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Abstract

Identity spoofing is a contender for high-security face recognition applications. With the advent of social media

and globalized search, our face images and videos are wide-spread on the internet and can be potentially used to

attack biometric systems without previous user consent. Yet, research to counter these threats is just on its infancy

- we lack public standard databases, protocols to measure spoofing vulnerability and baseline methods to detect

these attacks. The contributions of this work to the area are three-fold: firstly we introduce a publicly available

PHOTO-ATTACK database with associated protocols to measure the effectiveness of counter-measures. Based on

the data available, we conduct a study on current state-of-the-art spoofing detection algorithms based on motion

analysis, showing they fail under the light of these new dataset. By last, we propose a new technique of counter-

measure solely based on foreground/background motion correlation using Optical Flow that outperforms all other

algorithms achieving nearly perfect scoring with an equal-error rate of 1.52% on the available test data. The source

code leading to the reported results is made available for the replicability of findings in this article.

Index Terms

Presentation Attack Detection; Counter-Measures; Face Recognition; Liveness Detection; Replay; Spoofing

I. INTRODUCTION

Identity theft is a concern that prevents the mainstream adoption of biometrics as de facto form of

identification in high-security commercial applications [1]. Contrary to password-protected systems, our

biometric information is widely available and extremely easy to sample. It suffices a small search on the

internet to unveil pre-labelled samples from users at specialized websites such as Flickr or Facebook.

Images can also be easily captured at distance without previous consent. Users cannot trust that these

samples will not be dishonestly used to assume their identity before biometric recognition systems.
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It has been suggested in the past that multimodal biometrics systems can be used to increase authen-

tication in higher security environments [2]. However, it has been recently shown [3] that multimodal

systems, if naively tunned, are intrinsically less secure than unimodal ones. This suggests each biometric

modality needs to be protected by its own specialized counter-measures. In this work we are particularly

concerned with direct attacks [4] to unimodal 2D (visual spectra) face-recognition systems1. These so-

called spoofs [5] are direct attacks to the input sensors of the biometric system. Attackers in this case are

assumed not to have access to the internals of the recognition system and manage to penetrate by only

displaying biometric samples of the attacked clients to the input camera. This type of attack is therefore

very easy to reproduce and has great potential to succeed [6].

Face recognition systems in particular are known to respond weakly to attacks for a long time [7], [8],

[6] and are easily spoofed using one of 3 categories of counterfeits [9]: 1) a photograph; 2) a video or 3) a

3D model of the enrolled person’s face. Even if attacks using videos or 3D models may seem more likely

to be accepted by the recognition system, spoofs using photographs are far simpler to manufacture and

should be treated with priority. It follows from reasoning that systems that are not robust to photograph

attacks will also probably fail on other categories. Therefore, for the remainder of this article, we focus

on spoof attempts using photographs and methods that present counter-measures to such kind of attacks

based on motion artifacts.

The remaining of this text is organized as follows: Section II discusses the current state-of-the-art in anti-

spoofing for 2D face recognition systems. Section III introduces the PHOTO-ATTACK database, describing

its contents and usage protocols. Section IV briefly discusses three related motion-based reference systems

that can be found in literature. Section V discusses our proposed Optical Flow Correlation (OFC) algorithm.

Section VI reports on the experimental setup and results. Section VII analyzes results obtained on

Section VI in details and suggests why OFC outperforms the three other reference systems. Finally,

Section VIII concludes this article and discusses possible extensions of this work.

II. LITERATURE SURVEY

Spoofing counter-measures for face recognition may be roughly classified in two categories: algorithms

making use of motion or texture. Texture-based methods are very popular in face anti-spoofing possibly

because of its relationship with our own discrimination capabilities on re-printed photographs. For example,

in [10] the authors propose a method to detect spoofing attacks using printed photos by analyzing the

1We will refer to such systems simply as face recognition systems from this point onwards.
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micro-textures present on the paper using a linear SVM classifier to achieve a 2.2% False-Acceptance

Rate (FAR) against a 13% False-Rejection Rate (FRR) on a private database. Tan and others in [11] try

to explore the Lambertian reflectance model to derive differences between the 2D images of the face

presented during an attack and a real (3D) face, in real-access attempts. More recently, in [12], Määttä

and others show that Local Binary Patterns (LBP) can also be used for spoofing detection achieving near

perfect scoring on the PRINT-ATTACK database [13].

An advantage of texture-analysis is it relaxes requirements on anti-spoofing databases. Sets can be

constructed using single shots of spoofing attacks and real-client access attempts. Motion-based spoofing

detection, in turn, requires sequences of images are made available for performance evaluation. Motion

analysis is therefore, less dependent on specific re-capturing artifacts explored in texture processing, being

potentially able to generalize better. For example, work in [14] and [9] bring a real-time liveness detector

specifically design to counter photo-spoofing using spontaneous eye-blinks (supposed to occur once every

2-4 seconds in humans). The system was evaluated on a, currently inaccessible, disjoint dataset of short

video clips of eye-blinks and spoofing attempts using photographs. A later work by the same authors

[15] augment the number of counter-measures deployed to include a scene context matching that helps

preventing video-spoofing in stationary face-recognition systems. In [16] the authors propose a method to

detect attacks produced with planar media (such as paper or screens) using motion estimation by Optical

Flow (OF). Movement of planar objects is categorized as translation, rotation, normal or swing and 8

quantities that express the amount of these movements extracted from the analyzed pre-cropped face.

Evaluation is carried out on a private dataset of videos to achive 90% overall classification accuracy. In

[17], Kollreider and others present a technique to evaluate liveness based on a short sequence of images,

also leveraging from OF analysis. The work describes a binary detector that evaluates the trajectories

of select parts of the face presented to the input sensor using a simplified OF estimator followed by an

heuristic classifier, with excellent results reported on a private dataset derived from the XM2VTS dataset

(∼1.5% equal error rate with a threshold chosen a posteriori).

