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Abstract— The ATLAS High Level Trigger’s primary function
of event selection will be accomplished with a Level-2 trigger farm
and an Event Filter farm, both running software components
developed in the ATLAS offline reconstruction framework. While
this approach provides a unified software framework for event
selection, it poses strict requirements on offline components critical
for the Level-2 trigger. A Level-2 decision in ATLAS must typically
be accomplished within 10 ms and with multiple event processing
in concurrent threads. In order to address these constraints,
prototypes have been developed that incorporate elements of the
ATLAS Data Flow -, High Level Trigger -, and offline framework
software. To realize a homogeneous software environment for
offline components in the High Level Trigger, the Level-2 Steering
Controller was developed. With electron/gamma- and muon-
selection slices it has been shown that the required performance
can be reached, if the offline components used are carefully
designed and optimized for the application in the High Level
Trigger.

I. INTRODUCTION

THE Large Hadron Collider (LHC) currently under con-
struction at CERN will produce pp-collisions with a center

of mass energy of
√

s = 14 TeV at a design luminosity of
1034 cm−2s−1. With a bunch crossing rate of 40 MHz and
about 23 interactions per bunch crossing it requires however
highly selective trigger systems to reduce the expected 109 in-
teractions per second to an acceptable rate of a few hundred Hz.
ATLAS [1] is one of the two large general purpose experiments

† http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/HLT/
AUTHORLISTS/nss2003.pdf

at the LHC and covers a widely diversified physics program [2],
ranging from discovery physics to precision measurements of
Standard Model parameters. ATLAS has an inner detector for
precision tracking mounted inside a superconducting magnet
with 2 T field strength. Outside the solenoid follow electromag-
netic and hadronic calorimeters. Muon identification is achieved
with a high precision muon spectrometer. The total number of
readout channels is about 108.

Given the required large selectivity of the ATLAS trigger
(� 10−7) and the rare nature of the most interesting physics
signatures at the LHC collider, it is essential to understand
the efficiencies at each step of the event selection process.
Sharing a large number of software components across all
platforms from the trigger event selection software to the
offline physics analysis and reconstruction environment helps
in achieving this goal and allows for a common development
and run environment.

II. THE ATLAS TRIGGER

The ATLAS trigger is based on three levels of online
selection: Level-1, Level-2, and Event Filter (EF). The second
and third level triggers, together known as the High Level
Trigger (HLT) [3], are implemented on PCs running the Linux
operating system.

The Level-1 trigger [4] is implemented in custom hardware
and will reduce the initial event rate to about 75 kHz. The
Level-1 decision is based on data from the calorimeters and
the muon detectors. For accepted events small localized regions
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in rapidity η and azimuthal angle φ centered on the high p
T

objects identified by the Level-1 trigger are determined. Each
Region of Interest (RoI) contains the type and the thresholds
passed of the associated high p

T
candidate objects.

The Level-2 trigger’s selection process is guided by the
RoI information supplied by the Level-1 trigger and uses full
granularity event data within a RoI from all detectors. In this
way, only 2% of the full event data are needed for the
decision process at Level-2, thus reducing dramatically the
size of the network needed to serve the Level-2 trigger. The
selection algorithms request data from the Read Out Buffers
(ROB) for specific detectors in a Level-1 defined RoI for
each processing step. The data are held in the ROBs until
the Level-2 trigger accepts or rejects the event. The Level-2
event selection algorithms are controlled by the HLT selection
framework and run inside the Level-2 Processing Units [5] [6]
(L2PU) in concurrent worker-threads, each processing one
event. The multi-threaded approach minimizes overheads from
context-switching and avoids stalling the CPU when waiting
for requested RoI data to arrive from the ROBs. Asynchronous
services, like input of data and application monitoring, are
executed in separate threads. This allows an efficient use of
multi-CPU processors but requires also all software running
in the L2PU to be thread-safe. The technical aspects of multi-
threading are handled by the data flow software itself, including
creation and deletion of threads and any locking mechanism
that may be required. The Level-2 output rate is about 2 kHz
with typical event decision times of 10 ms.

