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D3.2: Evaluation of baseline non-ICAO biometric
systems

Abstract:
To gain insight into the performance of current biometric systems when not confronted

to spoofing attacks, we report in this deliverable the results of some baseline systems.
This will provide valuable baseline performance for later investigating the performance
and the vulnerabilities of biometric systems when confronted to spoofing attacks. This
document presents the evaluation and performance profiles for all non-ICAO mono-modal
and multi-modal biometrics addressed within the TABULA RASA project. The baseline
results presented here will form a cornerstone of all subsequent work related to spoofing and
countermeasures, the performance of which will be compared to that presented here. All
biometrics are assessed with a common, minimal protocol involving independent develop-
ment and evaluation datasets and a common operating point, namely the equal error rate.
Detection error trade-off curves are also reported to illustrate the dynamic performance of
all biometric systems for alternative operating points and different applications.
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1 Introduction

The TABULA RASA project aims to assess the threat of direct, sensor-level spoofing to
biometric systems and then to propose novel countermeasures. These activities require the
comparison of system performance under spoofing conditions, first without and then with
countermeasures, to baseline scores for standard, state-of-the-art biometric systems. The
purpose of this deliverable (and also of the companion deliverable D3.1) is thus to establish
the baseline scores to which all later experimental results with spoofing and countermea-
sures will potentially be compared. This particular document presents baseline scores for
all non-ICAO biometric modalities considered within the TABULA RASA project. Base-
line scores for ICAO biometrics are presented within the companion document, D3.1. Both
documents relate to the biometric database and system specifications previously reported
in D2.2.

All results are presented in terms of detection error trade-off (DET) profiles which
illustrate the dynamic behaviour of a biometric system as the decision threshold is changed,
i.e. how the false acceptance rate varies according to the false rejection rate. While there are
boundless variations on assessment approaches in the literature they all pertain to specific
operating conditions, i.e. prior probabilities, false rejection and/or false acceptance costs.
Most of these are furthermore dependent on specific applications and biometric modalities.
The TABULA RASA project addresses numerous different use-cases and numerous mono-
modal and multi-modal biometrics. Thus, in the absence of a single dominant application
and multiple biometric combinations, all systems are optimised so as to minimise the
equal error rate (EER) which is the sole, standard metric for all biometric modalities in
the TABULA RASA project. Results reported here are therefore not necessarily directly
comparable to other published results on the same datasets. This, however, does not
detract from the impact of the work presented here since the focus in later deliverables,
and of the wider project, is on the degradation in performance caused by spoofing relative to
the baseline and thus the precise operating point is not of critical importance. Naturally,
further work would be required to assess impacts on alternative operating points and
specific applications but this is beyond the scope of the work in TABULA RASA. The
illustration of DET plots nonetheless gives an idea of performance for other operating points
even if they are not that used for optimisation. DET plots are presented for evaluation
datasets only.

In all cases experiments relate to a standard, minimal specification which involves
multiple sessions and independent development and evaluation datasets. Auxiliary datasets
used for the learning of world or universal models and normalisation procedures etc. are
independent from those used for development and evaluation. Independent datasets do
not contain any overlap in terms of clients/subjects. Full details of database and system
specifications are presented in D2.2 though a brief summary of both is provided here so
that the document can be read independently.

Before starting with a biometric-by-biometric treatment of baseline results we present
here a brief summary of future work in order to show how the material presented here fits
into the wider picture and direction of the TABULA RASA project. Figure 1 illustrates
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three example DET profiles for any hypothetical mono-modal or multi-modal biometric
and aims to distinguish the results in this deliverable from those which can be expected in
future work. The lowest profile (solid black) is that of the baseline: a standard, state-of-
the-art biometric system with no spoofing and no countermeasures. For this hypothetical
biometric modality the EER is in the order of 10%. When spoofing attacks are applied
performance is expected to degrade, perhaps considerably. Many such profiles will be
derived for different spoofing attacks (whereas there is generally only one baseline). One
such profile is illustrated and is the highest (dashed red) in Figure 1. It corresponds to
an EER in the order of 40%. Finally, the third, middle profile (dashed blue) illustrates
performance once spoofing countermeasures are applied. Once again, multiple profiles will
be derived for different countermeasure strategies. That illustrated corresponds to an EER
in the order of 20% thus showing an improvement over the higher spoofing profile but still
a gap to the original baseline. The goal of the latter work is thus to reduce this gap as
much as possible and thus the establishment of the lower baseline is a cornerstone of the
project.

The only profile in Figure 1 which relates to the work presented in this document
is the lowest, namely that of the baseline. Research related to other profiles are the
subject of future work and deliverables. For example, D3.4 is the subject of performance
under spoofing attacks (D3.3 for ICAO biometrics) due in M21 whereas D4.2 and D4.4 are
the subject of first initial, and then advanced countermeasures (D4.1 and D4.3 for ICAO
biometrics) due in M25 and M33 respectively.

In the following sections we present the baseline scores and DET profiles for each of the
non-ICAO biometric modalities (voice, gait, vein and fingerprint, electro-physiology) and
then the numerous multi-modal combinations (2D-face and voice, 2D-face and fingerprint,
2D-face and 3D-face, ECG and EEG).

TABULARASA D3.2: page 8 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

 

Figure 1: An overview of the different stages in the TABULA RASA project. The objective
of the work reported in this deliverable is to establish the lower baseline performance of
state-of-the-art biometrics systems for all non-ICAO mono-modal and multi-modal modal-
ities.
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2 Voice Biometrics

The voice biometric will be assessed both standalone and in combination with the 2D-face
modality. Mono-modal and multi-modal assessments are performed on different databases.
The NIST speaker recognition evaluation datasets are the de facto standard, are used in
all state-of-the-art research and are thus used here for mono-modal work. The datasets are
not multi-modal, however, and thus the MOBIO database is used for all multi-modal work.
In the following we concentrate on baseline results related to the NIST speaker recognition
evaluation (SRE) datasets. They are are telephony-based and relate arguably to the most
appealing use of voice recognition, namely remote recognition over the telephone. The
scenario is one of the most challenging in terms of spoofing and countermeasures since it
is entirely unsupervised and is thus particularly prone to spoofing attacks.

Also reported here are the differences between the speaker recognition systems opti-
mised for the NIST SRE datasets and the multi-modal MOBIO database. Speaker recog-
nition results for the MOBIO database are also presented. The database itself, however,
is not described here; brief details are presented in Section 6 and in deliverables D2.2 and
D3.1.

2.1 The ALIZE Speaker Recognition System

All speaker recognition work to be conducted in the TABULA RASA project will be
undertaken using the state-of-the-art ‘ALIZE’ speaker recognition system [3] using the
implementation described in [11]. As described in D2.2 the SPro toolkit system is used
for feature extraction whereas ALIZE itself is used to perform various forms of feature
normalization such as cepstral mean and variance normalisation. The standard approach
to statistical speaker modelling is based on Gaussian mixture models (GMMs) [28] and
generally employs some form of world model [8] or universal background model (UBM)
trained using the expectation maximisation (EM) algorithm [9] and large amounts of data
from a pool of background speakers. Target speaker models are generally adapted from
the UBM during enrollment through maximum a posteriori (MAP) adaptation [13]. Scores
correspond to the log-likelihood ratio of the target model and the test segment, normalised
with respect to the background model. Various score-level normalisation procedures such as
test-normalisation (TNorm) [2] can be applied. Final decision logic is based on a threshold
which is empirically determined using a large, representative development set. The ALIZE
framework also provides for more recent, advanced approaches including support vector
machines (SVMs) [36], e.g. generalised linear discriminant sequence kernel (GLDS) [6] and
the GMM super-vector linear kernel (GSL) [7], nuisance attribute projection (NAP) [5]
and factor analysis (FA) [19].

2.2 The NIST SRE Datasets

The NIST datasets contain several hundreds of hours of speech data collected from tele-
phone conversations. Common to each dataset is a single compulsory, ‘core’ evaluation
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condition which typically involves in the order of a few minutes of speech per training and
testing segment. Whilst at a later date we may turn our attention to different conditions
involving more training data, or fewer test data, the NIST-defined core condition is the
default condition used for all experimental work in TABULA RASA. Training and test-
ing protocols are defined by NIST and allow for different systems and technologies from
different research groups to be readily and meaningfully compared according to standard
experimental and evaluation protocols and metrics. We note, however, that this is not
strictly the case for TABULA RASA work since our system will be optimised to minimise
the equal error rate (EER) and not on the standard operating conditions (costs) defined
by NIST. A typical speaker recognition system requires an independent development set
in addition to independent auxiliary data which is needed for background model training
and the learning of normalisation strategies. This data typically comes from other NIST
datasets, such as the 2004 dataset which will be the case for all TABULA RASA work.
Basic evaluation rules relate to the independence of trial decisions, permitted normalisation
procedures, human interaction and the use of additional data, such as speech transcripts,
etc.