Face anti-spoofing is not a mature field. This can be attested by the current number of publicly accessible

databases. The PRINT-ATTACK database was introduced in [13]. It contains spoofing attempts with

simple hard-copy print attacks recorded on video. This work also showed it was possible to use a simple

motion analysis technique to obtain a good level of discrimination (∼9% half-total error rate) between

attacks and real-accesses. Before that, only one other dataset was publicly available: the NUAA Imposter
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Database [11], which contains only single-shot photo attacks and a poorly defined protocol for training,

tunning and testing of counter-measures. To explore different types of attacks without modifying other

dataset parameters, we now introduce the PHOTO-ATTACK database, which enriches the PRINT-ATTACK

database with mobile phone and high-resolution screen attacks.

III. THE PHOTO-ATTACK DATABASE

The PHOTO-ATTACK biometric (face) database2 consists of short video recordings of both real-access

and attack attempts to 50 different identities. To create the dataset each person recorded a number of

videos at 2 different stationary conditions:

• controlled: In this case the background of the scene is uniform and the light of a fluorescent lamp

illuminates the scene;

• adverse: In this case the background of the scene is non-uniform and day-light illuminates the scene.

Under these two different conditions, people were asked to sit down in front of a custom acquisition

system built on an Apple 13-inch MacBook laptop and capture two video sequences with a resolution of

320 by 240 pixels (QVGA), at 25 frames-per-second and of 15 seconds each (375 frames). Videos were

recorded using Apple’s Quicktime format (MOV files).

The laptop is positioned on the top of a short support (∼15 cm) so that faces are captured as they look

up-front. The acquisition operator launches the capturing program and asks the person to look into the

laptop camera as they would normally do waiting for a recognition system to do its task. The program

shows a reproduction of the current image being captured and, overlaid, the output of a face-detector

used to guide the person during the session. In this particular setup, faces are detected using a cascade

of classifiers based on a variant of Local Binary Patterns (LBP) referred as Modified Census Transform

(MCT) [18]. The face-detector helps the user self-adjusting the distance from the laptop camera and

making sure that a face can be detected at most times during the acquisition3. After acquisition was

finished, the operator would still verify the videos did not contain problems by visual inspection and

proceed to acquire the next video.

2http://www.idiap.ch/dataset/photoattack
3The output of the face detector is integral part of the final dataset, so that the work described in this article can be reproduced with the

same basis as used for our results.

http://www.idiap.ch/dataset/photoattack
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A. Collecting samples and generating the attacks

Under the same illumination and background settings used for real-access video clips, the acquisition

operator took two high-resolution pictures of each person using a 12.1 megapixel Canon PowerShot SX150

IS camera and with an iPhone 3GS (3.1 megapixel camera), that would be used as basis for the spoofing

attempts. People were asked to cooperate with this part of the acquisition so as to maximize the chances

of an attack to succeed. They were asked to look up-front such as in the acquisition of the real-access

attempts.

To realize the photograph attacks, the operator forges an attack as described in one of the following

scenarios:

• print: in this scenario, the operator displays hard copies of the high-resolution digital photographs

that were printed on plain A4 paper using a Triumph-Adler DCC 2520 color laser printer;

• mobile: the operator displays photos taken with the iPhone using the iPhone screen;

• highdef : the operator display the high-resolution digital photos taken with the 12.1 megapixel camera

using an iPad screen with resolution (1024 by 768 pixels).

The forged attacks are executed so the border of the display media is not visible when the user reproduces

the spoofing attempt videos. We do this to avoid any bias on frame detection for algorithms that are

developed and tested with this database. Furthermore, each video is captured for about 10 seconds in two

different attack modes:

• hand-based attacks: in this mode, the operator holds the attack media or device using their own

hands;

• fixed-support attacks: the operator sets the attack device on a fixed support so they don’t move during

the spoof attempt.

The first set of (hand-based) attacks show a shaking behavior that can be observed when people hold

photographs of spoofed identities in front of cameras and that, sometimes, can trick eye-blinking detectors

[9]. It differs from the second set that is completely static and should be easier to detect. Figure 1 shows

some frames of the captured of spoofing attempts.

B. Performance Figures

A spoofing detection system is subject to two types of errors, either the real access is rejected (false

rejection) or an attack is accepted (false acceptance). In order to measure the performance of a spoofing
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Fig. 1: Example attacks in different scenarios and with different lighting conditions. On the top row, attacks
in the controlled scenario. At the bottom, attacks with samples from the adverse scenario. Columns from
left to right show examples of hard-print, mobile phone and high-resolution screen attacks.

detection system, we use the Half Total Error Rate (HTER), which combines the False Rejection Rate

(FRR) and the False Acceptance Rate (FAR) and is defined as:

HTER(τ,D) = FAR(τ,D) + FRR(τ,D)
2

[%] (1)

where D denotes the used dataset. Since both the FAR and the FRR depend on the threshold τ , they

are strongly related to each other: increasing the FAR will reduce the FRR and vice-versa. For this

reason, results are often presented using either Receiver Operating Characteristic (ROC) or Detection-

Error Tradeoff (DET) [19] curves, which graphs the FAR versus the FRR for different values of the

threshold. Another widely used measure to summarise the performance of a system is the Equal Error

Rate (EER), defined as the point along the ROC or DET curve where the FAR equals the FRR.

C. Protocols

The set of 800 videos (200 real-accesses and 600 attacks) is decomposed into 3 subsets allowing for

training, development and testing of binary classifiers. Identities for each subset were chosen randomly

but do not overlap, i.e. people that are on one of the subsets do not appear in any other set. This choice

guarantees that specific behavior (such as eye-blinking patterns or head-poses) are not picked up by

detectors and final systems can generalize well.
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TABLE I: Number of videos in each database subset. Numbers displayed as sums indicate the amount of
hand-based and fixed-support attacks available in each subset when relevant.

