
Macro-Action Discovery Based on Change Point Detection and Boosting

Leonidas Lefakis
Idiap Research Institute
Martigny, Switzerland

leonidas.lefakis@idiap.ch

François Fleuret
Idiap Research Institute
Martigny, Switzerland

francois.fleuret@idiap.ch

Abstract—We present a novel approach to automatic macro-
action discovery and its application to a complex goal-planning
task. The problem of macro-action discovery is framed as one
of multiple change point detection and is addressed with the
help of the Dynamic Programming Boosting algorithm. The
procedure is then employed to solve a complex goal-planning
problem which entails an avatar navigating a 3D environment.
By using DPBoost to decompose the problem into a number
of simpler ones, we are able to successfully address both the
complexity and partial observability of the environment.

Keywords-Goal-Planning, Imitation Learning, Macro-Action
Discovery.

I. INTRODUCTION

Our main contribution is a novel approach to automatically
decompose a teacher policy into a mixture of policies referred
to as macro-actions. Given a training set demonstrating the
teacher’s policy, our procedure encompasses two separate
steps: The first uses DPBoost algorithm [1] which comprises
an alternating procedure that goes back and forth between
learning macro-actions and estimating at any time step in the
exemplar sequences which macro-action is being executed.
The second learns a switch function which indicates when
to switch from one macro-action to the other.

In our main experiments, we wish to learn a policy to
pilot an avatar in a virtual 3D environment (see Figure 1).
The task presented to the avatar is one of reaching two flags
in the correct order. More specifically, a blue flag and a red
flag are dispatched in the environment at random locations.
The goal is then to come in contact with (reach) the blue
flag initially and to subsequently come in contact with the
red flag. Touching the red flag without having first touched
the blue one results in a failed run.

This environment is challenging from a goal-planning
perspective due to its complexity, the size of the state-space
is considerably larger than that of typical maze problems
often found in the literature. The signal passed to the goal-
planner consists of images, thus making the problem one
of visual goal-planning; as a consequence the goal-planner
must also address the task from a computer vision point of
view. The task is further complicated by the fact that given
solely the avatar’s view, the environment is only partially
observable; without further information the avatar does not
know when confronted with the red flag whether it must

move towards it or ignore and move to find the blue flag as
there is no information in the signal regarding whether the
avatar has already reached the blue flag.

II. RELATED WORK

Standard reinforcement learning [2] settings typically rely
on simple actions through which a goal-planning algorithm
interacts with an environment, typically modeled as a Markov
Decision Process, by performing actions and receiving
rewards at various time steps. Tasks tackled by reinforcement
learning algorithms are typically of limited complexity (e.g.
2D maze problems). Even in the case of more complex tasks
which have been addressed successfully (e.g. Backgammon
[3]), typically a large number of interactions with the
environment are required before a near-optimal policy is
learned. For many tasks however this demand is not feasible
thus limiting the applicability of RL approaches.

A. Macro-Actions

The introduction of hierarchical reinforcement learning
[4] and more specifically the options framework [5] is a
promising route towards scaling up RL. In this setting, the
agent has at its disposal, beyond the simple primitive actions
a number of options (variably known as skills or macro-
actions) which consist of a policy, a termination condition,
and an initiation set.

One of the core issues for the options framework is that
of automatically discovering these macro-actions. In [6] the
authors use novelty detection to develop options which lead
to surprising events. The authors in [7] use a graph-cut
approach to discover useful sub-goals of the task at hand,
they then use the options framework to learn macro-actions
that lead to these sub-goals. Konidiaris et al. [8] learn what
they name a skill chain. Their algorithm effectively learns a
series of options by backtracking from the goal in such a way
that the termination state of each option is in the initiation
set of the next. In [9] the authors segment demonstration
trajectories to create skill trees which are constructed from
macro-actions. Like the work presented here the authors cast
the problem of macro-action discovery as one of change
point detection.