2.3 Performance Evaluation

Within TABULA RASA we aim to assess the effect of spoofing on a range of systems
based on recent developments in the field of automatic speaker recognition. All of them
lead to state-of-the-art performance as judged by the series of NIST SREs and are all
based upon the ALIZE toolkit [3]. The inclusion of multiple baseline systems in the case
of speaker recognition is motivated by the likely impact of different channel compensation
algorithms which may be of assistance to a would-be spoofer. As is common practice
separate systems are independently optimised for both male and female data subsets. All
systems are optimised according to the standard EER metric with dynamic performance
assessed according to the standard detection error trade-off (DET) plots. Note that, in the
case of the NIST SRE datasets, this is in contrast to convention which dictates optimisation
according to the minimum decision cost function (minDCF). Results presented in the
context of TABULA RASA are thus not directly comparable to those in the open literature.

2.3.1 Setup

The two different setups are described here, one for the NIST SRE datasets and another
for the MOBIO database.

NIST SRE
In all experiments the NIST’04 dataset is used for background data, e.g. that used for
learning the universal background model (UBM) and that used in the application of test
normalisation (TNorm), nuisance attribute projection (NAP), and factor analysis (FA).
The NIST’05 dataset is used for development whereas the NIST’06 dataset is used for

TABULARASA D3.2: page 11 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

evaluation1. All experiments relate to the core condition (1conv4w-1conv4w) which involves
approximately 5 minutes of data for model training and testing.

Features are composed of 16 linear frequency cepstral coefficients (LFCCs), their first
derivatives and delta energy, thereby producing a feature vector with 33 coefficients which
are computed from Hamming windowed frames of 20ms and with a frame rate of 10ms.
Voice activity detection is then applied using energy coefficients which are first normal-
ized to fit a zero-mean and unity-variance distribution. They are used to train a three-
component GMM which aims to classify acoustic frames into speech/non-speech according
to acoustic energy. Speaker modelling is applied only to speech frames; non-speech frames
are discarded.

A total of five different systems were assessed and optimised in a similar fashion to the
work reported in [11]. All systems were tested with and without the application of TNorm
using an impostor cohort from the NIST’04 database. All systems have their roots in the
standard GMM:

• GMM-UBM: The classical system is the GMM-UBM approach with TNorm likeli-
hood score normalization. The UBM model is trained with an EM algorithm. Speaker
models are adapted from the UBM via the maximum a posteriori (MAP) adaptation
of the GMM mean vectors. Diagonal covariance matrices are not adapted. A top ten
component selection is used for likelihood computation. The GMM-UBM system is
used as a basis for all other systems.

• GMM supervector linear kernel (GSL): The GSL system uses an SVM classifier
which is applied to GMM supervectors. The approach is based on that described
in [7]. The GSL system is known to outperform other related approaches such as the
generalized linear discriminant sequence kernel (GLDS). Supervectors come directly
from the GMM-UBM system.

• GMM supervector linear kernel + nuisance attribute projection (GSL-
NAP): The GSL-NAP system is identical to the GSL system but is enhanced with
nuisance attribute projection to attenuate intersession (interchannel) variability [5].
Performance is dependent on the rank of the NAP matrix. All experiments reported
here correspond to NAP matrices of rank 40 and are learned on the full male and
female subsets of the NIST’04 database.

• Factor Analysis (FA): A FA-based system is also proposed. It is implemented by
following the novel latent symmetrical approach [23] to Kenny’s original work pre-
sented in [19]. This new strategy allows the results (GMM models without session
effects) to be used directly in a SVM classifier, among other advantages. All work re-
ported here relates to an intersession matrix corresponding to the 40 most significant
eigenchannels.

1Some of this work was conducted through external collaboration with Swansea University
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• GSL with FA Supervectors (GSL-FA): The GSL-FA system aims to exploit the
complementarity in the FA and GSL-NAP systems. The system, reported in [11] is
a discriminative SVM approach applied to mean supervectors evaluated in the factor
analysis framework.

MOBIO
Both different features and modelling approaches were optimised for the MOBIO database;
here we describe only the differences between the two setups. For the MOBIO database
the best performance was obtained with the standard GMM-UBM system. We note that
similar setups were reported in related work [21]. Feature extraction is applied to the
original 48kHz-sampled signal using a mel-scaled filterbank. While frame rates, sizes and
windowing are the same as for the NIST SRE setup, feature vectors are composed of 53
components including 26 MFCC coefficients which are augmented with 26 delta coeffi-
cients and the delta energy. A 256-component UBM is trained using the EM algorithm
and speaker models are adapted from the UBM via MAP adaptation. Test-normalisation
(TNorm) is applied as before using impostor segments from the MOBIO database.

2.3.2 Results

Results are presented here for the two different datasets.

NIST SRE
We ran a series of experiments designed to compare the performance of the GMM, GSL,
GSL-NAP, FA and GSL-FA systems for both male and female subsets. All systems were
optimised independently on the development set and were then applied without modifi-
cation to the evaluation set. The EERs for each system are presented in Table 2.3.2 and
show the evolution in performance with different approaches to compensate for intersession
variation. Results are reported for both development and evaluation subsets. This is be-
cause the best performing systems are judged from their performance on the development
set and not on the evaluation set. The differences in performance are thus of interest and
both are essential to make the link between EERs and DET plots presented below.

For the male subset the best performing FA system (judged from the development
set) gives an EER of 5.9% on the evaluation set whereas for the female subset the best
performing SGL-FA system gives an EER of 5.4%. These compare well to the GMM-
UBM system where the respective EERs are 9.3% and 10.7%. Upon comparison of these
results to those reported in the most recent NIST SRE campaigns we note that the tested
systems represent the state-of-the-art in current automatic speaker recognition technology
and are therefore suitable candidates for assessing the threat from spoofing and for testing
countermeasure developments.

DET plots for the evaluation set are illustrated in Figure 2. They relate to the FA
system for the male subset and the SGL-FA system for the female subset (even though
they are not necessarily the systems which give the best performance on the evaluation
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Development Evaluation
System male female male female

GMM-UBM 8.2 11.0 9.3 10.7
SGL 7.8 8.9 7.2 7.8

SGL-NAP 5.9 8.7 5.7 7.0
FA 4.7 7.8 5.9 6.9

SGL-FA 5.1 7.1 4.7 5.4

Table 1: Equal error rate (EER) scores (%) for each of the five speaker verification sys-
tems and for both male and female subsets. Results are illustrated for the development
(NIST’05) and evaluation/test (NIST’06) datasets.

set). The two profiles are relatively close except in the low false rejection region where the
false acceptance rate is higher for the female subset than for the male subset. It will be
of interest to explore further the effect of different systems on the dynamics of the DET
profile under spoofing.

MOBIO
The performance of the experiments on the MOBIO test data set are presented by DET
curves in Figure 3. We report EERs of 15.2% for male speakers and 18.4% for female
speakers. The difference between the two subsets is thus more pronounced for the MOBIO
database than for the NIST SRE datasets. We note that similar levels of performance were
obtained on the same MOBIO database in related work [21].