Type Train Devel. Test Total
Real-access 60 60 80 200
Photo-attack 90+90 90+90 120+120 300+300
Total 240 240 320 800

Moreover, each photo-attack subset can be further sub-classified into two groups that split the attacking

support used during the acquisition (hand-based or fixed-support). Counter-measures developed using this

database can report error figures that consider both separated and aggregated grouping, from which it

is possible to understand which types of attacks are better handled by the proposed method. Table I

summarizes the number of videos taken for both real-access and photo-attack attempts and how they are

split in the different subsets and groups.

In the case the developed counter-measure requires training, it is recommended that training and

development samples are used to train classifiers how to discriminate. One trivial example is to use

the training set for training the classifier itself and the development data to estimate when to stop training.

A second possibility, which may generalize less well, is to merge both training and development sets,

using the merged set as training data and to formulate a stop criteria. Finally, the test set should be solely

used to report error rates and performance curves. If a single number is desired, a threshold τ should be

chosen at the development set and the Half-Total Error Rate (HTER) reported using the test set data. As

means of uniformizing reports, we recommend choosing the threshold τ on the Equal Error Rate (EER)

at the development set.

In the next section we investigate motion-based correlation as means to detect spoofing attacks using

photographs. We start by describing three reference systems available in literature and introduce our own

contribution to spoofing detection using Optical Flow Correlation (OFC).

IV. EXPERIMENTAL FRAMEWORK

It comes rather intuitively that real access attempts should exhibit a different set of motion characteristics

than photo spoofs. Real heads are 3D objects and the trajectories of each of its parts are naturally bound

by the head’s own shape. Photographs are, from the other perspective, static 2D objects and constrained,

in this way, to other types of movement. In this section, we propose our framework for motion-based anti-
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Fig. 2: Common setup for all counter-measures.

spoofing experiments used for the published results. The framework is open-source and freely distributed4.

It allows for the reproduction of the results obtained by our newly introduced OF-based method for anti-

spoofing (Section V) as well as the three reference systems selected from literature.

A. Overview

The input to motion-based algorithms for anti-spoofing is rather similar: a sequence of images as

perceived by the 2D face recognition input sensor together with the output of a prefixed face detector.

Figure 2 shows such a setup. The video is firstly converted to gray-scale before being fed to the face

detector and, eventually, to the Optical Flow estimator unit. The gray-scaled video, the output of the face

detector and the estimated flow are fed to the counter-measure that outputs scores on which it is finally

evaluated.

The face detection process is not error free. In case a certain frame in the input video stream presents

no detected face, we borrow the detection from any previous frame which had one. If there are no

previous detections, the input is just discarded from the analysis. This procedure maximizes the number

of detections available for every video sample and assures we always have valid detections when analyzing

the input data.

The face detector is also subject to noise. Consecutive frames may have slightly different detected face

positions. Depending on the way features are extracted from face/non-face regions, this noise may affect

the counter-measure performance. To avoid this effect, comparisons are always performed by taking into

consideration the face location detected on the first frame of the pair being analyzed.

Two out of the three reference systems used for comparison also use Optical Flow (OF) estimation as

input for classifying real-accesses and spoofing attempts. In the past three decades, numerous attempts

4http://pypi.python.org/pypi/antispoofing.optflow

http://pypi.python.org/pypi/antispoofing.optflow
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have been made to improve the accuracy of OF after the initial work of Horn & Schunck [20] and Lucas

& Kanade [21]. As of today there exists plenty of implementations to compute the OF field for use in

academic oriented research. In [22] Sun and others claim to have implemented most recent and accurate

optical flow implementations in Matlab. For our experiments in this article, we have chosen to use Liu’s

[23] implementation for estimating dense optical flow5, as it is developed in C++, it executes in much

faster pace and could be easily ported into our unified framework. The core of the algorithm in this

implementation is based on [24] and [25].

The output of the OF estimation is a velocity field (O) that indicates both the horizontal (
−→
Uij) and

vertical (
−→
Vij) components of the movement for each pixel (x, y) = (i, j).

B. Reference Systems

Our open-source framework includes 3 reference systems selected from literature. They represent well

prior art on motion-based anti-spoofing for face recognition. They were selected based on similarities with

our own proposed algorithm input features and technique.

a) Reference System 1 (RS1) - Face center and ears: In [17], Kollreider and others describe an

heuristic based on OF, which compares the movement direction between face center and the user ears to

estimate whether the head is moving in a natural fashion or if the acquired imagery is derived from a

user photograph. The algorithm can be summarized in these steps:

1) Find the face and ear centers on the input image;

2) Define if the head is moving more horizontally or vertically by inspecting the flow velocities at the

face center;

3) Define three bounding boxes surrounding the face center and ear centers;

4) If the head is moving more horizontally, compare the thresholded average horizontal flows of the ear

area to that of the face center, otherwise, use the vertical flow;

5) The sequence is considered to be a photograph if the amount of motion perceived at the ears is about

the same as the motion perceived at the face center.

The comparisons are done by dividing the thresholded average flow of the face center bounding box with

those of the ears to then compare its magnitude and direction as indicated on that paper. As prescribed,

a sequence of images with a value of L, the Liveness Score, greater or equal to τ = 0.5 is considered a

5Available from: http://people.csail.mit.edu/celiu/OpticalFlow/

http://people.csail.mit.edu/celiu/OpticalFlow/
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live person. Note, however, that for this work we make no assumption on a threshold τ for L. Instead,

we will optimize that value so as to miminize the total classification error on the development set of the

PHOTO-ATTACK database when comparing this algorithm to our proposed solution.

b) Reference System 2 (RS2) - Planar object detection: Along a similar concept to the one presented

in the previous section, Bao et al. defined at [16] a method for detecting spoofing attempts by looking for

planar object movement cues in the optical flow field. Contrary to Kollreider, Bao’s technique does not

track specific face parts and simply divides the face area in two halves (both horizontally and vertically),

trying to evaluate whether the perceived motion is derived by one of the four basic rigid object motion

types: translation, in-plane rotation, panning or out-of-plane rotation (swing). An empirically derived

formulation composed of averages of motion components defined L, the Liveness Score in this case. The

higher the value of L, the more likely it is the perceived data comes from a real user trying to use the

face recognition system. A low value of L indicates an attack. The original work by Bao et al. does

not mention how the face area is obtained or how big the area around the face bounding box should be.