B. Imitation Learning

In the setting of goal-planning another approach that has
proven fruitful in solving complex tasks is that of imitation
learning [10] also referred to as learning from demonstration
or mimicking. In this framework, the agent is presented with
a number of trajectories which are typically considered to be
generated by an optimal or near-optimal policy. In practice
these trajectories are created by having an expert, i.e. the
teacher, navigate the environment.

Several different approaches have been proposed towards
exploiting the information present in these trajectories.
Inverse reinforcement learning [11] aims to infer the re-
ward function R(st) given the demonstration trajectories.
Maximum margin planning [12] casts imitation learning as
a structured prediction problem, solving it by a sub-gradient
approach. In their seminal paper, Atkeson and Schaal used
demonstration trajectories to learn both a model and a reward
function and subsequently used planning to calculate a good
policy [13].

Perhaps most closely related to the work presented here is
the approach where learning is cast as a classification problem.
In this approach, typically one or more classifiers are used to
learn a direct state-to-action mapping of the optimal policy.
A well-known example of such an approach is the ALVINN
autonomous land vehicle [14]. More recently Lecun et al. [15]
used a convolutional neural network structure to effectively
learn a state-to-action mapping for off-road driving.

C. Change point detection

As noted the present work casts the problem of discovering
macro-actions in demonstration trajectories as a change point
detection problem [16]. In change point problems one is
confronted with a set of samples collected over time and
which are assumed to have been generated disjointly by
different models.

Given this setting, the problem of macro-actions discovery
becomes one of segmenting the teacher trajectories so that
each segment is assigned to a different predictor. This
casting of macro-action discovery as a change point detection
problem is similar to that proposed in [9] where the problem
is solved using a Viterbi algorithm to estimate the models
of maximum a posteriori probability.

Contrary to these approaches we aim to leverage more pow-
erful discriminative learning algorithms, namely Adaboost,
and have thus employed the DPBoost algorithm [1] which can
exploit these discriminative learners while avoiding the very
tricky issue of normalizing properly a probabilistic transition
model and a discriminative emission model, by considering
a regularization that upper-bounds strictly the number of
transitions.

III. DYNAMIC PROGRAMMING BOOSTING

As summarized in the introduction, the first step in our
approach is to automatically decompose the expert trajectories

into a mixture of several simple macro-actions.
Precisely, we get a sequence of training samples, each

composed of an available signal (an image) and an action,
and we know that each of these samples is associated to a
macro-action, which is unknown. The only prior knowledge
is the regularity of these macro-actions, which do not change
often, and that given these macro-actions, the action can be
predicted from the available signal. Thus we consider the
case of training a family of Q multi-class classifiers from a
sequence of N training samples that we know is composed
of Q underlying macro-classes.

Using an alternating procedure, DPBoost [1] builds Q
multi-class classifiers fq =

∑T
1 a

t
qh

t
q, by re-estimating

at each time step t the optimal macro-labeling of the N
samples and adding weak learners htq in the strong classifiers
fq associated to each macro-label (macro-action), with a
standard Boosting criterion.The corresponding macro-labels
are unknown during training but given these macro-labels,
the samples are considered i.i.d..

In the case of macro-actions discovery, the macro-label
stands for the macro-action currently in progress, and the
label for the action executed. So classifiers and classes can
be assigned respectively to macro-action policy and actions,
and macro-classes correspond to macro-action labels q.

IV. MACRO-ACTION SWITCHING

During the training phase of the algorithm, change point
detection is handled by the dynamic programming step of the
algorithm. During the testing phase however, the algorithm
must rely on switching functions

Hq′

q : RD → {−1, 1}, ∀q 6= q′

which will signal the shift from macro-class q to macro-
class q′. Such functions can be trained from the q1, . . . , qN
estimated by DPBoost. In the context of goal-planning
these functions would act as indicators for moving from one
macro-action to the next.

In order for these switch functions to be effective in
practice, it is imperative that they do not signal a transition
too soon. Thus we would like that ∀n ≤ m,Hq′

q (xn) < 0,
where m signifies the moment of transition. On the other
hand, the switching function need only respond positively
at the moment of transition, thus its response is indifferent
∀n > m.

