
Accelerated Training of Linear Object Detectors

Charles Dubout and François Fleuret
Idiap Research Institute, Switzerland

École Polytechnique Fédérale de Lausanne, Switzerland
firstname.lastname@idiap.ch

Abstract

We describe a general and exact method to speed up
the training of linear object detection systems operating in
a sliding, multi-scale window fashion, such as deformable
part-based models. Our approach consists of reformulating
the computation of the gradient as a convolution, and mak-
ing use of properties of the Fourier transform to obtain a
speedup factor proportional to the linear filters’ sizes. This
technique does not rely on the sparsity induced by a specific
loss, nor on a stochastic sub-sampling of the training exam-
ples. Experiments on the PASCAL VOC benchmark show a
speedup factor of more than one order of magnitude com-
pared to a standard exact generic method.

1. Introduction
Linear classifiers have become very popular in recent

years for the detection of objects in complex scenes, for
two reasons. First, they can achieve good prediction per-
formances, provided that they take as input discriminant
enough features. Second they have a very low computa-
tional cost, both for training and testing, enabling training
with very large sets of examples, and testing at near real-
time speeds. Indeed, linear systems are the winners of many
of the last PASCAL VOC detection challenges [4, 5], the
latest being deformable part-based models [7, 9].

Such classifiers are typically used in a sliding-window
fashion, predicting a score related to the presence or ab-
sence of an object for each possible position and scale in
the scene to process. Those scores are computed by tak-
ing the inner product between the corresponding image sub-
windows and the classifier weights. It is straightforward to
see that the entire score matrix can be computed by taking
the convolution of the image with the (reversed) linear filter
corresponding to the learned classifier weights. Sophisti-
cated methods combine multiple such detectors, either in
mixtures, and/or in multi-part models.

Given a loss which has the form of a sum over all loca-
tions and scales of a per-sample loss, we can similarly re-

formulate the value of its gradient as a convolution. As we
show in § 3, it is the convolution of the map of point-wise
derivatives of the loss – that is, at each point, how the loss
changes when the response of the predictor changes there –
with the map of feature responses.

By leveraging this form, the computation of the gradient
can be sped up by using Fourier transforms, exploiting the
redundancy between overlapping samples, as revealed by
the analysis of § 4. In practice, as demonstrated in § 5, such
organization of the computation removes the increase of the
cost with the size of the filters, which are always smaller
than the scene to process.

2. Related works
A large amount of literature deals with the problem of ef-

ficiently training linear classifiers, such as linear SVMs, by
exploiting the particular nature of the associated loss func-
tion, novel convex optimization algorithms, or clever im-
plementation strategies [14, 13, 15, 6, 12]. We follow an
orthogonal approach extending the one of [3] and look for
algorithmic gains in the specific case where the training ex-
amples are overlapping sub-windows extracted from train-
ing images. As most computer vision learning problems
involve very large training sets, a consensus in the vision
community is to use online or stochastic gradient descent
algorithms [1, 9, 16].

The efficient computation of the classifier scores in such
a scenario was already addressed in [3]. By formulating this
computation as a sum of convolutions across different fea-
ture planes, and using the linearity of the Fourier transform,
the authors were able to obtain substantial gain by summing
those convolutions in Fourier space, left in the end with only
one inverse transform per filter.

The initial cost of transforming the feature planes is
quickly amortized as long as the classifier contains more
than one filter – for instance in the case of mixture or multi-
parts model – while the cost of transforming the filters is
amortized as long as there are more than one scene to pro-
cess. They also describe two important implementation
strategies to reduce the memory usage and to limit cache

1

Table 1. Notations

K number of features
L number of linear filters
R number of images
M ×N size of an image
xkr ∈ RM×N the kth feature plane of image r
P ×Q size of a filter
wk ∈ RP×Q the kth feature plane of a particular filter
yr ∈ {−1, 1}(M+P−1)×(N+Q−1) the labels of the sub-
images of image r
fr ∈ R(M+P−1)×(N+Q−1) the scores of a particular filter
evaluated on image r
l, l′ the loss per sample and its point-wise derivative
λ regularization constant
J relative importance of the positive examples relative to
the negatives
T number of stochastic gradient descent iterations
ηt learning rate at iteration t
β bias of the classifier
cr(i, j) mixture component associated to the positive at po-
sition (i, j) in image r
| · |+ = max(0, ·) threshold negative values to zero

memory violations, making the whole approach practical.
The first strategy is to group the multiple scales of the im-
ages together into patchworks of constant sizes. It is neces-
sary as the Fourier transforms of the images and the filters
need to be of the same dimensions in order to be point-wise
multiplied together, while the images might be of different
sizes and aspect-ratios. The second strategy is to decom-
pose the point-wise multiplications into fragments, so that
the fragments at the same particular position among all fil-
ters can fit in the CPU cache and do not need to be reloaded
multiple times to compute the point-wise products with the
corresponding patchwork fragments.

