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Abstract. Human Activity Recognition (HAR) enables context-aware
user experiences where mobile apps can alter content and interactions de-
pending on user activities. Hence, smartphones have become valuable for
HAR as they allow large, and diversified data collection. Although previ-
ous work in HAR managed to detect simple activities (i.e., sitting, walk-
ing, running) with good accuracy using inertial sensors (i.e., accelerome-
ter), the recognition of complex daily activities remains an open problem,
specially in remote work/study settings when people are more sedentary.
Moreover, understanding the everyday activities of a person can support
the creation of applications that aim to support their well-being. This
paper investigates the recognition of complex activities exclusively us-
ing smartphone accelerometer data. We used a large smartphone sensing
dataset collected from over 600 users in five countries during the pan-
demic and showed that deep learning-based, binary classification of eight
complex activities (sleeping, eating, watching videos, online communica-
tion, attending a lecture, sports, shopping, studying) can be achieved
with AUROC scores up to 0.76 with partially personalized models. This
shows encouraging signs toward assessing complex activities only using
phone accelerometer data in the post-pandemic world.
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1 Introduction

In Human Activity Recognition (HAR), various human activities such as walk-
ing, running, sitting, [...], cooking, driving are recognized. The data can be col-
lected from wearable sensors or accelerometer or through video frames or images
[9]. HAR is possible thanks to sensor data from modalities such as accelerom-
eter, gyroscope, or location [17] [21]. According to Plötz et al. [17], the main
challenges of HAR are the lack of data and the poor quality and labeling of the
data. Recent devices like smartwatches allow for good-quality data for HAR. For
example, using a smartwatch, Laput et al. [10] obtained high accuracies for clas-
sifying 25 complex hand activities. However, smartwatch adoption is much lower
compared to smartphones, and according to Coorevits et al. [5], most people
tend to stop using smartwatches and wearables after six months of use.
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Using smartphones for HAR seems promising given their ubiquity: more than
80% of people own a smartphone, which could simplify data collection and in-
crease the amount of data. Data collection can be performed on diverse pop-
ulations, and continuous collection is possible. The data collected are diverse
because there are numerous sensors in a smartphone, such as an accelerometer,
gyroscope, light sensor, magnetic field, app usage, typing and touch events, etc.
[14]. Multiple sensing modalities also allow recognizing complex activities such
as eating [13] and drinking [4], and even complex psychological states such as
mood [19]. Using smartphones for young adults’ well-being is also increasingly
popular [15] because of the high smartphone ownership in this population. Un-
derstanding one’s everyday activities can help create applications to improve
mental health. Also, using data from different countries involves taking into ac-
count different cultures, people, sensor qualities, and ways to carry a smartphone
(pocket, backpack, purse, etc.). Therefore, data from multiple countries should
generalize better, although bringing additional challenges. Using multiple sens-
ing modalities, while informative, could be costly in terms of battery life. Hence,
there is a push towards only using low-cost inertial sensors for HAR [2].

Previous work on HAR that use inertial sensors focuses on inferring relatively
simple activities such as walking, sitting, climbing stairs, and sleeping [3, 8].
However, recognizing complex activities can be helpful in various situations,
such as elderly care and patient tracking [10, 18] and for habit tracking (e.g., to
help people quit smoking [10]). Moreover, due to the pandemic, most people’s
everyday life has changed to a more sedentary lifestyle, making the HAR tasks
even more challenging because the informativeness of smartphone accelerometers
could be less.

In this work, we attempt to address the research question (RQ): Can only
raw accelerometer data be used to recognize complex daily activities with data
collected during the pandemic (remote study setting)? In addressing this RQ,
two contributions are provided:

Contribution 1: We examine a real-life smartphone sensing dataset that
contains over 216K self-reports from 637 college students in five countries. The
dataset was collected for four weeks during the pandemic. We perform a descrip-
tive data analysis to identify the most common complex activities reported by
participants.