Therefore, we consider the area of the surface to be analyzed as a hyper-parameter.

c) Reference System 3 (RS3) - Correlation with simple frame differences: In this algorithm, extracted

from [13], the movement direction is ignored and one focuses on intensity only. The motion intensity in

the detected face and background regions is calculated using simple gray-scaled frame-difference averages

and an area-based normalization technique that removes differences in size so different face/background

regions remain comparable.

To input the motion coefficients into a classifier and avoid the variability in time, we extract 5 quantities

for each of the 2 regions that describe the signal pattern for windows of N images that can possibly overlap.

The 5 quantities are the minimum of the signal in the window, the maximum, the average, the standard

deviation and the ratio R between the spectral sum for all non-DC components and the DC component

itself taking as basis the N -point Fourier transform of the signal at the window.

These quantities allow for a trained classifier to evaluate the degree of synchronized motion within the

scene, during the period of time defined by N . If there is no movement (fixed support attack) or too much

movement (hand-based attack), the input data is likely to come from a spoof attempt. Normal accesses

will exhibit decorrelated movement between the two RoIs as normal users move independently from the

background.



11

V. PROPOSED METHOD: OPTICAL FLOW CORRELATION (OFC)

Our proposed algorithm is based on similar principles as those established in RS3. It tries to detect

motion correlations between the head of the user trying to authenticate and the background of the scene,

which indicates the presence of a spoofing attack [13]. Instead of working with averaged intensities as

in RS3, it uses fine-grained motion direction for deriving the correlation between these two regions. The

direction of objects in the scene is estimated using Optical Flow (OF) techniques. The use of OF is

expected to grant more precise estimation of motion parameters between the regions of interest in the

scene, assuring that motion cues are related in direction and do not come from unrelated phenomena,

as it could happen in RS3. Instead of lump-summing intensities, OFC quantizes, histograms, normalizes

and directly compares motion direction vectors from the two regions of interest in order to provide a

correlation score, for every analyzed frame.

We should also compare our contribution with respect to reference systems 1 and 2. The authors of

RS1 and RS2 assume that a person interacting with a face recognition system will show some type of

movement (either voluntarily or not) while trying to authenticate. In a scenario where no motion exists

(e.g. a photograph attack with a fixed support), this assumption will fail. Yet, our newly proposed algorithm

makes no such assumption: even in such a circumstance there is a strong correlation between the head

and the background scene motion patterns. By doing so, it covers a wider range of possible attacks and

should, therefore, show better discrimination capabilities.

OFC also introduces a new hyper-parameter that controls the amount of specific or global information

that is considered while performing discrimination. As we shall explain, the number of directions Q used

by the algorithm determines if the detector will observe motion patterns which may be related to specific

acquisition conditions or application independent.

1) Feature Extraction: The feature extraction has 4 steps as depicted in Figure 3. The input consists

of the OF horizontal and vertical velocity estimates, but also uses the face bounding boxes available in

the database to separate features from the face and background regions. From those inputs, the algorithm

performs the following steps:

a) We first compute the direction θ of motion for every pixel using the horizontal and vertical orientations

according to a simple cartesian to polar coordinate transformation. We discard the magnitude (R)

components, preserving only the movement direction θij for every point in the original flow field as

defined by θij := atan2(Vij, Uij) with:
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Fig. 3: Block diagram of counter-measures to spoofing attacks using correlation with optical flow.
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b) The histogram computation unit calculates the normalized histograms for face and background regions

solely based on the quantized angle for every flow field frame. As indicated, the face locations for

every frame are supplied as input to this unit. The number of bins (Q) at the angle histogram is a

hyper-parameter of this algorithm, as well as the offset used for the first bin starting angle, as depicated

in Figure 4. In this way, the algorithm can be tuned to capture different kinds of movements which

may be intrinsically due to attacks;

c) The next block in the feature extraction computes the χ2 distance [26], between the angle histograms

of face and background regions. If Fi is a bin value at the angle histogram of the face region, Bi is

the corresponding bin value in the angle histogram of the background region and i is the bin number,

then χ2 statistic can be described mathematically as follows:

χ2(F,B) =
∑
i

(Fi −Bi)
2

Fi +Bi

. (2)

This unit yields a single χ2 score per computed flow field frame;

d) The windowing unit averages the χ2 scores over a window size of N frames, with a possible specified

overlap size (also in number of frames).

2) Classification: The scores computed from the windowing unit are fed to the binary classifier, which

detects the spoofing attacks based on a threshold on the equal error rate (EER) tunned at the development
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Fig. 4: Offsetting for Algorithm 4, if considering a different number of bins (Q) for the histogramming
block.

set. Ideally, from Equation 2, attacks are expected to have scores close to 0 due to correlated motion

between the face and the background ares. Scores of real accesses should be greater than 0 due to the

fact that the face region moves independently from the background region.

VI. EXPERIMENTS

This section reports on performance numbers obtained by the four algorithms described in the previous

section: the three reference systems and our own contribution. The evaluation procedure is divided into

two steps:

1) Initial Tunning: Each algorithm possesses a set of parameters that are not shared with the others. We

start by optimizing each algorithm with respect to their specific parametrization using the PHOTO-

ATTACK database;

2) Common Analysis: At a second stage, with individual parameters optimized based on the initial

tunning, we vary a common set parameters that are applicable to some of the algorithms and compare,

objectively, their performance.