Results are noticeably worse than that for the NIST SRE datasets. This is only to
be expected, however, given that the NIST SRE datasets contain greater amounts of data
per trial and higher quality telephone recordings. The MOBIO database, in contrast, is
far more challenging and contains fewer data per trial and lower-quality data recorded
from a more distant microphone. Given that the MOBIO database is multi-modal it is of
interest to see if the fusion of speaker recognition scores with 2D-face recognition scores
can improve the EER in this case. This work is reported in Section 6.
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Figure 2: Detection error trade-off (DET) profiles for male and female subsets of the
evaluation/test NIST’06 dataset.
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Figure 3: Detection error trade-off (DET) profiles for male and female subsets of the
evaluation/test MOBIO dataset.
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3 Gait Biometrics

Biometric gait recognition refers to recognizing people from the way they walk. Although at
a much earlier stage of development than ICAO biometrics, such as face, iris and fingerprint,
gait recognition has recently become a topic of great interest in biometric research. The
current state-of-art is that people can be recognized by gait by silhouette or by model based
approaches [24]. This has required development of techniques to analyze video data for the
purpose of recognizing the walking subject. There have been more approaches which use the
human silhouette, and of these, approaches which use the averaged silhouette have proved
most popular [25]. The earliest approaches achieved recognition rates exceeding 90% and
this is matched by the most recent approaches on databases extending to 300 subjects.
Much of the earlier work was conducted on data acquired using controlled conditions
but later recognition was demonstrated on outdoor derived data, though with slightly
lower performance. There have been many databases for evaluating the progress in gait
recognition research such as HiD (NIST, US) [31], Soton (Southampton UK) [33], and
CASIA (CAS, China) [40] databases. The earliest databases comprised of only tens of
subjects, sometimes wearing specified clothing. More recent databases include outdoor as
well as indoor data (thus, with uncontrolled illumination) and with variation in camera
viewpoint.

Gait is a relatively new biometric, as such there has been relatively little investigation
into spoofing attacks. Some preliminary investigations point out that gait is potentially
difficult to hide or spoof as it is behavioural and encompasses the whole body. In order
to allow investigating, in later deliverables, the vulnerability of gait biometrics against
spoofing attacks, we start by providing in this section the performance of baseline gait
biometric systems when not confronted to spoofing attacks. We report the results of two
baseline systems developed at the universities of Southampton and Oulu and evaluate
them on The USOU gait database, one of the largest gait databases containing multiple
gait views.

3.1 Baseline Systems

As with face recognition, gait recognition can be performed in 2D or 3D. For compre-
hensiveness, we investigate both approaches as they may have different vulnerabilities
to spoofing. To provide baseline performance, two systems developed at the universities
of Southampton and Oulu are considered. The USOU recognition system is a 3D gait
approach and the UOULU system uses 2D data. 3D Gait recognition systems have the ad-
vantage of using multiple synchronised and calibrated cameras, making video based replay
attacks impractical. 3D approaches also address the difficulty of recognising subjects from
different viewpoints therefore requiring that any spoofing strategy is effective when viewed
from any direction. 2D approaches, using only one camera, are usually more practical as
they are simpler to implement and to deploy in real-world applications. When efficiently
combining the shape and motion cues, the performance of 2D approaches may easily reach
that of 3D counterparts.
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3.1.1 USOU Gait Recognition System

3D volumetric data is used to synthesise silhouettes from a fixed viewpoint relative to the
subject. The 3D volume is synthesised from eight sychnronised camera views using shape
from silhouette applied to the results of standard background subtraction approaches. The
resulting silhouettes are then passed to a standard gait analysis technique; in this case
the average 3D silhouette [37]. The advantage of using three-dimensional data is that
silhouettes from any arbitrary viewpoint can be synthesised, even if the viewpoint is not
directly seen by a camera.

As the subject walks through the tunnel the swinging of their legs alters the frontal
depth of the stride. Gait sequences are detected by finding minima in this depth. A
complete gait cycle consists of a left leading and right leading step. This is obtained from
three consecutive minima.

Silhouettes are taken from a side-on viewpoint normal to the plane of walking. This
view is not seen by any camera and so must be synthesised. The use of a side-on viewpoint
facilitates comparison with previous non-3D results. To generate the average silhouette
images the centre of mass is found for each frame. The average silhouette is then found by
summing the centre of mass aligned silhouettes.

The derived average silhouette is scale normalised so that it is 50 pixels high, whilst
preserving the aspect ratio. The average silhouette is treated as the feature vector and
used for verification via the Euclidean distance metric between samples.

3.1.2 UOULU Gait Recognition System

The dynamic texture based gait recognition system [17,18] of the University of Oulu uses
dynamic texture descriptors, Local Binary Patterns from Three Orthogonal Planes (LBP-
TOP), to describe human gait in a spatio-temporal way.

Firstly, a video sequence of a person’s walking can be thought as spatio-temporal vol-
ume. The volume is partitioned into sub-volumes. Using the sub-volume representation,
motion and shape are encoded on three different levels: pixel-level (single bins in the his-
togram), region-level (sub-volume histogram) and global-level (concatenated sub-volume
histograms).

Secondly, LBP-TOP description is formed by calculating the LBP features from XY,
XT and YT planes of volumes and concatenating the histograms to catch the transition
information in spatio-temporal domain. The LBP-TOP features from each sub-volume are
extracted and concatenated to encode motion and shape characteristics.

Thirdly, the length of the LBP-TOP histogram representation can be quite large de-
pending on the number of sampling points and number of sub-volumes that are used. A
better and more compact representation can be obtained by using feature selection meth-
ods. Gentle AdaBoost was used to perform feature selection and to build a strong classifier.
Instead of building a classifier that gives the identity of the person from one sample, a two-
class classifier was trained, which classifies weather two samples come from the same person
or not.

TABULARASA D3.2: page 18 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

3.2 The USOU Gait Database

The Southampton gait database [32] is one of the largest gait databases and crucially
contains multiple views and detailed camera calibration information. This enables 3D
reconstruction from the data, and as such provides valuable information that can be used
for examining potential spoofing and countermeasure techniques. Because of this it will be
used as the basis for this project.

The USOU Gait Database consists of 2705 separate recordings taken from 227 Subjects.
Each recording consists of 8 synchronised video sequences of approximately 140 frames.
Each subject was recorded walking through the tunnel at least 9 times.

The enrollment and test sequences were obtained on the same day, when the subject was
wearing the same clothing. Significantly lower performance could be expected if subjects
were to change their clothing between enrollment and validation [22]. Similarly no subjects
were carrying any objects in the recorded data which could also degrade the system’s
recognition capability.

3.3 Performance Evaluation

50% of the dataset was selected at random to be excluded so that results from this section
could be used for training purposes for later fusion experiments. Nine recordings of each
of the remaining 113 subjects were selected, one for enrollment and eight as a validation
test.

This leads to one enrollment video for each user and 8×113 test client (positive sample)
videos for each user. When producing impostor scores all the other clients are used, yielding
in 8×112×113 impostor attacks.

3.3.1 Setup

USOU Gait Recognition System:
The first stage of processing the recorded data was to convert the captured images into
colour from their original raw Bayer format, using nearest-neighbour interpolation. Back-
ground estimation and segmentation was then performed to find the subject’s silhouette;
modelling each background pixel with a single Gaussian distribution per colour channel.
The distribution for each pixel was found using previously captured video footage, where
no subject was present. The background segmentation was performed by calculating the
distance between a pixel and its corresponding background distribution, where a pixel
would be marked as background if its distance was less than a global threshold; linked to
the standard-deviation found by the background estimation. Shadow labelling and removal
was performed to reduce the number of pixels incorrectly marked as foreground. Binary
morphological post-processing was then performed to reduce noise levels and smooth the
silhouette’s shape. Finally, all regions except that with the greatest area were removed
and any holes in the remaining region were filled. Radial distortion caused by the camera
optics was removed by the use of a non-linear transformation.The reconstructed volumetric
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data was smoothed using binary erosion and dilation morphological operators to reduce
the level of noise and reconstruction artefacts. Gait cycles were detected by finding the
instances where the length of the bounding box encompassing a subject is minimal in the
direction of travel. This was found by fitting local polynomials to the length variation and
locating potential maxima values. The time for a gait cycle was determined by finding the
first maxima in the cross correlation of the length variation. This corresponds to the first
half gait cycle. The first set of length peaks that were separated by the half gait cycle
were identified. The first and third peaks were selected to identify a complete gait cycle.
Sagittal silhouettes for each frame within this cycle were calculated. The center of mass
of each of the voxels was used to align each frame on top of one another and the sagittal
silhouettes were then averaged to produce a signature for each recording. Each signature
was then compared to determine the average pixel difference between them. DET curves
were then calculated to identify how false accept and false reject validation rates change
with respect to one another, as a result of different validation thresholds.

UOULU Gait Recognition System:
The silhouette extraction process is the same as used with USOU Gait recognition system.
Gait cycles were estimated using the width of the bottom part (feet) of the silhouette. The
sagittal silhouette images were stacked to a space time volume and LBP-TOP features
(radius 3 and number of sampling points 8) were calculated using a grid defined by the
centroid of the silhouette in each frame. Histogram of the LBP-TOP features was used to
represent each gait sample. A boosted classifier was trained on the training set to get a
matching function between two histograms. Based on the matching scores of all samples in
the test data, DET curve was calculated to identify the validation performance on different
thresholds.