If an event is accepted by Level-2, the Event Builder collects
all the event data fragments from the ROBs. The complete event
is then made available to the EF for the final stage of trigger
processing. Here, more complex algorithms provide a further
rate reduction to about 200 Hz with typical event decision times
of 1-2 s. While the Level-2 reconstructs localized regions, the
baseline for the EF is a full offline-like event reconstruction
guided by the Level-2 Result. It will also use more complete
calibration, alignment and magnetic field data.

To achieve a fast rejection, the event processing in the HLT
selection proceeds in steps for feature extraction and hypothesis
decisions. At the end of each step the step results are checked
against abstract physics signatures defined in trigger menus.

III. HIGH LEVEL TRIGGER SELECTION SOFTWARE

The HLT selection framework [7] constitutes the run envi-
ronment for the trigger algorithms. It is common to Level-2 and
EF and is composed of four main components. The Steering
schedules the HLT Algorithms corresponding to the input seed,
so that all necessary data for a trigger decision are produced.
Information about event specific quantities is exchanged via
components of the Event Data Model (EDM). During event pro-
cessing data are stored and accessed through a Data Manager.
This allows to hide platform- and storage technology-specific
details of event data access from the algorithms. The HLT
Algorithms either reconstruct new event quantities or check
trigger hypotheses with previously computed event features.

As the main purpose of the HLT selection software is event
selection, it has to run efficiently and reliably in the online
environment. In addition, critical selection components must
be transferable to the offline environment for development
and testing purposes. By providing a common code base for
the online and the offline software, the HLT guarantees the
consistency of trigger performance evaluations. It also pro-
vides a “physicist-friendly” environment for trigger algorithm
development. In addition, studies have already shown [8] that
great cost savings can be obtained with the proper global
optimization of the trigger. Having a single common frame-
work, where the different trigger levels can be cross-optimized,
greatly facilitates these studies.

Since the EF provides an offline-like environment, the HLT
selection software is naturally based on the ATLAS offline
reconstruction and analysis environment ATHENA [9], which
itself is based on the GAUDI [10] framework. This allows
for the reuse of the storage manager, the EDM, the detector
description and many algorithms, which are already developed
by the offline community. Only the Steering framework and
certain algorithms remain as HLT specific developments. In
the case of the Level-2 trigger, a similar ansatz is more difficult
due to the multi-threaded selection process and the more severe
performance requirements. Even though Level-2 algorithms are
specially developed to meet the tight timing requirements, they
use the same EDM- and detector description objects present in
the EF and offline. A transparent use of such components is
possible and a common implementation of the HLT framework
for both Level-2 and EF can be realized if the same interfaces
are available at Level-2. This is provided by the Level-2
Steering Controller (SC).

IV. THE LEVEL-2 STEERING CONTROLLER

The SC [11] is the software component that interfaces the
L2PU, the data flow application which provides access to
the event data stored in ROBs and the HLT event selection
software. The purpose of the SC is threefold: to allow the L2PU
to host and control the selection software; to allow the reuse of
the same trigger algorithm steering software as in the EF; and
to provide a mechanism for transmitting the results of Level-1
and Level-2 processing between the data acquisition system and
the event selection software. All data flow applications follow
for control a state model implemented in form of Finite State
Machines (FSM). The key to the SC design is to place this
interface where the functionality of the data flow and event
selection frameworks can be cleanly separated. The location
chosen is the FSM of the L2PU.

The SC provides the means for forwarding state changes
from the data flow software (Fig. 1) to the event selection
software. An important aspect of this approach is that the
Level-2 event data access is managed entirely by the data flow.
The SC then does not need to interact directly with the data
input threads or other data flow components.