A. Performance of Reference Systems

a) RS1 - Face center and ears: To implement this algorithm from the setup defined on Figure 2

one must derive the individual locations of the center of the face and of each ear. We have done this by

hard-wiring the location of the face center (the nose tip) and the ears given the face location bounding

box using average values for the human face from [27] and some empirical testing. Furthermore, the

original paper by Kollreider et al. proposes a fixed 40× 40 pixel window size for the motion estimation

at the face center and a 20 × 40 pixel window size for the estimation of the motion around ears. In the

PHOTO-ATTACK database though, faces have different sizes depending on how far (or close) they are

to the input sensor. To overcome this difference we normalize the window size for the face center and

ears by the size of the located face. One should also note that, while hard-wiring cannot replace precise
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key-point localization, the algorithm at [17] is itself not dependent on precise keypoint localization for

as long as it has access to vertical edges, according to the authors. Our approximation, therefore, can

be considered a reasonable assumption given the lack of software to reproduce the exact results. The

final values that define the relationship between the original paper’s windows and the ones used for our

database are as follows:

• Face center: (x, y) = (TLx + 0.5W , TLy + 0.395H);

• Face center window: instead of 40× 40, 0.421W × 0.421H;

• Left ear center: (x, y) = (TLx,TLy + 0.526H);

• Right ear center: (x, y) = (TRx,TRy + 0.526H);

• Ear windows: instead of 20× 40, 0.211W × 0.421H .

Where H and W are the height and width of the bounding box provided by the face detector we

distribute with the database. TL and TR represent the top-left and top-right coordinates of the bounding

box.

The only parameter that should be tunned according to [17] is the value of the threshold (henceforth

denominated α). Furthermore, the authors indicate that such a value should be searched in the range

[1.0, 2.0], where α = 1.0 indicates the obvious setting while values above 1.5 would further decrease

the probability of false accepts. We scanned the range between 0.8 and 2.0, inclusive, with steps of 0.1

and present the results of such a counter-measure against the PHOTO-ATTACK database in Table II.

Results in this table represent the development set EER and the test set HTER taking into consideration a

separation threshold as indicated by the column labelled α. From α = 0.8 until 1.5 the method works as

prescribed by the reference, except for the poor performance. From α = 1.5 onwards, we had to decrease

the threshold τ to re-optimize for such aggressive values of α.

b) RS2 - Planar object detection: The only parameter that requires tunning for this method is the

total surface area to be considered when deriving the liveness score L. We vary the amount of extra pixels

taken from the bounding-box defined by our own face localization output, from 0 up to considering the

whole available image. Table III presents these results.

Note that some of the performance figures are bracketed with parenthesis. These cases indicate that the

actual scores provided by the counter-measure had to be multiplied by −1 so that results shown would

be below chance. This score inversion is discussed in details on Section VII.
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TABLE II: Optimization of the threshold α for RS1 from [17]. Values are given in % and represent the
statistics over every flow field computed between any two consecutive frames for development or test
sets.

α τ for L Dev. EER Test HTER
0.8 0.38 43.79 43.37
0.9 0.38 41.44 41.15
1.0 0.38 39.50 39.38
1.1 0.38 40.22 40.21
1.2 0.38 42.16 42.41
1.3 0.38 44.37 44.62
1.4 0.38 46.04 46.39
1.5 0.38 47.41 47.78
1.6 0.13 44.22 44.91
1.7 0.13 45.02 45.84
1.8 0.13 45.93 46.84
1.9 0.13 46.75 47.60
2.0 0.13 47.48 48.36

TABLE III: Optimization of the total surface area when implementing the algorithm RS2, in [16]. Values
are given in % and represent the statistics over every flow field computed between any two consecutive
frames for development or test sets. Values inside parenthesis indicate that attacks and real-accesses had
to be taken from the inverse side of the boundary L (see text).

Surface τ for L Dev. EER Test HTER
0 0.55137 (40.54) (39.84)
5 0.58562 (40.90) (40.53)

10 0.62192 (41.56) (41.31)
20 0.68887 (42.90) (43.27)
50 0.81614 (47.22) (48.61)

all image 0.87778 48.13 46.02

c) RS3 - Correlation with simple frame differences: In this algorithm, there are 2 parameters which

require tunning: the window-size used for the feature extraction and the classification system. The classifier

inputs 10 quantities which represent the two sets of five features from the face and background regions

of the scene. The window-size parameter is an integral part of the feature extraction process of this

algorithm. Therefore, to further understand the capabilities of this algorithm, we choose to jointly optimize

the window size and the classification system. The overlapping O between different windows is fixed so

that O = N − 1, where N is the window-size being probed.

For this article, we chose to use, as classifier, a multi-layer perceptron (MLPs) [28] with a feed-forward

architecture containing a single hidden layer with a varying number of units. The data from the PHOTO-
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Fig. 5: Average performances for the dual optimization of RS3.

ATTACK training set is used to train the network using Resilient Backpropagation as defined in [29],

with a batch size containing 500 samples picked randomly from real-accesses and attacks. Because MLP

training is dependent on the initialization, we report averages and standard deviations on the EER at the

development set and HTER for the test sets obtained always considering 10 training sessions with different

initializations.

Figure 5 shows the average results for each of the tunned parameters. The error bars represent the

standard deviation from the average HTER considering a different number of hidden neurons (top) or

different window sizes (bottom). A minima is reached with about 4-6 neurons on the hidden layer for a

window-size between 100 and 180 frames.

B. Optical Flow Correlation (OFC)

Our proposed algorithm measures motion correlation between face and background solely using the

movement direction. To deploy it, one needs to tune 3 hyper-parameters: (1) the number of bins Q used

for the angle histograms, (2) the amount of offset from the horizontal axis, as illustrated in Figure 4, and

(3) the window-size used for the averaging processes, towards the end of the toolchain.

1) Quantization Q: Figure 6 shows the effect on the development set EER as we increase the number

of bins Q used at the histogramming quantization unit from Q = 2 up to Q = 8. For these tests, we have

fixed the offset used so bin 0 starts parallel to the vector (x, y) = (1, 0). The windowing unit was set so

averages are extracted from nearly all frames on the video sequence (N = 220), with an overlap of 219

(N − 1) frames.
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Fig. 6: Experimental results with varying number of bins Q on the PHOTO-ATTACK database for our
contribution based on OFC. Fixed parameters are the Offset = 0o, Window-size (N ) = 220 frames and
the Overlap = 219 frames.
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Fig. 7: Experimental results varying the offset in steps of 10o for OFC. Fixed parameters are the number
of bins in the quantization step Q = 2, Window-size (N ) = 220 frames and the Overlap O = 219 frames.