Contribution 2: We define and evaluate binary inference models for eight
complex daily activities: Sleeping, Eating, Studying, Attending a lecture, Online
Communication and Social Media, Watching videos or TV, Sports, and Shop-
ping, all of which represent facets of the everyday life of young adults. Using
only raw accelerometer data and deep learning, we show that AUROC scores in
the range of 0.51-0.62 can be achieved with population-level models, and it could
be improved to AUROC scores in the range of 0.56-0.76 with hybrid models.

To the best of our knowledge, our work contributes to understanding how
the sole use of smartphone accelerometer data can be used for the inference of
complex activities like the ones we study here. The pandemic context enhanced
remote work and sedentary lifestyles, so it is a setting worth investigating. The
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paper is organized as follows. In Section 2, the related work is presented. Then,
the methods and results are explained in Section 3 and Section 4 respectively.
Finally, the main findings are discussed in Section 5, and the paper is concluded
in Section 6.

2 Background and related work

2.1 Smartwatches and HAR

Wearables for HAR. Laput et al. [10] managed to capture fine-grained hand
activities using smartwatches. There were 25 hand activities such as clapping,
drinking, or door opening. Using Fast Fourier Transform and Convolutional Neu-
ral Networks, the method yielded 95.2% accuracy across the 25 hand activities.
This work could be used to track habits such as smoking or detect falls in elderly
people. One disadvantage is that the user must wear the device on their active
arm, whereas smartwatches are usually worn on the passive arm. HAR with
smartwatches on the passive arm would be more challenging but more adapted
to real life. Another challenge with smartwatches, shown by Straczkiewicz et
al. [22], is that about 15.6% people do not follow the data collection protocol
regarding smartwatch placement, such as wearing the watch on the ’wrong’ arm.
This study shows that the data collection for HAR can be very challenging, as
simply wearing a sensor on the non-ideal arm can decrease performance. These
results are also valid for real-life applications: if the sensors are misplaced, the
detected activity could be incorrect.

Smartphones vs. Smartwatches for HAR. Raihani et al. [16] showed that
classifiers can perform as well as when the accelerometer is placed in the pocket
rather than on the wrist for basic activities (sitting, walking, running). Smart-
phones have a practical advantage in the long run, as many users stop using their
smartwatches after a few months [5]. Performing HAR with smartphones can be
as efficient as with wearables, and more data can be used as the ownership
of smartphones is higher than that of smartwatches. Furthermore, combining
smartphone sensors and wrist-worn motion sensors is even more effective than
only using smartwatches [20]. Such work evaluated basic activities along with
more complex ones like smoking, biking, or drinking coffee. The results showed
that combining the sensors from the phone and the watch improves the perfor-
mance by 21%, for an overall F1 measure of 96%. However, the work in [20] was
performed in a lab setting, and its application to real-life cases will probably
yield lower performance.

2.2 Smartphones and HAR

Sensors and Features Smartphone sensors can be used to infer a variety of
human activities and states. For example, mood can be inferred from social inter-
action data [11]. Features like the number of SMS, emails, and apps used are fed
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into various machine learning models to assess user mood. The method achieved
93% accuracy after a two-months personalized training period. Guvensan et al.
[7] used the smartphone’s accelerometer, gyroscope, and magnetometer sensors
to assess the transport mode. The method achieved 95% accuracy with super-
vised learning approaches. Hassan et al. [8] extracted features (mean, frequency
skewness, average energy) from the smartphone’s gyroscope and accelerometer
and fed them into a Deep Belief Network. The method achieved 89.61% accuracy
on basic activities (walking, sitting, walking upstairs/downstairs) and the tran-
sitions between two activities. Wu et al. [23] used the same activities performed
at different paces and collected data from the accelerometer. Their method ob-
tained accuracies between 52-79% for stair walking and up to 100% for sitting;
adding the gyroscope data improved the performance by 3.1-13.4%. Della Mea et
al. [12] used the smartphone’s accelerometer to infer household activities such as
working at the computer, ironing, or sweeping the floor. Their proposed method
obtained an accuracy above 80%, even when the phone was in the pocket. This
gives initial evidence to support the hypothesis that the phone’s accelerometer
alone could also be used for recognizing complex activities.