Fig. 2 illustrates the sequence of interactions of the SC with
the L2PU and the event selection software. The figure shows
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Fig. 1. The L2PU Finite State Machine. All algorithms and services are
created at initialization time in the Configure step. The Level-2 selection code
is executed in parallel in multiple worker-threads.

three states: Configure, Start, and Stop. During the Configure
phase, configuration and conditions data are obtained from
external databases via an HLT-online interface. These data are
then used to configure the selection software and all associated
components.

After a Start the SC receives an ’execute event’ directive with
a Level-1 Result as argument. The result of event processing
is directly returned as Level-2 Result to the L2PU. A Stop
command terminates algorithm execution and produces run
summary information.

Since the trigger event selection software is being developed
in the ATLAS offline framework, which is itself based on the
GAUDI framework, the SC also has been designed to re-use
the framework interfaces defined in GAUDI. In this way, there
is a unified environment for event reconstruction and selection
from the second level trigger to the offline analysis.

Since the event selection software executes in multiple
worker threads, the SC must provide a thread-safe environment.
At the same time, and in order to provide an easy-to-use
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Fig. 2. The sequence of interactions of the SC with the L2PU and the Event
Selection Software. Three states are shown: Configure, Start, and Stop. The
gray area shows the interactions which happen in multiple Worker Threads.
The pROS is the component that forwards the Level-2 Result to the EF.

framework for offline developers, the SC must hide all technical
details of thread handling and locks. Thread safety has been
implemented in the SC by using GAUDI’s name-based object
and service bookkeeping system. Copies of components that
need to be thread-safe are created for each worker thread
with different labels. The labels incorporate the thread-ID of
the worker thread, as obtained from the data flow software.
The number of threads created by the data flow software is
transferred to the SC, which transparently creates the number
of required copies. In this scheme, the same configuration can
be used in the offline and in the Level-2 environments; the
thread-ID collapses to null in the offline environment, as it is
not needed there.

In contrast to the EF and offline environment, all Level-2
algorithm- and service instances need to be created and initial-
ized in the configuration state of the L2PU FSM, since only
in this phase a L2PU has access to external databases. Later
in the event loop, only access to information stored locally on
the processor is possible. The Configure step is still executed
in a single thread and only later after the transition to the Start
state of the FSM the thread specific copies of the algorithms
and services are attached to the worker-threads.

The implementation of the SC consists of three components:

• An interface class, which forwards the L2PU state changes
to the algorithm execution framework. Different interface
implementations, e.g. for data flow testing without algo-
rithms, can be specified in the L2PU configuration and
are loadable as shared libraries. This implementation also
helps to minimize cross-dependencies in the respective
data flow and offline repositories.

• The multi-threaded algorithm execution environment. The
necessary changes for multi-threading support have been
incorporated in the GAUDI base libraries and are available
with the recent official releases of the GAUDI framework.

• A modified ATHENA event loop handler. Contrary to
offline, the event loop is controlled by the data flow
software. The modified event loop handler makes the
Level-1 Result available to the HLT selection software,
executes the algorithms for a given event and forwards
the Level-2 decision to the L2PU interface class.

The implementation is complemented by special utility ser-
vices, which connect e.g. the GAUDI framework messaging to
the corresponding data flow implementations.

V. SOFTWARE DEVELOPMENT MODEL

HLT software developers follow a typical edit, compile and
run cycle in the ATHENA offline environment, when creating
new software components. For running an application, the
ATHENA main program together with a job configuration file
would be used: athena <job-configuration>.

Since the same interfaces are available in the EF and the
L2PU environment the code developed in the offline envi-
ronment can be directly downloaded in binary form to the
processors. For Level-2 the developer has to follow however
a set of simple coding rules [12] to produce thread safe code



and to make its algorithms or services compatible with the
automatic creation of multiple copies in the L2PU. Further-
more it should be not necessary to use Locks or Mutexes to
adapt the code to the multi-threaded environment. To meet the
timing requirements for the second level trigger, the number
and type of available services is restricted to the necessary
minimum, which is a subset of the services available in the
EF and in offline. In this way it should be always possible to
move a Level-2 component to the EF and offline environment.
The other direction, however, is only possible if the software
component finds all its necessary resources in the restricted
L2PU environment.