Results indicate the best development EER can be achieved if one uses Q = 2 bins. Experiments with

Q > 30 frames did not show any improvement in discrimination between spoofing attacks and real-access

attempts.

2) Quantization Offset: We then observe how does offsetting is best tunned. Figure 7 presents the results

for varying the starting offset for the histogramming procedure, in increments of 10 degrees rotating the

bin 0 support vector (x, y) = (1, 0) counter-clockwise, as it was described in Figure 4.

3) Window-Size: We estimate the performance impact when the ”Windowing” block (see Figure 3) of

the OFC method is exposed to a window size N that varies from 2 frames to up to 220 frames. In this
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Fig. 8: Experimental results varying the window-size for OFC. Fixed parameters are the number of bins
in the quantization step Q = 2, the Offset = 10o and the Overlap O = 219 frames.

study we consider the overlap between different windows to be set to O = N − 1. For example, if the

window size N = 20, the overlap is set to O = 19. In this way, each video with F frames generates

F − N + 1 clusters that are considered as different observations of real-access or attacks. Results are

summarized in Figure 8. It is important to note at this point that the window-size determines the amount

of frames analyzed before a new score can be output by the counter-measure. It also determines the

number of frames required before the first score is output by the classification scheme.

C. Common Analysis

1) Overlap: Up to this point results reported used fixed overlap sizes for windows of size N set to

O = N − 1. In this section we analyze the effects of overlap our OFC method alongside RS3. Reducing

the overlap has two consequences: firstly, it reduces the effective amount of training data available for

classification tunning. Secondly, it reduces the dependencies between consecutive frame sets as the number

of shared frames between such sets is reduced.

Table IV presents the results of this assessment. For this study, we assumed a window size of N = 220

frames for both RS3 and our new contribution based on OFC, and use the optimized parameters defined

previously, only varying the amount of overlap as indicated at the first column of the table. Because of

the limited number of frames in attack videos (∼ 230), we avoid very low values of overlap as those will

only lead to the same statistics by taking into consideration the selected window size.
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TABLE IV: Average spoofing classification performance (in %) for various overlaps for a window-size
of N = 220.

RS3 Proposed OFC
Over. Dev. EER Test HTER Dev. EER Test HTER

80 6.61 +- 1.00 7.97 +- 1.27 0.69 1.98
100 6.53 +- 0.81 6.96 +- 0.88 0.69 1.67
120 7.07 +- 0.77 8.03 +- 1.26 0.69 1.35
140 7.67 +- 0.74 8.04 +- 1.19 0.69 1.67
160 6.94 +- 1.00 7.40 +- 1.34 0.56 1.67
180 7.21 +- 1.01 7.55 +- 0.84 0.49 1.67
200 7.38 +- 1.00 8.07 +- 0.87 0.59 1.61
219 8.02 +- 1.59 8.27 +- 1.53 0.36 1.52

TABLE V: Average spoofing classification performance (in %) for various background-sizes (in pixels
around detected face) considering optimized parametrization for every algorithm.

RS3 Proposed OFC
Bg. Size Dev. EER Test HTER Dev. EER Test HTER

5 13.07 +- 1.04 12.99 +- 1.20 19.67 16.03
10 13.35 +- 1.90 13.67 +- 1.47 9.84 9.04
20 10.24 +- 1.37 11.79 +- 1.24 4.26 2.91
30 8.15 +- 1.19 11.04 +- 0.64 2.19 2.20
40 7.46 +- 1.96 9.61 +- 0.81 0.56 2.17
50 6.75 +- 1.32 7.24 +- 0.57 0.06 1.76

full 6.05 +- 0.86 7.52 +- 0.28 0.36 1.52

2) Background Size: The background size represents the amount of background image that is utilized to

extract the correlation from. Only our own OFC method and RS3 are concerned by this parametrization. To

generate the values on Table V, we set parameters on the peak performance of each individual algorithm

and vary the size of the background used for evaluating the correlation. Values indicated on the table

represent the size of the background, in pixels, in excess of the face bounding box provided by our face

detector.

D. Statistic breakdown

The attacks in the PHOTO-ATTACK database can be classified by the media used to perform the attack.

Three different media types are available: hard-copy prints, mobile phones and tablets (high-definition

screen). Figure 9a shows the breakdown of the best results for every algorithm taking into consideration

these categories. To generate these results, we just take the values optimized for each algorithm, calculating

the EER on the development set considering all possible data available. Then, we compute the HTER on
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Fig. 9: Breakdown by attack device and support of the HTER for the test set with threshold calculated a
priori on the EER of the development set (in %) for various device types. Parameters for every individual
algorithm are tunned to the best possible settings given results reported previously.

a subset of the test data composed only of attacks in each of the categories. Similarly, it is possible to

breakdown statistics by attack support type. Two types of supports were used: attacks using the attacker’s

bare hands and another set using a fixed static support. Figure 9b presents the results of this second

breakdown, per algorithm evaluated.

VII. DISCUSSION

It should be noted that all the experiments described in the previous section were evaluated according

to the same exact protocol and evaluation methodology. This methodology consists in optimizing any

parameters from algorithms on an independent dataset referred to as development set, reporting the final

performance on a separated test set. Hence, this methodology excludes algorithms are tunned favorably

on data which should be exclusively used for performance evaluation.

In this section, we discuss the results presented in Section VI, along several lines: evaluation of

reference systems on the PHOTO-ATTACK database or using our newly introduced OFC, the impact

of the window sizes or the amount of background on newly introduced techniques, device and attack-type

breakdown analysis, comparison to state-of-the-art texture-based approaches and, finally, closing remarks

about algorithm complexity.

