

TABULA RASA - Trusted Biometrics under Spoofing Attacks

Dr Sébastien Marcel

Idiap Research Institute, Switzerland

http://www.idiap.ch/~marcel

TABULA RASA

Trusted Biometrics under Spoofing Attacks

The Pain: too many passwords !

How to get rid of passwords or keys ?

Biometrics

• **Modalities**: face, voice, iris, fingerprint, vein, gait, EEG/ECG, ...

• Research:

- Core biometrics: robust to noise, variabilities ...
- Soft biometrics: age, gender, ...
- Aging biometrics: robust in time
- Trustworthy biometrics
- Applications: physical access (border control) or logical access (login, mobile biometry)

Biometrics

• **Modalities**: face, voice, iris, fingerprint, vein, gait, EEG/ECG, ...

• Research:

- Core biometrics: robust to noise, variabilities ...
- Soft biometrics: age, gender, ...
- Aging biometrics: robust in time
- Trustworthy biometrics: robust to attacks
- Applications: physical access (border control) or logical access (login, mobile biometry)

Attacks to biometric systems ?

Spoofing attacks

- Biometric systems are vulnerable to attacks:
 - Indirect attacks (intruders, hackers, ...)
 - Direct attacks (gummy fingers, photo attacks, ...) also called **spoofing**

6

Spoofing attacks

- **Spoofing** is a major problem and a real challenge
- There is a need for efficient, reliable and scalable solutions for detecting and circumventing spoofing attacks

TABULA RASA research project: « Trusted Biometrics under Spoofing Attacks» (Nov 2010 – Mar 2014)

Copyright © 2012 Idiap - www.idiap.ch

EU Funded Research (FP7)

- Research challenge 1 on Pervasive and Trustworthy Network and Service Infrastructures
- More particularly the Objective ICT-2009.1.4 "Trustworthy ICT":
 - Technology and Tools for Trustworthy ICT
 - Trustworthy Service Infrastructures
- Also relevant to the Security theme

Partners involved

1	Idiap Research Institute	IDIAP	СН
2	University of Oulu	UOULU	FI
3	Universidad Autonoma de Madrid	UAM	SP
4	University of Southampton	USOU	UK
5	University of Cagliari	UNICA	IT
6	EURECOM	EURECOM	FR
7	Chinese Academy of Sciences	CASIA	CN
8	Starlab Barcelona S.L.	STARLAB	SP
9	Morpho (Ex-Sagem Security)	MORPHO	FR
10	KeyLemon	KEY	СН
11	BIOMETRY.com AG	BIO	СН
12	Centre for Science, Society and Citizenship	CSSC	IT

A Unique China-EU Collaboration

1	Idiap Research Institute	IDIAP	Swiss
2	University of Oulu	UOULU	Finland
3	Universidad Autonoma de Madrid	UAM	Spain
4	University of Southampton	USOU	England
5	University of Cagliari	UNICA	Italy
6	EURECOM	EURECOM	France
7	Chinese Academy of Sciences	CASIA	CN
8	Starlab Barcelona S.L.	STARLAB	Spain
9	Morpho (Ex-Sagem Security)	MORPHO	France
10	KeyLemon	KEY	Swiss
11	BIOMETRY.com AG	BIO	Swss
12	Centre for Science, Society and Citizenship	CSSC	Italy

10 SEVENTH FR

Expected research results

- Identification and evaluation of vulnerabilities of biometrics under spoofing attacks for
 - ICAO biometrics: face, iris and fingerprint
 - Non-ICAO biometrics: voice, gait, vein, electrophysiology
- Finding and evaluating countermeasures for spoofing attacks possibly along four directions:
 - 1. detecting patterns characteristic of liveness/spoofing,
 - 2. using dedicated sensors/hardware,
 - 3. using a challenge-based response (interaction),
 - 4. novel methods intrinsically robust to spoofing.

Main Concrete Objectives

- 1. to produce evaluations on the vulnerabilities of biometric systems to spoofing attacks
- 2. to develop and evaluate countermeasures to spoofing attacks
- 3. to produce databases of spoofing attacks
- 4. to increase the impact factor of TABULA RASA partners with conference and journal publications on spoofing
- 5. to submit, if possible, patents or licences on anti-spoofing techniques
- 6. to improve societal acceptance of biometric systems
- 7. to integrate anti-spoofing solutions into working systems
- 8. to propose standards on anti-spoofing technologies
- 9. to establish ethical, legal and policy implications of spoofing

Main Concrete Objectives

- 1. to produce evaluations on the vulnerabilities of biometric systems to spoofing attacks
- 2. to develop and evaluate countermeasures to spoofing attacks
- 3. to produce databases of spoofing attacks
- 4. to increase the impact factor of TABULA RASA partners with conference and journal publications on spoofing
- 5. to submit, if possible, patents or licences on anti-spoofing techniques
- 6. to improve societal acceptance of biometric systems
- 7. to integrate anti-spoofing solutions into working systems
- 8. to propose standards on anti-spoofing technologies
- 9. to establish ethical, legal and policy implications of spoofing

Fingerprint

(c)

(f)

(i)

14 SEVENTH FRAMEWORK PROGRAMME

Copyright © 2012 Idiap - www.idiap.ch

Face (prints)

Face (3D masks)

16 SEVENTH FRAMEWOR PROGRAMME

Copyright © 2012 Idiap - www.lena

Face (printed IR)

Iris (printed)

Vulnerability to spoofing

Countermeasures to spoofing

not detected impostors: 0.46 % not detected attacks: 6.67 %

A Demonstration Prototype in FR

More information at http://www.tabularasa-euproject.org/

Thank you for your attention

For any question or future collaborations please contact

marcel@idiap.ch

Copyright © 2012 Idiap - www.idiap.ch