The data flow software can be configured to run either
as single or multi node system. The single node system
starts a ROS emulator, a Level-2 supervisor, and a L2PU
in the same processing node, while the multi-node system
distributes these applications over various nodes. The setup
of a complex data flow system for application testing is in
both cases a nontrivial task and most HLT developers lack
also the necessary hardware resources. A multi-threaded test
application called athenaMT was therefore created, which
presents internally the same run environment as a L2PU,
but can be started as simple as the normal ATHENA main
program: athenaMT <number of worker-threads>
<job-configuration>. athenaMT uses the SC and most
of the data flow components that are also used in a standard
L2PU. It differs, however, in the supervision aspect of the
L2PU and in the way detector raw data are made available to
the processing unit. The application can be used on single- or
multi-CPU machines. HLT developers need not to be familiar
with detailed technical aspects of the data flow software and
are also shielded from changes in the data flow part of the
software. They can concentrate exclusively on the HLT software
and are able to perform a large variety of useful tests, from
thread safety to performance measurements, in a realistic L2PU
environment. Fig. 3 shows the relation between an online data
flow setup and an offline development environment for Level-2
software. In this way the development effort for HLT and data
flow can be widely parallelized. It is clear, however, that the
final certification of the HLT software has to be done on a large
distributed system.

VI. PERFORMANCE MEASUREMENTS

After integrating the SC with the data flow software, both
performance and robustness tests were carried out on a dual-
processor 1.533 GHz AMD Athlon machine. The SC ran for
over 50 hours with three threads with an early version of the
selection software prototype. The prototype ran successfully on
both single-CPU and double-CPU machines, showing it to be
thread safe. A direct measurement of the SC overhead yielded
13 µs per event. The overhead was estimated by comparing the
number of events per second a L2PU can handle when running
without or with the SC and executing a simple algorithm (first
and second row in Tab. I). Tab. I shows also the obtained rate,
when in addition the Level-1 Result is transfered to the Data
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Fig. 3. A typical development and prototype setup. GAUDI with support
for multiple threads is the basic algorithm execution environment. It is shared
by the online and the offline environments. Algorithms are developed in the
offline environment and tested with the L2PU emulator athenaMT. The same
binary libraries containing the event selection algorithms are then used by the
real L2PU running in a data flow setup.

Manager. The quoted overhead includes all GAUDI framework
steps to schedule and execute algorithms and to execute the
used base services. The measurements were based on runs of at
least 100,000 events and almost perfect scaling of the overheads
was observed with an algorithm containing a CPU burning loop
from 0 to 8 ms.

More tests with increasing complexity were performed on
a three node data flow system build with a dual processor
Intel XEON 2.2 GHz machine hosting the L2PU, a dual-
processor 1.533 GHz AMD Athlon machine hosting the ROS
emulator and a single processor Intel Pentium 4 machine
running the Level-2 Supervisor. The dual processor machines
were connected via a Gigabit Ethernet network. All machines
were running the Redhat 7.3 Linux operating system.

In sequence, the offline Data Manager StoreGate [13] the
HLT Steering and a fast inner tracker feature extraction al-
gorithm [14] were included in the setup. The algorithm used
an early version of the Event Data Model and the raw data
conversion process from byte stream format to EDM classes.
More complex tests were recently done with complete e/γ and
µ selection slices. They contained the complete HLT steering
framework with decoding of the Level-1 Result, scheduling of
the feature extraction algorithms, and sending the results of the
Level-2 processing to the EF. The Data Manager, the Event
Data Model, the detector description for the calorimeters and
the muon system and services for conversion from raw data
byte stream format to high level data containers were used
from offline. The feature extraction algorithms were specially
developed for Level-2 but used the above mentioned offline
services. In the case of the e/γ slice, over 95 % of the events
were processed within 5 ms for a sample of di-jet events at
low luminosity and a RoI size of ∆η×∆φ = 0.3× 0.3. Fig. 4
shows similar results for the µ slice.