3. Linear object detectors and Fourier trans-
forms

As in [3], we handle the parsing at multiple scales by
considering that we process patchworks, each composed of
multiple scales of one of the original images of the training
set. In the rest of the article, an image can refer to either
one of the original images of the training set, or one of these
constructed patchworks.

In the case of a single linear predictor for object detec-
tion, the loss usually has a data-driven term of the form

L(w) =
∑
r

∑
i,j

l(yr(i, j)fr(i, j)) (1)

where w are the model weights, yr(i, j) ∈ {−1, 1} is the
label of the sub-image located at (i, j) in image r, l is the

loss per sample, and in the case of a single feature per pixel

fr(i, j) =
∑
a,b

w(a, b)xr(i+ a, j + b) (2)

is the response of the predictor in image r at location (i, j),
where xr(i, j) is the feature at location (i, j). This expres-
sion extends naturally to multiple filters and multiple fea-
tures by adding sums over the filters and features.

From this, we get

∇L(a, b) = ∂L(w)

∂w(a, b)
(3)

=
∑
r

∑
i,j

∂l(yr(i, j)fr(i, j))

∂w(a, b)
(4)

=
∑
r

∑
i,j

yr(i, j) l
′(yr(i, j)fr(i, j))

∂fr(i, j)

∂w(a, b)
(5)

=
∑
r

∑
i,j

(yr l′(yr · fr))(i, j) xr(a− i, b− j) (6)

=

(∑
r

yr l′(yr · fr) ∗ xr

)
(a, b) (7)

hence our main result

∇L =
∑
r

yr l′(yr · fr) ∗ xr (8)

where α(i, j) = α(−i,−j), the operator · stands for the
point-wise multiplication, and we use l′ for both the loss
derivative and its point-wise evaluation.

This point-wise derivative can be interpreted as the
signed sample weights, since it quantifies the importance
of the sample at that location of the image in the change of
the filter weights.

4. Computational cost
We analyze the asymptotic costs of both the computation

of the classifier’s scores and the calculation of the gradient
of the loss, which together usually constitute most of the
computational effort. These two computational steps are
depicted on Figure 1.

4.1. Computational cost of the classifier evaluation

In order to compute the gradient of the loss of equation
(1), one needs first to compute the response of the predictor
at every position, using equation (2). Directly generalizing
to the multiple features case, the scores of all the positions
present in image t are directly given by the convolution

fr =
∑
k

wk ∗ xkr . (9)

where k go through all the feature indices.

...

Point−wise derivative
+

FFT

...

...

...

...

L

...

R

...

...

...

...

L

...

R

K

R

K

K

Gradient computation

Classifier evaluation

FFT
−1

ActivationActivationActivation

Activation

Activation Activation Activation

ActivationActivation

Training

Weights

Training

Weights

Training

Weights

Gradient Gradient Gradient

Gradient Gradient Gradient

Gradient Gradient Gradient

HOG

FilterFilter

HOG

Filter

HOG

HOG

HOG

HOG

HOG

HOG

HOG

Image

Image

Image

Image

Image

Image

Figure 1. Computation of the gradient of the loss with respect to
the model weights, in the case of R images, K features, and L
linear filters. The top figure depicts the computation of [3], and
consists of the series of point-wise products between the Fourier
transforms of the filters, and the Fourier transforms of the images,
followed by the inverse Fourier transforms. This produces the
maps of point-wise evaluations of the detector in each image. The
bottom figure depicts the computation of the gradient. It first com-
putes the point-wise derivatives of the loss to obtain the point-wise
training weights, and then the Fourier transforms of the obtained
maps. Then, for each feature and each filter, the Fourier transform
of the gradient of the loss is obtained by summing the point-wise
products of the R training weight maps with the R image maps for
that feature.

