Overview

- Tensors and Storages
- Neural Networks
Tensors and Storages

- Tensor = n-dimensional array
- Row-major in memory
Tensors and Storages

- Tensor = n-dimensional array
- Row-major in memory

Size: 4 x 6
Stride: 6 x 1
Tensors and Storages

- Tensor = n-dimensional array
- 1-indexed
Tensors and Storages

- Tensor = n-dimensional array
- Tensor: size, stride, storage, storageOffset

Size: 6
Stride: 1
Offset: 13
Tensors and Storages

- Tensor = n-dimensional array

- Tensor: size, stride, storage, storageOffset

Size: 4
Stride: 6
Offset: 3
Tensors and Storages

In [1]: `require 'torch';`

In [2]: `a = torch.DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory
 a:uniform() -- fills a with uniform noise with mean = 0, stdv = 1`

In [3]: `print(a)`

Out[3]:
```
0.4332  0.5716  0.5750  0.8167  0.1997  0.6187
0.7775  0.3575  0.0749  0.4028  0.0532  0.4481
0.5088  0.1795  0.6948  0.5700  0.7679  0.6176
0.9225  0.7270  0.2223  0.1087  0.2717  0.8853
```
```
[torch.DoubleTensor of size 4x6]
```
Tensors and Storages

In [1]: `require 'torch';`

In [2]: `a = torch.DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory
 a:uniform() -- fills a with uniform noise with mean = 0, stdv = 1`

In [3]: `print(a)`

Out[3]:

```
 0.4332  0.5716  0.5750  0.8167  0.1997  0.6187
 0.7775  0.3575  0.0749  0.4028  0.0532  0.4481
 0.5088  0.1795  0.6948  0.5700  0.7679  0.6176
 0.9225  0.7270  0.2223  0.1087  0.2717  0.8853
[torch.DoubleTensor of size 4x6]`

In [4]: `b = a:select(1, 3)`

In [5]: `print(b)`

Out[5]:

```
 0.5088
 0.1795
 0.6948
 0.5700
 0.7679
 0.6176
[torch.DoubleTensor of size 6]`
Tensors and Storages

Underlying storage is shared

In [6]: b.fill(3);

In [7]: print(b)

Out[7]:
3
3
3
3
3
3
[torch.DoubleTensor of size 6]

In [8]: print(a)

Out[8]:
0.4332 0.5716 0.5750 0.8167 0.1997 0.6187
0.7775 0.3575 0.0749 0.4028 0.0532 0.4481
3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
0.9225 0.7270 0.2223 0.1087 0.2717 0.8853
[torch.DoubleTensor of size 4x6]
Tensors and Storages

• 150+ Tensor functions
 • Linear algebra
 • Convolutions
 • BLAS
 • Tensor manipulation
 • Narrow, index, mask, etc.
 • Logical operators

• Fully documented: https://github.com/torch/torch7/tree/master/doc

• Inline help!
Tensors and Storages

• Inline help

In [10]: `torch.cmul`

Out[10]: `torch.cmul([res,] tensor1, tensor2)`

Element-wise multiplication of `tensor1` by `tensor2`.
The number of elements must match, but sizes do not matter.
```
> x = torch.Tensor(2, 2).fill(2)
> y = torch.Tensor(4).fill(3)
> x:cmul(y)
> = x
  6  6
  6  6
[torch.DoubleTensor of size 2x2]
```

`z = torch.cmul(x, y)` returns a new Tensor.

`torch.cmul(z, x, y)` puts the result in `z`.

`y:cmul(x)` multiplies all elements of `y` with corresponding elements of `x`.