3.3.2 Results

USOU Gait Recognition System:
By this baseline approach, the EER is around 6%. This is an encouraging result, reflecting a
high CCR in recognition based on this data (91%). We anticipate that covariate structure
will reduce this capability and that the effect of clothes could be to reduce validation
capability and thus would be a potential avenue for a spoofing attack. Provided subjects
are recorded and validated wearing the same clothing and not carrying objects, the 3D
gait recognition approach is comparable to other widely used biometrics such as 2D-face,
provided such face images are recorded in a similarly unconstrained lighting setup as the
gait tunnel.

From a manual examination of each of the recordings that were incorrectly classified,
there are two main causes of failure: shape from silhouette distortion, and variation in
arm swing. The distortion is caused by inaccurate camera calibration, which produces
different body shapes at different points in the tunnel. Arm swing magnitude appears less
constrained than leg dynamics. Weighting to the silhouette could be used to address this
issue.
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UOULU Gait Recognition System:
With this approach, EER of about 4.5% is achieved. This result is indeed encouraging.
This performance can be explained by the use of spatio-temporal analysis that combines
both motion and shape cues. However, the result is obtained with data that is recorded
while the subjects are wearing the same clothing in all samples. We believe the performance
may decrease when more covariate conditions and spoofing attacks are included, as has
been observed in many studies on other databases such as the USF gait database [31].
This will be verified in next deliverables when the system will be confronted to spoofing
attacks.
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Figure 4: Detection error trade-off (DET) profiles for the UOULU and USOU gait recog-
nition systems on the USOU gait database.
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4 Vein and Fingerprint Biometrics

The fingerprint modality is well known and provides good accuracy. Unfortunately though,
it can be spoofed relatively easily using fake finger. On the other hand, the emerging vein
modality is very difficult to spoof but nonetheless also provides good accuracy. The main
reason for this is that this modality cannot be observed without owner complicity. The
fusion of fingerprint and vein modalities therefore has the potential to considerably improve
recognition accuracy, and robustness to spoofing attacks. Even though the fingerprint vein
modality is already reasonably mature, it is still relatively new compared to some other
modalities discussed in this document and large-scale recognition evaluations are still to
be organized. Several projects based on the finger vein biometric already exist and the
modality itself is currently at the exchange format normalization stage (ISO-IEC 19794-9
PDAM1). Even so, it is difficult to find reliable references regarding simultaneous finger
vein and fingerprint recognition. In the following we aim to establish a performance base
line in the case of real fingerprint vein data that was acquired specifically for the TABULA
RASA project. We describe the performance of the Morpho FingerVP (fingerprint vein)
system in authentication mode.

4.1 The FingerVP System

The FingerVP system will be used for all TABULA RASA work. To develop this brand new
product, Morpho implemented a multi-modal biometric recognition module. This module
combines vein imaging technology (VeinID) and fingerprint identification technology. The
FingerVP system performs simultaneous finger vein and fingerprint recognition. The two
modalities are acquired by the same scanner at the same time. A user’s vein and fingerprints
can be compared to a database containing data from up to 10 000 persons. In the work
reported here it is used only in authentication mode.

The complementary nature of the two modalities allows the system user to choose
between different security policies. The combined identification method involving the si-
multaneous recognition of blood vessel patterns under the skin and fingerprints aims to
offer levels of security and accuracy unrivaled worldwide [16]. Designed to be easily in-
tegrated in any type of identification system, the module meets requirements for a wide
range of applications, including access control, identity checks and secure payments.

4.2 The TabulaRasaVP Database

The TabulaRasaVP database was acquired using the MORPHO FingerVP scanner. The
sensor allows simultaneous acquisition of fingerprint and second phalanx finger vein pat-
terns within two sessions. The collection of samples during two sessions aims to take
into account some variability in the acquisition process: finger pose, ambient temperature,
previous activity of the persons from whom samples are acquired.

The database is composed of references (templates for enrollment) and searches (tem-
plates for queries). Both contain vein and fingerprint data. References are acquired only
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during session 1. Search data are captured during both session 1 and session 2. The elapsed
time between session 1 and session 2 is approximately one month. Session 2 contains data
from a subset of clients in session 1. Time between data collection for sessions 1 and 2 is
approximately one month. During the first session however, two samples are acquired in
order to confirm effective enrollment and verification within a short time span. During the
acquisition sessions 6 finger images are acquired for each person. They include images of
the forefinger, the middle finger and the ring finger of both hands. The little fingers were
not acquired because they are very unlikely to be used in a practical scenario situation.
Both genders are represented among the data.

The database is composed of a set of two images for each finger acquired: one fin-
gerprint image and one finger vein image. In total there are 204 reference samples (102
fingers) and 288 search samples (102 fingers for session 1 and 42 fingers for session 2)
which were collected from 17 persons. There are no public databases available for finger
vein and fingerprints biometrics. Morpho owns some internal databases but for confiden-
tiality reasons it is not possible to disclose any information about them. As a consequence,
the TabulaRasaVP database has been collected especially for the TABULA RASA project.
As described in deliverable D2.2, the initial objective was to collect data from 30 persons.
But this data collection is strongly based on the voluntary participation of Morpho em-
ployees. Thus, it is highly dependent to the participation rate during data collection and
unfortunately we couldn’t reach the 30 subjects objective. This database is used only for
evaluation. The development and training of the system were performed with Morpho’s
own additional, independent databases.

4.3 Performance Evaluation

The evaluation has been performed using the database and system described above.

4.3.1 Setup

Biometric samples are analyzed by a coding algorithm and a template is created for each
modality from the features extracted. Similarly to fingerprints, for which minutiae are used
to create templates (usually positions and orientations), vein templates are constructed
using a number of singular points in the vein network. Extracted vector patterns are used
to identify the coordinates of branch points and to generate a unique vein map signature
based on the shape and location of the vein structure. Then, a matching is performed for
the two biometrics by comparing the templates in the search database to each template in
the references database. The template matching algorithm provides a consolidated score
that can be compared to a given threshold in order to obtain a decision.

Note that the FingerVP system only outputs the fusion result (score) and no access to
individual scores of each modality can be provided. The FingerVP system is a commercial
product. Thus, for confidentiality concerns, it is not possible to disclose any detailed
information about the algorithms and their precise function, in particular regarding image
processing/feature extraction and templates computation.
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4.3.2 Results

Figure 5 presents verification results for the Morpho FingerVP system evaluated on 98
genuine and 9702 impostors tests corresponding to session 1, and 40 genuine and 4018
impostors tests corresponding to session 2, where data were acquired one month after the
enrollment session.

As we see in Figure 5, the FingerVP system delivers good performances for both session
1 and session 2, in fact the system gives perfect accuracy in the case of session 2. Concerning
session 1, the first false rejections appear at around 0.01% FAR. However, it must be
highlighted that FAR values lower than 0.01% are not statistically significant because of
the small number of impostor tests (equal to 9702). The EER is 0.01% for session 1 whereas
for session 2 the EER is 0%. Naturally these results do not mean that the system is error-
free but rather that the number of tests is not sufficient to provide a reliable estimate of
the EER.

We accept that the size of the test database is quite small. In consequence, the reported
performance does not strictly reflect the levels of performance that can be expected in
operational scenarios (i.e. deployment in the field). Even if these results therefore cannot
be generalized, they represent a useful baseline to further evaluate the degradation when
the system is subjected to spoofing attacks.
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Figure 5: Detection error trade-off (DET) profile for the vein and fingerprint biometric.
For session 2 the EER is 0% and thus the profile is not visible.
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5 Electro-physiology Biometrics

Electroencephalogram (EEG) and electrocardiogram (ECG) biometric modalities [15, 27,
29] are quite new compared to more traditional biometric systems, such as fingerprint or
voice recognition. Electro-physiological biometric systems have advantages compared to
other systems. If the user is wearing an EEG/ECG recording system, such as the ENOBIO
wireless and wearable amplifier developed by Starlab Barcelona SL, electro-physiological
biometrics can be performed in a continuous manner. Moreover, more information besides
the ‘identity’ can be extracted from EEG and ECG signals such as mental alertness and
emotions for instance. The main challenge regarding this biometric modality is that the
sensor should be as small as possible and comfortable to wear, so the user acceptance to
use such a system increases.