Let K stands for the number of features, M ×N for the
size of the feature planes of the images, and P × Q for the

size of the feature planes of the filters. The computational
cost of a standard convolution between an image and L fil-
ters across K features is O(KLMNPQ). Using the method
of [3], that cost can be reduced to

O(KMN log(MN))︸ ︷︷ ︸
Forward FFTs of the images

+O(KLMN)︸ ︷︷ ︸
Multiplications

+O(LMN log(MN))︸ ︷︷ ︸
Inverse FFTs of the scores

,

(10)
which for both K and L large enough, that is of or-
der log(MN) or more, is O(KLMN), a gain by a factor
O(PQ) compared to the standard procedure.

4.2. Computational cost of the gradient computa-
tion

The cost of computing the gradient of the loss over
one image for the standard method using equation (5) is
in O(KLMNPQ), same as the cost required to compute
the scores. Leveraging the Fourier transform to compute it
as a convolution, as highlighted in equation (8), it can be
reduced by realizing that the transform of the point-wise
derivatives of the left-hand side of the convolution operator,
i.e. yr l

′(yr · fr), does not depend on k and thus can be
shared across features. The cost to compute the point-wise
derivatives themselves is negligible, as it is in O(LMN).
Assuming that the images were already transformed (al-
ready required in order to compute the scores by the method
of [3]), the cost to compute the gradient leveraging the FFT
is

O(LMN log(MN))︸ ︷︷ ︸
Forward FFTs of the derivatives

+O(KLMN)︸ ︷︷ ︸
Multiplications

, (11)

where the left term is the cost to transform the point-wise
derivatives of each filter, and the right term is the cost
of the convolutions. Since during training the filters are
usually updated by adding them together with the gradi-
ents (scaled), one can typically keep them exclusively in
Fourier space, removing the cost of transforming the fil-
ters back and forth. If it proves impossible, an addi-
tional O(KLMN log(MN)) term is required, reducing the
gain compared to the standard process from O(PQ) to
O
(

PQ
log(MN)

)
, but still keeping the total cost independent

of the filters’ sizes.
As in [3], one can use the linearity of the Fourier

transform to reduce the number of inverse transforms by
summing across images in the frequency space. In that
case, even if one has to transform back and forth the fil-
ters, the cost to compute the gradient over R images is R
times that of (11) plus the optional transforms of the fil-
ters, in O(KLMN log(MN)), which for both K and R
large enough (of order log(MN) or more), isO(RKLMN),
again a gain by a factor O(PQ) compared to the standard
process.

5. Experiments
To evaluate our approach to speed up the training of lin-

ear object detection systems, we trained a mixture of 6 fil-
ters, similar to the roots of the part-based models of [9].
Even though we only trained root filters, nothing prevents
us from training full-fledged part-based models, their loss
consisting of a sum over part filters, which can be com-
puted using our method, and a deformation penalty term,
which can be handled separately at negligible cost.

We used the same modified Histogram of Oriented Gra-
dients (HOG) features [2, 9], the same initialization of the
filters’ positions, sizes, and left/right pose assignments as in
[8], and trained them on the PASCAL VOC 2007 challenge
data-set [4]. We used the implementation of [3] to compute
the scores, and extended it to compute the gradients. It uses
the FFTW (version 3.3) library [10] to compute the FFTs,
and the Eigen (version 3.0) library [11] for the remaining
linear algebra.

Algorithm 1 Our Fourier-based stochastic gradient descent
algorithm, inspired from the Pegasos algorithm [15], taking
a whole scene as mini-batch. It minimizes a loss of the form
L(w) = λ

2 ||w||
2 + 1

RMN

∑
r

∑
i,j l(yr(i, j)fr(i, j)).