Prototype configuration Measured rate Overhead/event

L2PU 21.7 kHz 46 µs
L2PU+SC 17.0 kHz 59 µs
L2PU+SC+Data Manager 15.3 kHz 65 µs

TABLE I

RATES ON A DUAL-PROCESSOR 1.533 GHZ AMD ATHLON MACHINE.
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Fig. 4. The main contributions to the latency shown as curves of integrals
for the µ selection slice. The slice used offline software components for data
conversion, detector description, data manager and steering. The contributions
in order of decreasing importance are data preparation and conversion, frame-
work overheads, algorithmic processing and network access time. The curves
show e.g. that in this setup algorithmic processing is terminated for 95% of the
events in less than 2 ms. The data sample consisted of 200 GeV muons at high
luminosity. The muon background from the ATLAS cavern was boosted by a
factor of two, so that the results give a conservative estimate of the processing
times.

VII. EXPERIENCES

During the tests it was observed that the event throughput in
a L2PU didn’t scale in the expected way with the number of
worker-threads. This was due to the use of a common memory
pool for container objects in the default memory allocation
scheme of the Standard Template Library (STL). The event pro-
cessing model of Level-2 favors a scheme where every thread
allocates its own memory pool. Such an allocation scheme
is available in the STL. After carefully optimizing the code
with it, the expected scaling behavior was observed. Such an
optimization poses limitations on the offline components used
and their external dependencies. For instance, external utility
libraries may not be available with this allocation scheme.
To avoid frequent memory allocation during event processing,
all large containers that hold detector data were designed to
allocate memory only during initialization time and to reset
their data for each new event.

The reconstruction of full events in offline favors a process-
ing model where utility services and external data are retrieved
on demand. In the case of Level-2 this model cannot be applied
since during event processing only locally stored meta-data are
accessible. All required data need to be known at configuration
time and need to be prefetched by the processor. Furthermore,
the creation of large configuration objects on demand may

lead to time-outs during event processing. These restrictions
required a redesign and alternative initialization methods for
some offline components, especially for detector description
and raw data conversion.

The use of offline components in multiple worker threads
and the requirement to avoid Locks in the event selection code
limits certain design and implementation choices, e.g. the use of
Singletons. These restrictions were communicated to the HLT
developers at an early design stage.

VIII. CONCLUSIONS

The presented implementation of the SC for the ATLAS
Level-2 trigger enables the reuse of offline software components
throughout the ATLAS High Level Triggers. It realizes a
homogeneous software and development environment from the
Level-2 trigger to offline. Realistic prototypes have shown
that the required performances can be reached if the offline
components are carefully optimized and designed for reuse
in the triggers. This may limit architectural, design and im-
plementation choices that are otherwise available in a pure
offline environment. An understanding of these restrictions is
necessary for all contributing developers.
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[11] S. González et al., Use of Gaudi in the LVL2 Trigger: The Steering

Controller, EDMS Note, ATL-DH-EN-0001 (2002)
[12] A. dos Anjos et al., Guidelines for offline preparation and testing of LVL2

code. Available:
http://www.cern.ch/steve.armstrong/algorithms/guidelines

[13] P. Calafiura et al., StoreGate: A Data Model for the ATLAS Software
Architecture, Computing in High Energy and Nuclear Physics
Conference, Beijing, 2001. Available:
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/
EventDataModel/Tech.Doc/StoreGate/Chep01.pdf

[14] A. Bogaerts et al., Initial LVL2 Tests with the Si Tree Algorithm, EDMS
Note, ATL-DH-TN-0001 (2003)


