows a different processing of each modality while learning
the parameters and makes a truely semantic latent space
definition possible. We compared this method to previously
proposed systems using different performance measures and
showed that this new latent space modeling significantly im-
proves the previous latent space methods based on a con-
catenated textual+visual representation.
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