Input: λ, T
ŵ1 ← 0 # Initialize the filter to zero
for t← 1, . . . , T do
r ← rand(1, . . . , R) # Pick a scene at random
x̂r ← FFT(xr) # Transform the scene
f̂ ← ŵt · x̂r # Convolve it with the current filter
f ← FFT−1(f̂) # Get back the scores
ŷ← FFT(yr l′(yr · f)) # Transform the derivatives
ηt ← 1

λt # Current learning rate
ŵt+1 ← (1− ηtλ)ŵt +

ηt
MN (x̂r · ŷ)

Update the filter with the gradient
end for

Output: w← FFT−1(ŵT+1) # Return the filter

5.1. Implementation details

Typical computer vision data-sets contain thousands of
images, and thus potentially millions of (mostly negative)
training examples, i.e. one per image sub-window at multi-
ple scales. As recommended in [9, 1] in such situations, we
chose to train our classifier using a variant of the stochastic
gradient descent algorithm. It is derived from the Pegasos
algorithm [15], using the Fourier transform to compute the
convolutions, and without the projection step as it made no
difference in our experiments. Since the method of [3] and
our own gradient computation technique are efficient only
at processing entire scenes, we took all the examples of a
scene as a mini-batch at each stochastic gradient descent it-
eration. Algorithm 1 details the sketch of the algorithm.

We made some modifications to this algorithm in our ex-
periments to adapt it to train a mixture model, and to im-
prove its convergence speed as well as the quality of its final
solution.

First as in [8] we modified it to minimize the loss

L(w) =
λ

2
max
c
||wc||2+ (12)

J

N

∑
r,yr(i,j)=+1

∣∣∣1− f cr(i,j)r,β (i, j)
∣∣∣+ +

1

N

∑
r,yr(i,j)=−1

∣∣∣1 + max
c
f cr,β(i, j)

∣∣∣+,
where wc is the filter of mixture component c, J is a scale
factor re-weighting the importance of the positive examples,
n+, n− are the total number of positives, reps. negatives,
n = Jn+ + n− is the total number of examples taking J
into account, λ = (Cn)−1 is the regularization constant,
and |·|+ = max(0, ·). f cr,β is similar to fr in equation (2),
except that it uses the corresponding mixture component’s
filter wc, and contains a bias term β, i.e.

f cr,β(i, j) =
∑
a,b

wc(a, b)xr(i+ a, j + b) + β. (13)

We pick the optimal bias β at the beginning of each
stochastic gradient descent iteration in order to minimize
the loss, i.e. βt = argminβ L(wt), as recommended in [15]
when dealing with large mini-batches. Since the bias β is
identical among all mixture components, it does not influ-
ence their relative scores at test time, but we observed that
it is of tremendous importance as removing it significantly
reduces both the speed of the convergence of the algorithm
and the quality of the final solution. Finally cr(i, j) are the
latent variables (mixture components) of the positive exam-
ples, that have to be fixed in order for the loss to be convex
[9]. At every iteration we take all the negatives of a whole
scene as a mini-batch, and add all the positive examples of
the data-set to it. Considering all the positives at every iter-
ation has a very small impact on the training time, the num-
ber of positives being usually very small even compared to
the number of negatives of an unique scene, but improves
drastically the convergence speed of the algorithm. The pa-
rameters we used were tuned on the provided validation set
and were kept fixed in all experiments. They are λ = 0.01,
J = 5000, and T = 5000.

5.2. Results

An example of a trained model is represented in figure
2. We also trained models twice as large as the sizes rec-
ommended in [9] for the root filters, and we show the same
model, this time of twice the size in figure 3. The perfor-
mances of those mixture models on all 20 classes of the

PASCAL VOC challenge are displayed in Table 2. We do
not hope to compete with [8], which trains more complex
models including deformable parts, but only want to prove
that our results are relevant with respect to the current state-
of-the-art.

We implemented two versions of the gradient computa-
tion procedure, one using the standard method as in equa-
tion (2), and one using the FFT, as detailed in § 3. Both ver-
sions make use of the CPU SIMD instruction sets as well as
multi-threading. We timed their executions in the same con-
ditions on the same 2.2 GHz Intel Core i7 Quad machine,
and provide the results in Table 3. We also tried to use
larger mini-batches, processing 10 scenes together, which
improves the advantage of our method over the generic one
even more. Even though exploiting the sparsity of the loss
was by far the fastest method in our experiment, this is due
to the use of the hinge loss, and is strongly parameter (λ)
and data dependent. The advantage of our method, as con-
cluded from our analysis in § 4, is that it is faster without
leveraging sparsity, and always take the same time, inde-
pendently of the data, the loss, or the filters’ sizes. The time
taken by the rest of the algorithm, mostly spent convolving
the current scene with the filters is also independent of the
size of the filters, and below 20ms per iteration. The algo-
rithm typically converges to an acceptable solution in less
than one epoch, which corresponds to 2 to 3 minutes.