It is important to know that, although EEG and ECG biometrics are newer biometric
modalities compared to others, Starlab have been researching on this for the last 6 years and
has implemented a ready to use system called Starfast. This system has been tested in real
life scenarios in several pilots. The work of Starlab has focused on both Software (machine
learning and methodologies to extract the best features per subject) and Hardware (mainly
the ENOBIO sensor has been designed to be wireless, wearable and unobtrusive, see [30]).

Another important point is that EEG and ECG should be considered as 2 different
biometric modalities. They are both categorized as electro-physiological biometrics, and
both signals can be recorded at the same time with the same ENOBIO device. But in any
case both signals are independent and the Starfast system can work only with EEG, only
with ECG or with both. That is why the results we present here are mono-modal, whereas
multi-modal results with fused EEG and ECG modalities are presented in Section 9.

5.1 The StarFast System

The Starfast system combines both EEG and ECG biometric modalities, recorded by the
ENOBIO device at the same time, allowing to fuse the results of each individual modality
and providing a more reliable biometric score. Of course, the Starfast system can work
using only one of the two modalities. Regarding the EEG biometric system, several features
are extracted (26) and, during the enrollment, the best 5 features for each individual are
selected. Finally a fusion among those best features is performed. Regarding the ECG
modality, the methodology is similar, but in this case only the best feature out of the 4
extracted ones is the selected one during the enrollment stage. This original methodology
is explained in more detail in Section 5.3.1 below and in [29].

5.2 The Starlab Databases

Starlab has gathered 2 different databases: Eyes-closed DB and Task-Performing DB. In
both cases EEG and ECG data were collected using the ENOBIO sensor, which consists
of 4 active electrodes: 2 in the forehead (Fp1 and Fp2 locations) for EEG, 1 in the left
wrist for ECG and finally the last one in the right earlobe as reference.
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The fist dataset (Eyes-closed), was recorded in a controlled environment where the
subjects were asked to sit, relax and close their eyes. The enrollment consisted of four
3-minutes takes. Then the authentication tests are about 1 minute long, again asking the
subjects to relax and close their eyes. We also recorded three 3-minute takes to a set of 32
subjects. This database, that we call external database, is used as reference subjects in the
classification stage. The other enrolled subjects are the ones used to test the system. We
have 8 enrolled subjects with several authentication takes for each one of them. We have
a total of 50 legal transactions, in which a subject claim to be himself and a total of 366
impostor transactions, in which a subject claims to be another subject from the enrolled
set of subjects.

For the second dataset (Task-performing), the subjects were recorded keeping their
eyes open, sitting on a chair, and they were free to perform a number of office activities
(such as answering the phone, keystroke, drinking water, using the mouse...) during the
authentication phase. For the enrollment, in this case, the subjects were asked to sit
keeping their eyes open, but without performing any tasks. 29 subjects were enrolled in
both the EEG and the ECG module and then they where authenticated while performing
the different tasks defined above. From this set of subjects we successfully could evaluate
80 legal transaction and 2188 impostor transactions.

As a note, both the legal and the impostor transactions are needed in order to compute
the Equal Error Rate (EER) and to extract the DET curves in Section 5.3.2.

5.3 Performance Evaluation

The evaluation has been done using both databases briefly described above: the Eyes-
closed DB and the Task-performing DB. In the later, we have to take into account that
we will have more movement and ocular artifacts than in the Eyes-closed DB, and thus
the biometric performance will be affected. Within the scope of TABULA RASA it will
be of interest later on to determine whether these differences impact on spoofing and
countermeasures performance.

5.3.1 Setup

The Starfast matching algorithm uses an original methodology we call ’personal classifier’.
For instance in the case of EEG, we record 4 enrollment takes of 3 minutes each. We cut
each one of the takes in 4 second epochs, and out of each epoch we extract 5 different
features. For each channel we compute the Auto-regression Coefficients and the Fourier
Transform and for each pair of channel we compute the Mutual Information, Correlation
and Coherence. So we end up with 7 different features. We use a Linear Discriminant
Analysis with 4 different Discriminant Functions (see [10]). By combining classifiers and
features we have 7*4=28 possible combination of features/classifiers.

Applying a leave-one-out approach to our 4 enrollment takes we compute the 5 best
combination of feature/classifier (out of 28) for each subject. This information is stored
in the template of each subject, and thus, in the authentication stage, the corresponding
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Database Modality EER (%)

Eyes-closed DB EEG 20
Eyes-closed DB ECG 4
Task-performing DB EEG 27
Task-performing DB ECG 14

Table 2: Equal error rate (EER) scores (%) for EEG and ECG modalities and for both
eyes-closed and task-performing databases.

template is loaded and the classification is performed using the 5 best combination of
feature/classifier of the claimed subject.

Regarding the ECG modality, the approach is quite similar. But in this case, we only
use one feature related with the shape of the ECG waveform but again we use 4 different
discriminant functions. In this case we store in the template the best discriminant function
for each subject.

5.3.2 Results

As we have 2 different databases recorded in different conditions, we decided to evaluate
both separately. We should take into account that the recording conditions are different in
both cases, that is in the Eyes-closed set the subjects are relaxed, sitting down and keeping
their eyes closed, while in Task-performing set the subjects are free to move while sitting
down in a office scenario. In the second case there are more artifacts that in the former
case, and thus the performance is expected to drop.

A summary of the results follows in terms of the Equal Error Rate (EER). The EER is
reached when the False Rejection Rate (FRR) equals the False Acceptance Rate (FAR).

As expected, we see that the performance decreases in the Task-performing data set.
This is because in the Task-performing dataset, the subjects keep their eyes open and thus
eye movement and blink artifacts are present in the EEG signal. As the subjects in this
dataset are also moving (performing normal office activities) there are also movement arti-
facts in the ECG channel. The presence of this artifacts cause this decrease of performance.
We can also see that the ECG modality is more robust that the EEG one. Finally, it is
interesting to note that in the case of the Eyes-closed database and the ECG modality, we
can keep a FRR equal to 4% while decreasing the FAR to 2,5% as we can see in Figure 6.
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Figure 6: Detection error trade-off (DET) profile for ECG and EEG modalities and the
eyes-closed database.
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Figure 7: Detection error trade-off (DET) profile for ECG and EEG modalities and the
task-performing database.
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6 Multi-Modal Biometrics: 2D-Face and Voice

In this section we show the performance of the 2D-face and voice multi-modal biometric.
The aim is not strictly to demonstrate the gain in performance over the individual modali-
ties (though it is certainly expected) but to establish baseline multi-modal performance for
subsequent work in spoofing and countermeasures. Multi-modal biometrics are considered
within the context of TABULA RASA since they provide an inherent level of protection
against spoofing; the presence of more than one modality might require all biometric traits
to be spoofed simultaneously in order to fool the system.

The performance of multi-modal fusion depends fundamentally on that of individual
systems but also requires that the set of biometric traits are decorrelated in order to
exploit their complementarity. While correlated features often arise in pattern recognition
systems based on multiple classifiers, many publications have shown that, statistically,
multiple biometric traits are mostly decorrelated and thus there is significant potential for
multi-modal biometric fusion.

In the following we describe the two basic fusion systems used for 2D-face and voice
multi-modal biometrics. Both approaches, as is the case with all multi-modal work in
TABULA RASA, involve so-called ‘score-level fusion’, i.e. scores provided by the individual
systems are combined through an additional function, and a single, unique score is derived.

6.1 The Systems

In this Section, we first briefly summarise the individual systems and fusion approaches.
Fusion produces a multi-modal score which is used to compute the performance of the
multi-modal biometric. Only the 2D-face recognition system is summarised here; the voice
recognition system is presented in Section 2.1.

6.1.1 2D-face recognition system

The face authentication system is the baseline system described in Section 2.2 of D2.2.
This system consists of dividing the face into overlapping blocks (or parts) and a GMM
is then trained by considering each block (part) to be a separate observation of the same
underlying distribution (a face). Two models are trained, one is a world model (Ωmodel)
that describes the distribution of all faces and the second is a client model (Ωi

client) which
describes the distribution for a particular client’s face. To verify if an observation belongs
to a client, or not, it is scored against both the client (Ωi

client) and world (Ωmodel) model.
The two models, Ωi

client and Ωworld, produce a log-likelihood score which is then combined
using the log-likelihood ratio (LLR):

h(x) = ln(p(x | Ωi
client))− ln(p(x | Ωworld)), (1)

to produce a single score.
This score is used to assign the observation to the world class of faces (not the client)

or the client class of faces (it is the client) and consequently a threshold τ has to be applied
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to the score h(x) to declare (verify) that x matches to the ith client model Ωi
client, i.e if

h(x) ≥ τ . More details for this system can be found in Section 2.2 of D2.2.