1) Prior State-of-the-Art: RS1, by Kollreider et al., and RS2, by Bao et al., show unexpected low

discrimination capabilities when exposed to the PHOTO-ATTACK database. In particular, RS1 does not
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seem to tune as advertised on the original paper. One of the reasons for this degradation possibly lie in the

way the face center and ears have been calculated. The second possible incompatibility can be found on

the different method used for the Optical Flow estimation. These results suggest that such a technique may

not generalize well to other databases or different motion estimation algorithms. The results in Table II

indicate the optimal value for the threshold τ is found to be 1.0, yielding a test HTER of 39.4%. The

breakdown in Figures 9a and 9b for this algorithm point out that it discriminates better hard-copy print

attacks performed by hand, but fails to detect well other types of attacks. The error on the detection of

fixed-support attacks is almost twice that of hand-based ones. This sum of factors indicate a possible bias

on the original algorithm conception.

RS2, by Bao et al. seems to have its peak discrimination capabilities if applied only to the face region,

as shown by the results in Table III. Error rates at this operating point are of about 40%. It is interesting

to note that the threshold for L, as prescribed in the original article, does not separate real accesses and

photo attacks in the same way - we had to consider the separated ranges in inverse order. The explanation

for this effect may be understood by looking at the breakdown on Figure 9b. There, one can verify this

algorithm only works as advertised if attacks are performed with one’s own hands once more. Indeed,

the working hypothesis for both RS1 [17] and RS2 [16] is that real clients trying to authenticate display

motion differently than photo attacks. In a scenario where clients are still or have unperceivable motion

and attacks are drawn from fixed stands, that assumption can no longer be true. In such a scenario, the

performance of RS1 is about chance. Because RS2 makes even stronger assumptions about the motion

characteristics for real-accesses, results for this system are even worse, peaking more than 75% HTER

on Figure 9b.

The best results for RS3, based on simple frame differences, show that an MLP network with ∼5 hidden

neurons achieves optimal discrimination capabilities, with ∼7.2% HTER on the test set, with a threshold

chosen a priori on the development set (see Figure 5). The best performance markings are not achieved for

very large window sizes, as is the case for our contribution based on OFC. The dual-optimization shown

at Section VI-A indicates a minimum is reached gathering features in sets of ∼ 140 frames. This apparent

saturation of the method is possibly related to its simplistic feature extraction process, that averages

motion intensity through the frames. As more frames accumulate, subtle motion differences between head

and scene background are averaged out, saturating the system performance. Our proposed OFC method

calculates scores on a frame-by-frame basis and uses a late score fusion to finally evaluate the scene. This
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technique is able to leverage better subtle motion differences through out the whole duration of the clip.

2) RoI-based Optical Flow Correlation: The newly introduced OFC algorithm, that correlates face

and background motion using direction, shows the best results in this article. The system can achieve error

rates of less than 2.0% if optimized adequately, while not performing badly in suboptimal operating points.

It is interesting to observe, in Figure 6, that the number of bins Q used for the histogram correlation is a

crucial parameter, as well as the choice of the initial histogramming offset as shown on Figure 7 (see also

Figure 4). The main reason for this effect lies on the way users adequate themselves to be identified by

face recognition systems: positioning their heads to fit on masks pre-disposed on the screen. In the attempt

to fit, the user will move its head forward and backward, slightly. This behavior will be even more present

in attacks, where the attacker will try to fit the head on the photograph to the available mask, zooming

himself in and out of the detector focus. OFC can best benefit from this information only if Q = 2 bins

are used for the histograms as it can clearly capture such a self-adjusting effect if the offset is ∼ 0. As

the offset is increased (see Figure 7), this self-adjusting discriminative information is distributed among

a higher number of histogram bins and averaged out. The test HTER varies from ∼ 1.5% to ∼ 20.9% in

the range of different thresholds which are possible. If the number of bins Q is increased to 3, the system

looses a fraction of its capacity to detect the adjustment effect that is more evident in attacks and starts

making use of a simpler correlations. As one increases the value of Q, the system tends to recover its

original discrimination power by exploring overall scene correlation aspects. Results show a performance

of 3.5% HTER (on the test set), for Q = 20 and the new OFC-based algorithm in that case. An increase

in the number of bins Q for the histogram quantization step reduces the impact of offsetting, with a small

increase in average error rates (see Figure 6).

The optimal value for Q and the offset are, therefore, application specific. If Q is small, the system

better captures specific motion patterns which can be present on the current authentication setup. At those

values of Q, the offset may play a role in determining the optimal direction that should be observed for

maximally discriminating spoofing attacks. As Q is increased, the system moves on to capture global

correlation effects and becames independent of the offset.

3) Window-Size Analysis: The analysis in Figure 8 matches intuition: as the amount of data input

through the method increases, the algorithm’s performance improves. RS3’s performance flattens out

at around 140 frames and adding more frames does not seem to improve the discrimination capacity.

Interestingly, our OFC algorithm seems to be able to handle as much data as it can get with a performance



23

that continues to improve steadily after 140 frames to reach an almost perfect scoring for the EER on the

development set, below 0.4%, with a low test HTER of ∼ 1.5%. Overlapping (see Table IV) does not

seem to change in any way these algorithms’ capabilities and it is therefore advised to always choose the

maximum overlap which will maximize the total amount of data which can be used for training as well

as threshold setting. As a side note, experiments with windowing/overlapping for RS1 and RS2 did not

show any improvement on the overall performance of these methods.

4) Background Wideness: Changing the amount of background used in the correlation procedure does

affect RS3 or our OFC-based method, as shown in Table V. These are expected results since the cues

for the correlation evaluation will become less and less evident as the amount of data surrounding the

detected face is reduced. It is interesting to note that a reasonable performance can be achieved with about

20-30 pixels for RS3 and our OFC-based algorithm with about 10% and 2.2% test HTER respectively.

This allows for the use of this technique of spoofing detection in environments which do not necessarily

contain a static background.