`z:cmul(x, y)` puts the result in `z`.
Tensors and Storages

- GPU support for all operations:
 - require ‘cutorch’
 - torch.CudaTensor = torch.FloatTensor on GPU
- Fully multi-GPU compatible
Training Neural Networks
Training cycle

Moving parts

- HDD
- SSD
- NFS
- Data Loader
- Neural Network
- Cost function
- Trainer
- Optimizer
Training cycle
Moving parts

- HDD
- SSD
- NFS

Data Loader

- Neural Network
- Cost function
- Optimizer

Data Thread

Queue

Main Thread

Trainer

Shared
Training cycle

[Diagram showing the training cycle with components like HDD, SSD, BFS, Data Loader, Neural Network, Cost function, Optimizer, and Trainer.]
the **nn** package
the **nn** package

- nn: neural networks made easy
- building blocks of differentiable modules

> define a model with pre-normalization, to work on raw RGB images:

```python
model = nn.Sequential()
model.add( nn.SpatialConvolution(3,16,5,5) )
model.add( nn.Tanh() )
model.add( nn.SpatialMaxPooling(2,2,2) )
model.add( nn.SpatialContrastiveNormalization(16, image.gaussian(3)) )
model.add( nn.SpatialConvolution(16,64,5,5) )
model.add( nn.Tanh() )
model.add( nn.SpatialMaxPooling(2,2,2) )
model.add( nn.SpatialContrastiveNormalization(64, image.gaussian(3)) )
model.add( nn.SpatialConvolution(64,256,5,5) )
model.add( nn.Tanh() )
model.add( nn.Reshape(256) )
model.add( nn.Linear(256,10) )
model.add( nn.LogSoftMax() )
```
the **nn** package

- When training neural nets, autoencoders, linear regression, convolutional networks, and any of these models, we’re interested in gradients, and loss functions.

- The **nn** package provides a large set of transfer functions, which all come with three methods:
 - `upgradeOutput()` -- compute the output given the input
 - `upgradeGradInput()` -- compute the derivative of the loss wrt input
 - `accGradParameters()` -- compute the derivative of the loss wrt weights

- The **nn** package provides a set of common loss functions, which all come with two methods:
 - `upgradeOutput()` -- compute the output given the input
 - `upgradeGradInput()` -- compute the derivative of the loss wrt input
the \textbf{nn} package

Compose networks like Lego blocks
the **nn** package

CUDA Backend via the cunn package

```python
-- define model
model = nn.Sequential()
model.add( nn.Linear(100,1000) )
model.add( nn.Tanh() )
model.add( nn.Linear(1000,10) )
model.add( nn.LogSoftMax() )

-- re-cast model as a CUDA model
model.cuda()

-- define input as a CUDA Tensor
input = torch.CudaTensor(100)

-- compute model’s output (is a CudaTensor as well)
output = model.forward(input)

-- alternative: convert an existing DoubleTensor to a CudaTensor:
input = torch.randn(100).cuda()
output = model.forward(input)
```
Graph composition using chaining

```python
-- it is common style to mark inputs with identity nodes for clarity.
input = nn.Identity()

-- each hidden layer is achieved by connecting the previous one
-- here we define a single hidden layer network
h1 = nn.Tanh()(nn.Linear(20, 10)(input))
output = nn.Linear(10, 1)(h1)
mlp = nn.gModule({input}, {output})

x = torch.rand(20)
dx = torch.rand(1)
mlp:output(x)
mlp:outputGradInput(x, dx)
mlp:accGradParameters(x, dx)

-- draw graph (the forward graph, '.fg')
-- this will produce an SVG in the runtime directory
graph.dot(mlp.fg, 'MLP', 'MLP')
itorch.image('MLP.svg')
```
the **optim** package

A purely functional view of the world

```python
config = {
    learningRate = 1e-3,
    momentum = 0.5
}

for i, sample in ipairs(training_samples) do
    local func = function(x)
        -- define eval function
        return f, df_dx
    end
    optim.sgd(func, x, config)
end
```
the **optim** package

- Stochastic Gradient Descent
- Averaged Stochastic Gradient Descent
- L-BFGS
- Conjugate Gradients
- AdaDelta
- AdaGrad
- Adam
- AdaMax
- FISTA with backtracking line search
- Nesterov's Accelerated Gradient method
- RMSprop
- Rprop
- CMAES
the **optim** package

Collecting the parameters of your neural net

- Substitute each module weights and biases by one large tensor, making weights and biases point to parts of this tensor.
the **optim** package