6. Conclusion

We have presented a novel method to speed up the train-
ing of object detectors based on a linear classifier. Exist-
ing implementations of such methods relies on sparsity and
sub-sampling of the training examples. Our approach by
contrast, is based on a formulation of the gradient computa-
tion as a convolution, which allows to leverage the Fourier
transform, and make the overall computation independent
of the filter’s size. Experimental validation demonstrates
that the gain in speed compared to a generic approach can
be more than one order of magnitude.

This new technique provides a generic framework for ex-
tension of object detection methods, as it relieves all the
constraints inherent to sparse and approximate methods. It
can in particular be used with any loss, without the need for
it to be sparse inducing, and does not require the tuning of
any meta-parameter related to sub-sampling or approximate
speed-up strategies.

Acknowledgements

Charles Dubout was supported by the Swiss National
Science Foundation under grant 200021-124822 – VE-
LASH, and François Fleuret was supported in part by the
European Community’s 7th Framework Programme under
grant agreement 247022 – MASH.

References
[1] L. Bottou and Y. LeCun. Large scale online learning. In

Advances in Neural Information Processing Systems, 2003.
1, 4

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 886–893, 2005. 4

[3] C. Dubout and F. Fleuret. Exact acceleration of linear ob-
ject detectors. In European Conference on Computer Vision,
2012. 1, 2, 3, 4

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.
1, 4

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.
1

[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. Liblinear: A library for large linear classification. Jour-
nal of Machine Learning Research, 9:1871–1874, 6 2008. 1

[7] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. In International Journal of Computer Vi-
sion, 2005. 1

[8] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/˜pff/latent-release4/, 2011. 4,
5, 6

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, 2010. 1, 4, 6

[10] M. Frigo and S. G. Johnson. The design and implementation
of FFTW3. In Proceedings of the IEEE, volume 93 (2), pages
216–231, 2005. 4

[11] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010. 4

[12] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for large-
scale linear svm. In International Conference on Machine
Learning, pages 408–415, 2008. 1

[13] T. Joachims. Training linear svms in linear time. In ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 217–226, 2006. 1

[14] J. C. Platt. Advances in kernel methods. In Fast training of
support vector machines using sequential minimal optimiza-
tion, pages 185–208, 1999. 1

[15] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-gradient solver for svm. In International
Conference on Machine Learning, pages 807–814, 2007. 1,
4

[16] R. G. J. Wijnhoven and P. H. N. de With. Fast training of
object detection using stochastic gradient descent. In Inter-
national Conference on Pattern Recognition, pages 424–427,
2010. 1

Table 2. Average precision scores of the base system of VOC release 4 [8], as well as our trained mixture on the PASCAL VOC 2007
challenge. As we trained only root filters, and not full part-based deformable models, we do not hope to compete with the V4 baseline.
These results are provided only to demonstrate the relevance of our approach with respect to the state-of-the-art.

aero bike bird boat bottle bus car cat chair cow table
V4 normal filters (%) 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3
Ours normal filters (%) 18.2 40.8 4.2 11.1 15.0 24.7 34.0 4.7 11.5 27.9 10.7
Ours large filters (%) 18.4 47.3 2.5 13.1 16.9 29.1 41.2 10.3 12.5 26.7 11.2

dog horse mbike person plant sheep sofa train tv mean
V4 normal filters (%) 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3
Ours normal filters (%) 5.2 27.7 34.2 18.5 10.8 18.5 12.9 27.1 20.6 18.9
Ours large filters (%) 5.7 37.4 32.6 22.5 11.4 19.3 18.4 24.8 22.9 21.2

Table 3. Average time to compute the gradient of the loss for one stochastic gradient descent iteration. The standard sparse method relies
on the sparsity of the samples weights induced by the hinge loss, and computes the gradient by visiting only the samples with non-zero
weight. The acceleration it provides is strongly data-dependent.

1 scene per batch 10 scenes per batch
Normal filters Large filters Normal filters Large filters

Standard (ms) 41.3 70.9 390 699
Ours (ms) 7.2 7.4 33.1 33.1
Standard sparse (ms) 1.1 1.3 6.6 8.1

Figure 2. Root filters for a bicycle model of normal size ([9]) learned on the PASCAL VOC 2007 data-set.

Figure 3. Root filters for a bicycle model of double the normal size ([9]) learned on the PASCAL VOC 2007 data-set.