5) Breakdown Analysis: The breakdowns (Figures 9a and 9b) also show interesting results for the

RS3 and our OFC-based method. RS3 seems to work equally well for both print and photo attacks while

performing poorly when the attacker uses a higher-definition screen. Our new OFC-based method has

a flatter performance through the attack device types, but performs best exactly where RS3 fails. While

using tablets as attack devices, the outcome is a sharper image which allows the Optical Flow estimator

to perform better and our new method to better detect the correlation between the face region and the

background. For the same reasons, phone attacks perform worst for it. While the decay in sharpness

affects the estimation of direction and the correlation calculation, it helps the magnitude-based approach

of RS3 identifying spoofing attempts. Both algorithms seem to be insensitive to the type of support used

in the attack, showing evident advantage when compared to the two other reference systems.

6) Comparison to Texture Approaches: A recently organized competition on a subset of the PHOTO-

ATTACK database called PRINT-ATTACK [30] showed that texture-based methods could potentially beat

our proposed method under those conditions. To estimate how well such methods can work against

the PHOTO-ATTACK database, we evaluated the work of Chingovska and others [31], a variant of the

competition winner based on Local Binary Patterns (LBP), and to which we have access to an open-source

implementation6. The best results that can be generated with such a package reach ∼16% HTER on the

6http://pypi.python.org/pypi/antispoofing.lbp

http://pypi.python.org/pypi/antispoofing.lbp
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TABLE VI: Experimental error rates (in %) for OFC for various frame skip values, on the PHOTO-
ATTACK database. Bins = 2. Offset = 10o. Window-size = 220. Overlap = 219.

Skip Dev. EER Test HTER ∼ Required Rate (Hz)
0 0.36 1.52 25
1 1.26 1.49 12.5
2 1.64 1.53 8.3
3 2.94 2.37 6.3
4 3.64 2.97 5
5 2.81 2.95 4.2

10 7.81 5.86 2.3
25 16.87 10.70 1
50 11.32 17.83 0.5

test set, using a combination of uniform LBP codes, principal component analysis and linear discriminant

analysis.

7) Complexity: All systems developed in this article are extremely simple, mostly relying on heuristics

to counter spoofing attacks. One must note, however, that RS1, RS2 and our newly introduced technique

based on OFC, require the computation of the Optical Flow (OF) field, which can be considered a complex

task. In our setup, for example, we could obtain a throughput of a few frames per second with the toolbox

downloaded from [23]. In contrast, the frame-by-frame differences required by RS3 can be calculated

using only integer operations which should, therefore, require much less computing power. The trade-off

seems to affect the classification of such a method: while our method can achieve smaller error rates with

a simple classification metric, RS3 must find higher-order correlations on the input feature space (through

the MLP) to compensate for the simpler feature extraction.

Table VI reports the HTER for the PHOTO-ATTACK database test set with threshold chosen a priori

on the development set when one considers the estimated flow for all frames (first row) or when we

decide to skip the calculation of the OF fields for a given number of frames for a given video sequence,

while keeping all other parameters fixed. For example, the second row of Table VI indicates what would

happen if we skipped the calculation of the OF for every other frame in the sequence. The second row,

shows what happens if we calculated the OF for only 1 frame in every 3 frames, and so on. The fourth

column of such a table shows the (approximate) required OF calculation rate in Hertz. As can be seen,

results are still satisfactory and better than RS3, if one computes the OF field for 1 in every 11 frames.

The required processing rate in this case would be about 2.3 Hz.

One must note, nevertheless, Optical Flow estimation is still an active research field in computer vision
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and computing power never ceases to grow. Methods for real-time flow estimation which trade-off accuracy

for execution time could be considered in place of the method used in this work.

VIII. CONCLUSION AND EXTENSIONS

One of the easiest ways to spoof a 2-D face recognition system is by the use of photographs of attacked

identities. This problem has been understood for nearly a decade now and, yet, no consensus seems to

exist on techniques or best-practices to avoid this. Literature is scarce and results are difficult to reproduce.

To remedy this aspect, we made public a PHOTO-ATTACK dataset and explain how to use its companion

protocol. The database is sufficiently large and contains a diverse set of spoofing attacks under different

conditions.

Under the light of this new dataset, we conducted experiments demonstrating previous attempts to solve

the issue do not generalize well, hintting on possible reasons of why their basic assumptions fail. Yet, we

also show photo attacks can be detected accurately by solely using direction-based motion correlation.

With this technique we can obtain ∼1.5% HTER on the database test set with a threshold chosen a priori

on the development set. Our newly introduced method requires the estimation of Optical Flow (OF) fields

or other direction oriented features on the target images, but can dramatically improve the accuracy of

spoofing detectors. This seems to generalize well for different types of attacks, using different media and

support. Requirements on stationarity may be lifted by trading-off for smaller background windows that

limit the area around the face to the smallest possible set for a given condition. It is also possible to

trade-off processing time and accuracy by reducing the size of time-windows to which counter-measures

are applied to. The software suite leading to the figures published in this article was made open-source

and publicly available so our results can be easily reproduced.

The evaluated algorithms are strongly dependent on the results of a face detector framework, that prefixes

our setup. The detector based on [18] detected a valid face in about 99.3% of the frames available in the

PHOTO-ATTACK database. At this time, we have not evaluated the impact of undetected faces in the

overall performance of the algorithm or how a change in face detection strategy (for example, using a

tracker) could impact final results. This seems a natural extension to this work.

We shall continue to improve the PHOTO-ATTACK database with more challenging spoofing attempts

such as those using videos of users. Additionally, more challenging conditions with poor lighting or

non-stationary backgrounds should be addressed on the next iterations. On the side of detecting attacks,

the fusion of both magnitude and direction cues could be studied to yield an even more robust spoofing
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classifier. At this point, the impact of using different Optical Flow estimation techniques could help

determine our proposed algorithm’s dependence on that pre-processing stage.

Finally, the scores obtained from our frame-based analysis could be merged for each video stream and

the quality of counter-measures evaluated as time passes. At this stage, one may consider simple fusion

schemes or more complex ones that may depend on independent quality measurements.
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