6.1.2 The MITSfusion system

The MITSfusion system, which has been used in the evaluation of both 2Dface-voice and
EEG-ECG fusion, implements a so-called iterative fusion operator tree. Being the system
applied herein to bi-modal data, the tree presents just a node. An early version of the
system is presented in [34].

The unique node of the tree is first characterized by the used fusion operator. In
its current implementation the methodology allows the selection of one fusion operator
among the following: power mean, weighted sum, order weighted averaging (OWA), Yager
S-norm, uni-norm based on Yager norms and arithmetic mean, Choquet fuzzy integral,
and Sugeno fuzzy integral. The selected fusion operator is denoted as FO0. Second, the
node is characterized by the set of fusion operator parameters, which is denoted herein as
p0. The parameter set is selected through an extensive search in the parameter space of
the corresponding fusion operator.

The final feature of the MITSfusion system indicates if the parameter set is either
personalized for each of the subjects of the database or if a general parameter set is used.
In the first case we assign a parameter set to each of the subjects, so that p0 becomes a
superset defined as:

p0 = {p01, . . . ,p0L}, (2)

where L is the number of subjects. In the second case there is a unique parameter set
p0 for all subjects. The search of all the optimal operators, parameters, and the usage or
not of personalized fusion operators is driven by the maximization of the Area Under the
Curve (AUC).

As mentioned in the former paragraphs we have evaluated the following fusion opera-
tors FO0:

Power or Generalized Mean. The mean is one of the most well-know fusion
operators. Beside the most used arithmetic mean, there are other mean operators like the
geometric mean or the harmonic mean. A parametric generalization of all these expressions
has been proposed [4], which is known as the power or generalized mean,

z =
( 1

n

n∑
i=1

xm
i

)1/m

, (3)

whose value depends on the real-valued parameter m, e.g. for m = 1 results in the arith-
metic mean and for m = 2 is denoted as the quadratic mean.

Yager S-norm. T- and S-norms are aggregation operators related with the concept
of statistical metrical spaces. T- and S-norms were adopted in fuzzy systems for operating
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with fuzzy membership functions [20]. The Yager S-norm has been selected herein after a
preliminary study taking the diversity of operators to be analyzed into consideration. This
S-norm presents the following expression:

z = min{1, (xp
1 + xp

2)
1/p}, (4)

where p ∈ [0,∞].

Weighted Sum. The weighted sum is an operator used in different application do-
mains, e.g. descriptive statistics, neural networks. It is a further generalization of the
arithmetic mean. In this case the generalization is done by weighting the input values, i.e.

z =
n∑

i=1

wixi. (5)

Usually the sum of the weights is normalized to sum to 1, which ensures that we are work-
ing in the unit hypercube.

Uninorm Based On Yager Norms. Uni-norms were introduced in [39]. Uni-
norms generalize T- and S-norms by introducing an arbitrary neutral element denoted as
e defined in [0, 1] such that U(x, e) = x. One can see uni-norms and absorbing-norms
as two different ways of combining T- and S-norms in the unit hypercube. Thus in the
uni-norms the subspace [0, e] × [0, e] is occupied by a T-norm, whereas [e, 1] × [e, 1] by a
S-norm. In the remaining two sub-spaces there is a compensatory operator, although this
is not a condition of the operator (i.e. the only condition is that the resulting operator
must be commutative and associative). Moreover these two quadrants have to be filled by
compromise operators like means or min/max itself. We have selected a uni-norm based
on the Yager T- and S-norms, and on the arithmetic mean in the U-quadrant. This can
be expressed as:

z =


max{0, 1− ((1− x1)

p + (1− x2)
p)1/p} : x1, x2 ∈ [0, e]× [0, e, ]

min{1, (xp
1 + xp

2)
1/p} : x1, x2 ∈ [e, 1]× [e, 1]

x1+x2

2
: otherwise

, (6)

where (e, p) are the parameters of this uni-norm.

Ordered Weighted Averaging. A generalization of the average, where the weighting
is established after sorting the input data, was proposed in [38] and denoted as Ordered
Weighted Averaging (OWA). The OWA presents the following expression:

z =
n∑

i=1

w(i)x(i), (7)

where w(i) are the weights of the operator. The bracketed subindices state for a sorting
operation that is applied on xi before aggregating their values, e.g. (1) state for the larger
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xi, (n) for the lowest one.

Sugeno Fuzzy Integral. The concept of fuzzy integral was first proposed in [35] as a
means of fusing data simulating subjective multi-criteria evaluation undertaken by humans.
The operator present some similarities to the OWA described in the former section, since
the applied weighting depends on the particular canonical subspace of the input variables
in the unit hypercube, i.e. on the result of a sorting operation. In contrast to the OWA, the
weighting set in the fuzzy integral is not unique, but it changes in each canonical region.

The fuzzy integral uses as fusion operators a combination of T- and S-norms [20]. There
are different types of fuzzy integrals, which are defined by the used T- and S-norm. The
Sugeno fuzzy integral [35] combines the minimum and maximum operators as expressed
for the case of n operands operands in:

z =
n∨

i=1

µ(A(i)) ∧ x(i), (8)

where ∨ states for the maximum operator, ∧, for the minimum, and µ(), for the coeffi-
cients of the so-called fuzzy measures, i.e. the weighting coefficients in the fuzzy integral.
There are 2n−1 coefficients, one for each subset that can be established on the n infor-
mation sources to be fused. As formerly mentioned, the bracketed indices represent the
result of a sorting operation. Hence only n coefficients of the fuzzy measure are selected
for the aggregation. These coefficients correspond to the subsets: A(1) = {x(1)}, A(2) =
{x(1), x(2)}, . . . , A(n) = {x(1), x(2), . . . , x(n)}. Therefore the actual weight set for each aggre-
gation depends on the canonical region defined by the input variables.

Choquet Fuzzy Integral. In case of the Choquet fuzzy integral [14] the maximum
and the minimum are respectively substituted by the sum and the product:

z =
n∑

i=1

x(i) · [µ(A(i))− µ(A(i−1))], (9)

where µ(A(0)) = µ(∅) = 0. As it can be proofed, the Choquet fuzzy integral generalises
the weighted sum and the OWA operators.

6.1.3 UNICA fusion

UNICA’s fusion system again operates at the score level by applying different fixed and
trained fusion rules. The prime rules are referred to as ‘fixed’ since they are non-parametric
in contrast to the trained rules.

The fixed fusion rules are given by:

Simple Average Rule (SAR):

ssar = svoice + sface (10)
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Simple Product Rule (SPR):

sspr = svoice · sface (11)

Bayes Rule (BayesR):

sbayes =
svoice · sface

svoice · sface + (1− svoice) · (1− sface)
(12)

Minimum Rule (MinR):

smin = min{svoice, sface} (13)

Maximum Rule (MaxR):

smax = max{svoice, sface} (14)

where svoice and sface are scores for the 2D-face and voice modalities, respectively.

The trained fusion rules are given by:

Likelihood Ratio Rule (LRR):

slrr =
p(svoice|genuineusers) · p(sface|genuineusers)

p(svoice|impostors) · p(sface|impostors)
(15)

where e.g. p(svoice|impostors) is the score of probability distribution for impostors, esti-
mated on the training dataset, calculated on svoice.

Weighted Average Rule (WAR):

swar = wvoice · svoice + wface · sface (16)

Weighted Product Rule (WPR):

swpr = swvoice
voice · swface

face (17)

Logistic Based Fusion (LBF):

slbf =
1

e−(wvoice·svoice+wface·sface)
(18)

where wvoice, wface ∈ [0, 1] and wvoice + wface = 1 are optimised through training.
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6.2 The MOBIO Database

The challenging MOBIO database is used to evaluate the systems. This publicly available
bi-modal (audio and video) database was captured at six different sites across five different
countries. It was captured over a one-and-a-half year period and consists of 150 participants
with a female to male ratio of approximately 1:2 (99 males and 51 females). The database
was recorded using two mobile devices: a mobile phone and a laptop computer (the laptop
was only used to capture part of the first session).