Based on this, the training set for each switching function
Hq′

q is built as follow: For each trajectory where the transition
q → q′ occurs, at moment m, we gather the samples xn
for which n < m and couple them with a negative label
yq→q′

n = −1, where yq→q′

n signifies the label of sample xn for
training Hq′

q as opposed to its true label yn. For the positive
samples we simply need the samples xm at the moment the
transitions from q → q′ occur in the various trajectories. In
practice however in order to make our switching functions



more robust we add J positive samples xm, ..., xm+J−1 from
each trajectory.

Using the constructed training sets {xn, yq→q′

n }, the
functions Hq′

q are learned using AdaBoost with classification
stumps. Of course any other discriminative approach can be
employed at this step.

V. EXPERIMENTAL RESULTS

The motivation for the use of the DPBoost algorithm has
been to address a complex goal-planning task. The task entails
an avatar navigating a 3D simulated environment generated
with the OGRE 3D graphics rendering engine. This engine
produces a realistic rendering of the scene as seen by the
avatar. The engine is capable of depicting complex 3D objects,
as well as the effects of differing lightning sources. As can
be seen in Figure 1, the rendered result is of high quality
and reminiscent of modern 3D video games. The simulator
is furthermore equipped with a physics engine that allows for
the realistic simulation of the physical interactions between
the avatar and its environment.

The possible actions that the avatar can take in this
application, are “move forward”, which moves the avatar
forward by 3cm, and “turn left” or “turn right” which alter
the avatar’s orientation by π/300. The size of the room is
generated at random to be between 5 and 20 meters, while the
textures displayed on the walls and ground are also picked
at random. The lights are at fixed locations to avoid overly
dark areas.

In order to test our approach experimentally we train
two goal-planners, one with two and another with four
macro-actions, We compare DPBoost against a baseline
which consists of a goal-planner based on a single AdaBoost
classifier which performs state-to-action mapping; in this
case there is no Dynamic Programming component to the
learning phase nor any switching function. The baseline is
denoted with a dash in Table I.

The data used for training consist of twenty trajectories
generated using a hard-coded teacher. The teacher has
knowledge of whether the blue flag has already been reached
or not, information which is not passed on to the goal-planner,
instead the goal-planner must infer the correct action solely
from visual information. To be more specific, the data xn
available to DPBoost consist of the RGB values of a scaled
down version (from 320×240 to 64×48 pixels) of the avatar’s
current view, as well as the difference between the RGB
values of the down scaled version of the avatar’s current
view and the RGB values of the down scaled version of
the avatar’s previous view i.e. before the last action. As
mentioned earlier the avatar has no memory of past events,
in particular it has no information regarding whether it has
already reached the blue flag. The information passed to the
goal-planner can be seen in Figure 2

In our original experiments the positions of the two flags
are generated at random and then remain fixed throughout

Table I
RESULTS

Fixed Flag Locations
Nb. of macro-actions - 2 4

Success Rate 92% 92% 68%

Randomized Flag Locations
Nb. of macro-actions - 2 4

Success Rate 28% 56% 40%

the training and test runs. The results obtained can be seen
in Table I marked Fixed Flag Locations, the percentages here
refer to the percentage of successful runs.

This results may at a first glance seem surprising, the
single classifier baseline goal-planner succeeds in solving
the task despite the partial observability of the environment.
In order to accomplish this the single classifier planner must
have effectively learned when to ignore the red flag and
when not. Though as stated this may seem surprising it can
be explained by the fact that for fixed flag locations, in an
successful trajectory the avatar reaches the blue flag and
then approaches the red flag always from more or less the
same avenue i.e. the trajectory from the blue flag to the red
flag. Thus a single classifier can side-step the issue of partial
observability by memorizing, so to speak, this avenue from
blue flag to red flag ignoring the red flag whenever its view
of the flag is not along this avenue, effectively over-fitting
to the specific flag configuration.