A purely functional view of the world

```python
config = {
    learningRate = 1e-3,
    momentum = 0.5
}

for i, sample in ipairs(training_samples) do
    local func = function(x)
        -- define eval function
        return f, df_dx
    end
    optim.sgd(func, x, config)
end
```
the **optim** package

Define closure

```plaintext
08  -- define a closure, that computes the loss, and dloss/dx
09  feval = function()
10     -- select a new training sample
11     _nidx_ = (_nidx_ or 0) + 1
12     if _nidx_ > (#data)[1] then _nidx_ = 1 end
13
14     local sample = data[_nidx_]
15     local inputs = sample[1]
16     local target = sample[2]
17
18     -- reset gradients (gradients are always accumulated, 
19     -- to accomodate batch methods)
20     dl_dx: zero()
21
22     -- evaluate the loss function and its derivative wrt x, 
23     -- for that sample
24     local loss_x = criterion: forward(model: forward(inputs), target)
25     model: backward(inputs, criterion: backward(model.output, target))
26
27     -- return loss(x) and dloss/dx
28     return loss_x, dl_dx
29  end
```
the **optim** package

Define closure

```python
-- SGD parameters
sgd_params = {learningRate = 1e-3, learningRateDecay = 1e-4,
              weightDecay = 0, momentum = 0}

-- train for a number of epochs
epochs = 1e2
for i = 1,epochs do
    -- this variable is used to estimate the average loss
    current_loss = 0

    -- an epoch is a full loop over our training data
    for i = 1,(#data)[1] do
        -- one step of SGD optimization (steepest descent)
        _,fs = optim.sgd(feval,x,sgd_params)

        -- accumulate error
        current_loss = current_loss + fs[1]
    end

    -- report average error on epoch
    current_loss = current_loss / (#data)[1]
    print(' current loss = ' .. current_loss)
end
```
the **threads** package
the **threads** package

- Create data-loading threads on demand
 - (hilariously called donkeys and it stuck)
- callbacks that are executed in the main thread get data from donkeys, and call optimization functions

```lua
local ffi = require 'ffi'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')

-- This script contains the logic to create K threads for parallel data-loading.  
-- For the data-loading details, look at donkey.lua

do -- start K datathreads (donkeys)
  if opt.nDonkeys > 0 then
    local options = opt -- make an upvalue to serialize over to donkey threads
    donkeys = Threads(
      opt.nDonkeys,
      function()
        require 'torch'
        function(idx)
          opt = options -- pass to all donkeys via upvalue
          tid = idx
          local seed = opt.manualSeed + idx
          torch.manualSeed(seed)
          print(string.format('Starting donkey with id: %d seed: %d', tid, seed))
          paths.dofile('donkey.lua')
        end
      end,
    )
  end,
end
```

[torch logo]
the **threads** package

```python
for i=1,opt.epochSize do
    -- queue jobs to data-workers
    donkeys:addJob(
        -- the job callback (runs in data-worker thread)
        function()
            local inputs, labels = trainLoader:sample(opt.batchSize)
            return inputs, labels
        end,
        -- the end callback (runs in the main thread)
        trainBatch
    )
end

donkeys:synchronize()

function trainBatch(inputsCPU, labelsCPU)
    cutoch.synchronize()
    collectgarbage()
    local dataLoadingTime = dataTimer:time().real
    timer:reset()
    -- transfer over to GPU
    inputs:resize(inputsCPU:size()):copy(inputsCPU)
    labels:resize(labelsCPU:size()):copy(labelsCPU)
    local err, outputs
    feval = function(x)
        model:zerosGradParameters()
        outputs = model:forward(inputs)
        err = criterion:forward(outputs, labels)
        local gradOutputs = criterion:backward(outputs, labels)
        model:backward(inputs, gradOutputs)
        return err, gradParameters
    end
    optim.sgd(feval, parameters, optimState)
end
```
Next up

• A complete example of using nn + optim + threads for image generation
• the magic autograd package
• torchnet: common patterns for Torch by Facebook