Standard MOBIO protocols are used to evaluate both multi-modal systems. This pro-
tocol divides the database into three distinct sets: one for training, one for development
and one for testing. The splitting was done so that each set is composed of the totality
of the recording from two sites. This means that there is no information regarding the
individuals or the conditions for a site between sets. We note that only scores from the
development set were used for optimisation. The third dataset, normally used for the
learning of background models etc. was not used in any way for multi-modal work. More
details about this database can be found in Section 2.1.2 of D2.2.

6.3 Performance Evaluation

For both systems under evaluation here, the MOBIO development dataset was used to
optimise all algorithms whereas all DET curves reported below correspond to the test
dataset. EERs are, however, given for both development and test sets where appropriate.

6.3.1 Setup

MITS Fusion:
The MITSfusion system was used with just one node, where features are determined in
the training phase. Hence we have to assess:

• Employed fusion operator FO0;

• Usage of personalized operators vs. a general one;

• Optimal parameter set p0 (or superset in case of personalized ones).

We applied the following procedure:

1. We apply all available fusion operators as FO0.

2. For each fusion operator we look for the parameter set p0 and superset {p01, . . . ,p0L}
that maximize the AUC.

3. We compute the average AUC over subjects when:

(a) Applying a unique parameter set p0, which we denote as AUCg.
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Dataset Female Male

2D-Face (Dev) 10.0% 10.8%
2D-Face (Test) 19.8% 12.0%
Voice (Dev) 21.5% 16.6%
Voice (Test) 18.4% 15.9%

Table 3: Baseline equal error rates (EERs) (%) for the development and evaluation/test
subsets of the MOBIO database for both 2D-face and voice modalities.

(b) Applying a parameter superset {p01, . . . ,p0L}, which we denote as AUCp.

4. We select the fusion operator with maximal AUCp.

5. If the difference between AUCp and AUCg is less than 3%, we personalize the op-
erator, i.e. FO0 is parameterized with p0. If not, we parameterized it with one
parameter for each subject, i.e. {p01, . . . ,p0L}.

The development dataset was used to optimise the MITSfusion system (see procedure
described above). Once the fusion operator, optimal parameters and personalization set-
ting are determined, they are applied to the test dataset. The setup is the same for both
male and female datasets.

UNICA Fusion:
All scores are first normalized according to the Max-Min rule. Fixed fusion rules are then
applied directly to the test dataset whereas trained fusion rules are first trained on the
MOBIO development dataset. Likelihood Ratio Rule training consists of estimating the
probability of genuine and impostor classes where scores are normalized on a logarithmic
scale. Other trained rules are optimised by setting the weights to minimize the error
prediction function with 1000 epochs. This function evaluates distances from the impostor
and genuine scores to 0 and 1. Finally, for all experiments, scores are further normalized.

6.3.2 Results

While it is not strictly the objective of this work to compare mono-modal and multi-modal
biometric performance, the EERs for the 2D-face and voice modalities are presented in
Table 3 for both development and test subsets of the MOBIO database and for both the
female and male subsets. We present below multi-modal performance according to the two
different fusion systems.

MITS Fusion:
As a result of the application of the assessment procedure on the development dataset we
selected the weighted sum as fusion operator. The operator is not personalized and the

TABULARASA D3.2: page 37 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

Dataset Gender EER (%)

Development female 5.5
Development male 6.0

Test female 10.2
Test male 6.0

Table 4: Equal error rate (EER) scores (%) for fused 2D-face and voice modalities of the
MOBIO test dataset using MITS Fusion.

optimised parameter set corresponds to 0.9 weighting factor for the 2D-face modality and
0.1 for the voice modality.

A summary of the results in terms of the EER is given in Table 4. Figure 8 illustrates
the corresponding DET curves for the test dataset and both gender subsets. Upon com-
parison with baseline performance in Table 3 we note greatly improved performance for
the multi-modal biometric.

UNICA Fusion:
DET curves for the UNICA fusion systems and female datasets are illustrated in Figures 9
and 10. Corresponding EERs are illustrated in Tables 5 and 6. All DET plots and EERs
relate to the MOBIO test set. Figure 9 and Table 5 report results for fixed rules. We note
an improvement with respect to the best mono-modal biometric. This is particularly true
for the BayesR approach. The improvement is notable especially given the difference in
performance among the mono-modal biometrics.

Figure 10 and Table 6 report results for trained rules. Even in this case, we see that
EERs are lower than the best baseline biometric, but the performance is lower than that
of fixed fusion rules. This is maybe due to the performance unbalance among baseline
biometrics, but also due to the fact that training patterns (from the MOBIO development
set) are not representative of testing patterns, as can be noticed by observing the difference
in performance for development and test subsets reported in Table 3. This can be seen
from the performance of the face biometric in particular. Another interesting result is the
one related to the LLR rule. This rule is claimed to be the ‘optimal’ one, according to
hypothesis verification test theory. However, it can be noticed that this is not true due, in
our opinion, to the presence of poorly representative patterns in the training set.

DET curves for the male datasets are illustrated in Figures 11 and 12. Corresponding
EERs are included in Tables 7 and 8. All DET plots and EERs again refer to the MOBIO
test set. Figure 11 and Table 7 report results of fixed rules. All rules perform better
than baseline systems. In particular, BayesR gives the best results. Even in this case, a
performance imbalance is noticeable among the baseline biometrics. However, it is not so
high as in the case of the female subset.

Figure 10 and Table 6 report results of trained rules. EERs are lower than that of the
best baseline matcher and the performance is not so different with respect to fixed fusion
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Figure 8: Detection error trade-off (DET) profile for fused 2D-face and voice modalities of
the MOBIO test dataset using MITS Fusion.
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rules. We notice in this case that LLR performs better than in the case of the female
dataset; this may be due to the similar levels of performance for the two mono-modal
biometrics. This can be also noticed by observing the performance of WAR, which is the
best trained rule among those investigated.

These results show that almost all fusion rules lead to improved classification perfor-
mance. Only maximum and minimum rules show no improvements in EER but, even in
these cases DET curves show significant improvements in FARzero and FRRzero. We can
hypothesise that trained rules could perform better by using a different estimation error
function but, in general, they strongly depend on training samples, which must be rep-
resentative of test samples. Results with an LLR rule, which is commonly considered a
reference decision rule even for baseline systems (see for example the 2D-face system used
here), exhibit slightly worse performance than SAR and BayesR.
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Dataset (Female) EER

SAR 11.8%
SPR 11.8%
BayesR 11.8%
MinR 17.1%
MaxR 14.3%

Table 5: Equal error rate (EER) scores (%) for fused 2D-face and voice modalities using
fixed UNICA fusion rules and the female subset of the MOBIO test dataset.
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Figure 9: Detection error trade-off (DET) profile for fused 2D-face and voice modalities
using fixed UNICA fusion rules and the female subset of the MOBIO test dataset.
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Dataset (Female) EER

WAR 12.0%
WPR 12.8%
LRR 14.3%
LBF 12.4%

Table 6: Equal error rate (EER) scores (%) for fused 2D-face and voice modalities using
trained UNICA fusion rules and the female subset of the MOBIO test dataset.
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Figure 10: Detection error trade-off (DET) profile for fused 2D-face and voice modalities
using trained UNICA fusion rules and the female subset of the MOBIO test dataset.

Hence, fixed fusion rules show the best performance. Simple average and ‘Bayes’ rules
are the most effective in EER reduction. Among trained rules, LLR maintains good per-
formance, similar to that of the strongest fixed rules. We noticed that, for both male
and female data subsets, more that 5% EER improvement over the best baseline systems
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are obtained. This confirms what has been concluded in several publications, i.e. that
score-level fusion is able to recover errors caused by the lack in performance of individual
biometric verification systems.
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Dataset (Male) EER

Voice 15.9%
Face 12.0%
SAR 7.3%
SPR 7.9%
BayesR 7.3%
MinR 11.9%
MaxR 12.8%

Table 7: Equal error rate (EER) scores (%) for fused 2D-face and voice modalities using
fixed UNICA fusion rules and the female subset of the MOBIO test dataset.
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Figure 11: Detection error trade-off (DET) profile for fused 2D-face and voice modalities
using fixed UNICA fusion rules and the male subset of the MOBIO test dataset.
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Dataset (Male) EER

WAR 7.9%
WPR 8.4%
LRR 8.0%
LBF 11.0%

Table 8: Equal error rate (EER) scores (%) for fused 2D-face and voice modalities using
trained UNICA fusion rules and the male subset of the MOBIO test dataset.
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Figure 12: Detection error trade-off (DET) profile for fused 2D-face and voice modalities
using trained UNICA fusion rules and the male subset of the MOBIO test dataset.
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7 Multi-Modal Biometrics: 2D-Face and Fingerprint

In this section we show the performance of multi-modal fusion systems when combining fin-
gerprint and face modalities. Fusion is once again performed at the score-level by applying
different fixed and trained fusion rules.