To test this hypotheses we present the avatar with a
more complex problem. Namely the positions of the flags
are reinitialized to random positions after each run both
in training and in test. As can be seen by the results in
Table I marked Randomized Flag Locations, this setting
proves too challenging for the baseline planner and its
performance degrades to a greater extent than that of the
multiple macro-action planners. It should be noted here that
the teacher providing the optimal trajectories was hard-coded
and was not itself capable of solving the problem for all
flag configurations; such issues may arise for example when
one flag hides the other flag from view. Testing the teacher
on the same Randomized Flag Locations, we find that the
expert the planner is trying to emulate is only capable of
solving the task 72% percent of the time.

VI. CONCLUSION

We presented a novel approach to macro-action discovery.
The strength of the proposed method was shown empirically
in a complex partially observable goal-planning environment.

In the context of goal-planning, DPBoost can be extended
to function in conjunction with other methods, as for example
the DAGGER algorithm [17]. We aim to incorporate DPBoost
into such a framework in order to solve more complex tasks.

Finally, we also aim to extend our work on switch-function
training in order to embed it into the DPBoost training
procedure.



Figure 1. Rendering of the avatar’s view.

(A) (B) (C)

Figure 2. (A) shows the original image It rendered by the simulator and the images passed to DPBoost. (B) is a downscaled version Ist of the image
while (C) shows the difference between the images Ist and Ist−1

ACKNOWLEDGMENT

This work was supported by the European Community’s
Seventh Framework Programme FP7 - Challenge 2 - Cogni-
tive Systems, Interaction, Robotics - under grant agreement
No 247022 - MASH.

REFERENCES

[1] L. Lefakis and F. Fleuret, “Dynamic programming boosting,”
Idiap Research Institute Technical Report, October 2012.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning : an
introduction, ser. A Bradford Book. The MIT Press, 1998.

[3] G. Tesauro, “Temporal difference learning and td-gammon,”
Commun. ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

[4] A. G. Barto and S. Mahadevan, “Recent advances in hierarchi-
cal reinforcement learning,” Discrete Event Dynamic Systems,
vol. 13, no. 1-2, pp. 41–77, Jan. 2003.

[5] R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning,” Artif. Intell., vol. 112, no. 1-2, pp.
181–211, 1999.

[6] S. P. Singh, A. G. Barto, and N. Chentanez, “Intrinsically
motivated reinforcement learning,” in NIPS, 2004.

[7] O. Şimşek, A. P. Wolfe, and A. G. Barto, “Identifying useful
subgoals in reinforcement learning by local graph partitioning,”
in Proceedings of the 22nd international conference on
Machine learning, 2005, pp. 816–823.

[8] G. Konidaris and A. G. Barto, “Skill discovery in continuous
reinforcement learning domains using skill chaining,” in NIPS,
2009, pp. 1015–1023.

[9] G. Konidaris, S. Kuindersma, A. G. Barto, and R. A. Grupen,
“Constructing skill trees for reinforcement learning agents from
demonstration trajectories,” in NIPS, 2010, pp. 1162–1170.

[10] B. Argall, S. Chernova, M. M. Veloso, and B. Browning, “A
survey of robot learning from demonstration,” Robotics and
Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse
reinforcement learning,” in In Proceedings of the Twenty-first
International Conference on Machine Learning. ACM Press,
2004.

[12] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum
margin planning,” in In Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[13] C. G. Atkeson and S. Schaal, “Aprobot learning from demon-
stration,” in In Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kaufmann, 1997.

[14] D. Pomerleau, “Alvinn: An autonomous land vehicle in a
neural network,” in NIPS, 1988, pp. 305–313.

[15] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier,
K. Kavukcuoglu, U. Muller, and Y. LeCun, “Learning long-
range vision for autonomous off-road driving,” J. Field Robot.,
vol. 26, no. 2, pp. 120–144, Feb. 2009.

[16] P. Fearnhead and Z. Liu, “Online inference for multiple
changepoint problems,” Journal of the Royal Statistical Society:
Series B, vol. 69, no. 4, pp. 589–605, 2007.

[17] G. G. Stephane Ross and J. A. Bagnell, “A reduction of
imitation learning and structured prediction to no-regret online
learning,” in Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics, 2011.