Complex Activities Ranasinghe et al. [18] defined a complex activity as a suc-
cession of simple actions. The actions are composed of operations, which are the
basic steps constituting the actions. For instance, the complex activity ”Party”
can be broken down into actions such as ”meet with friends”, ”enter a bar”,
and ”order a drink”. These actions can then be broken down into operations
like ”push the door handle” or ”grab the glass”. Complex activities can include
interactions with objects or individuals (such as eating, communicating online,
and partying) and last longer in time. HAR can monitor the complex activi-
ties of elderly people and improve their quality of life. Healthcare monitoring
applications are also an interesting field, and using only the smartphone to rec-
ognize activities is not invasive, compared to previous work that often uses body
sensors [24]. Using the minimum amount of sensors allows for a spare battery
and would also be more efficient memory-wise. However, it is more challenging
because there will be less data, and this data can be less meaningful for some
complex activities.

Our work differs from previous work regarding the inferred activities and
the sensors used. We aim to infer complex activities like studying or eating,
exclusively using raw accelerometer data collected in everyday life. This makes
the inference challenging compared to HAR models trained with data collected in
in-lab settings. Further, as mentioned in Section 3, the dataset being collected
during the COVID-19 pandemic represents a challenge because accelerometer
data will likely be similar for different activities. Hence, there is a novelty in
studying how complex activity recognition models perform with data collected
during the pandemic.
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3 Methods

3.1 Dataset

The anonymized data used in this study was collected as part of a European
Union Horizon 2020 Project called WeNet [6]. The data were collected in the fall
of 2020. The original study aimed to measure aspects of the diversity of univer-
sity students based on social practices and related daily behaviors, combining
mobile surveys and smartphone sensor data. The study was conducted at Aal-
borg University (Denmark), the London School of Economics (United Kingdom),
the National University of Mongolia (Mongolia), Universidad Católica ”Nuestra
Señora de la Asunción” (Paraguay), and the University of Trento (Italy).

A sample of volunteer students participated in a four-week data collection.
The students were approached by the data collectors via an email to the entire
population enrolled in the universities that took part in the survey [1]. After
having consented to the processing of their personal data, agreed to participate
and have consented to be contacted along with having a smartphone version of
Android 6.0 or higher, participants filled out a time diary via a mobile app [1].
Participants were 61% females and average age was 22 years old (see Figure 1).
The app sent notifications every hour for the four weeks, asking the participant
to complete a time diary (also referred to as self-report) to report their current
activity, among other variables not used in this paper. If the participant could
not answer the questionnaire, they could fill it in later (for example, when they
woke up, they could indicate they have been sleeping for the past hours). The
students received incentives at the end of the study. The activity list was defined
according to previous survey work in sociology. In the meantime, the application
collected data from 34 sensors, such as the accelerometer, gyroscope, battery
level, app usage, etc. Here, only the raw accelerometer data will be used (other
sensor data could have been used, but they were not considered as our focus
here is specifically on the accelerometer data). After data pre-processing and
filtering, approximately 40K self-reports were available for analysis.

3.2 Data preparation

Class Selection. Figure 2a shows the dataset’s number of events per activity.
The large class imbalance is not surprising, but it means that there is not enough
data for all activities: Travelling counts only 19 events across all five countries,
which is not enough for a model to learn. Therefore, Movie, theatre, concert,
Hobbies, Arts, Happy hour/drinking, Other entertainment, Entertainment Ex-
hibit, Culture, and Travelling have not been taken into account in this work,
because of the lack of data. Other activities were not considered because they
are too broad: Personal care, Games, Social life, or Voluntary work, involve many
possible complex activities. Activities like Nothing special, Break, and Other are
too general and thus not interesting to infer. In addition, we decided to merge
some classes: Shopping and Other shopping were merged into Shopping; while