7.1 The Systems

The 2D-face recognition system is the same as that summarised in Section 6.1.1. A baseline
evaluation of the fingerprint recognition system is presented in the companion deliverables
D3.1; a summary of the recognition system is presented below. The fusion system is exactly
the same as the UNICA fusion system described in Section 6.1.3 of this document except
where svoice and wvoice are replaced by scores and weights corresponding to the fingerprint
modality.

7.1.1 Fingerprint recognition system

The minutiae-based NIST Fingerprint Image Software 2 (NFIS2) [12] is a minutiae-based
fingerprint processing and recognition system formed from independent software, which
constitutes a de facto standard reference system used in many fingerprint-related research
contributions.

From the different software modules that are comprised within NFIS2, the most rel-
evant for evaluation purposes are: MINDTCT for minutiae extraction, and BOZORTH3
for fingerprint matching.

MINDTCT
The MINDTCT system takes a fingerprint image and locates all minutiae in the image,
assigning to each minutia point its location, orientation, type, and quality. Together with
the minutiae set, a quality map of the input image is also generated using characteristics
such as low contrast, incoherent ridge flow, and high curvature. Additionally MINDTCT
computes ridge counts between a minutia point and each of its nearest neighbors.

BOZORTH3
The BOZORTH3 matching algorithm computes a match score between the minutiae from
two fingerprints to help determine if they are from the same finger. It uses only the
location and orientation of the minutiae points to match the fingerprints, and it is rotation
and translation invariant.

7.2 The BioSecure Database

The evaluation was performed on 8 datasets of the BioSecure database. It is a non-
chimerical dataset, where fingerprints and faces are captured from the same subjects,
but, depending on each biometric (face/fingerprint), according to different environmental
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EER (Equal Error Rate)
Dataset dev test

ca0 0.7% 1.4%
ca0 PCA 21.5% 18.6%
caf 1.4% 0.7%
caf PCA 18.6% 19.3%
wc 2.1% 1.4%
wc PCA 27.9% 24.2%

op 0.8% 0.0%
th 0.7% 0.7%

Table 9: Baseline equal error rates (EERs) (%) for each of the 8 different subsets of the
BioSecure database for both development and evaluation/test datasets.

conditions/type of sensor. Accordingly, there are 6 2D-face datasets and 2 fingerprint
datasets giving a total of 12 face-fingerprint fusion conditions. The face datasets are
denoted ca0, caf and wc, and are used with or without principal component analysis
(PCA), whereas the fingerprint datasets are denoted op and th. Each dataset is divided
into development and test subsets which are used to train, validate and test the trained
rules, though fixed rules need only the test dataset. Each development and test dataset
consists of 9800 samples: 9660 impostors and 140 genuine users. Table 9 shows the baseline
mono-modal EER for each dataset.

7.3 Performance Evaluation

We investigated the same score-level fusion rules outlined in Section 6, where the outputs
of individual recognition systems are combined through a ‘fusion rule’.

7.3.1 Setup

The experimental setup is exactly as described in Section 6.3.1 for UNICA fusion except
that svoice and wvoice are replaced by scores and weights corresponding to the fingerprint
modality.

7.3.2 Results

Significant performance improvements are achieved for the SAR, SPR and BayesR fixed
fusion rules and for the WAR, WPR and LBF trained fusion rules. Other rules did not
lead to better performance or results were not consistent in all experiments. Tables of
corresponding EERs for each fusion rule are presented below with DET curves for the best
and worst fusion results, in order to give an indication of the range in performance. In
Tables 10 and 11 the first column indicates which datasets were used for fusion and the
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subsequent columns show the EER for each fusion rule. Figures 13 and 14 show DET
curves for fixed and trained fusion rules for the ca0 face dataset and the op fingerprint
dataset. In this case genuine and impostors classes are so well separated that they do
not figure in the plot. On the other hand, we show the worst DET curves in Figures 15
and 16. Here plots relate to the fusion of wc PCA (2D-face) and th (fingerprint) BioSecure
datasets.

The main problem with the BioSecure datasets is the high level of imbalance between
fingerprint and 2D-face PCA-based recognition algorithms; additionally, fingerprint recog-
nition performance is very good. Consequently, the relative reduction in EER is very
low: from 0.7% to 0.0% when fusing fingerprint and face modalities. On the other hand,
results can be interpreted differently: even with very good fingerprint recognition perfor-
mance, fusion still results in an EER of 0% (see for example results related to fusion in
Tables 10-11).

EER of fixed fusion rules
face & finger SAR SPR MinR MaxR BayesR

ca0 & op 0.0% 0.0% 0.0% 0.0% 0.00%
ca0 PCA & op 0.7% 0.7% 0.7% 8.6% 0.7%
ca0 & th 0.0% 0.0% 0.7% 0.0% 0.0%
ca0 PCA & th 1.4% 0.7% 1.4% 9.2% 0.7%
caf & op 0.0% 0.0% 0.0% 0.0% 0.0%
caf PCA & op 0.6% 0.1% 0.0% 6.5% 0.0%
caf & th 0.0% 0.0% 0.7% 0.0% 0.0%
caf PCA & th 0.7% 0.7% 0.7% 6.6% 0.7%
wc & op 0.0% 0.0% 0.0% 0.0% 0.0%
wc PCA & op 0.6% 0.0% 0.0% 13.7% 0.0%
wc & th 0.0% 0.0% 0.7% 0.0% 0.0%
wc PCA & th 2.1% 1.4% 0.7% 14.3% 1.4%

Table 10: Baseline equal error rates (EERs) (%) for fixed fusion of 2D-face and fingerprint
modalities.
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Figure 13: Detection error trade-off (DET) profiles for best fixed fusion rules and ca0 2D-
face and op fingerprint subsets. Only two profiles are visible due to the very low degree of
overlap between target and impostor score distributions in other cases which leads to 0%
EER.
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Figure 14: Detection error trade-off (DET) profiles for best trained fusion rules and ca0
2D-face and op fingerprint subsets. Only one profile is visible due to the very low degree
of overlap between target and impostor score distributions in other cases which leads to
0% EER.
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Figure 15: Detection error trade-off (DET) profiles for worst fixed fusion rules and wc PCA
face and th fingerprint subsets.

TABULARASA D3.2: page 51 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

0
.0

0
1

0
.0

0
2

0
.0

0
5

0
.0

1
0
.0

2

0
.0

5
0
.1

0
.2

0
.5 1 2 5

1
0

2
0

4
0

6
0

8
0

9
0

9
5

9
8

9
9

9
9
.5

9
9
.8

9
9
.9

9
9
.9

5

9
9
.9

8
9
9
.9

9
9
9
.9

9
5

9
9
.9

9
8

False Rejection Rate [in %]

0.001
0.002
0.005

0.01
0.02

0.05
0.1
0.2

0.5

1

2

5

10

20

40

60

80

90

95

98

99

99.5

99.8
99.9

99.95

99.98
99.99

99.995
99.998

Fa
ls

e
 A

cc
e
p
ta

n
ce

 R
a
te

 [
in

 %
]

DET: Trained Rules - BioSecure (face_wc_PCA&fing_th)

WAR
WPR
LRR
LBF

Figure 16: Detection error trade-off (DET) profiles for worst trained fusion rules and
wc PCA face and th fingerprint subsets.
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EER of trained fusion rules
face & finger WAR WPR LRR LBF
ca0 & op 0.0% 0.0% 0.1% 0.0%
ca0 PCA & op 0.7% 0.7% 2.8% 0.7%
ca0 & th 0.0% 0.0% 0.7% 0.0%
ca0 PCA & th 1.4% 0.1% 2.8% 1.4%
caf & op 0.0% 0.0% 0.1% 0.0%
caf PCA & op 0.7% 0.0% 1.4% 0.7%
caf & th 0.0% 0.0% 0.7% 0.0%
caf PCA & th 0.7% 0.7% 2.7% 0.7%
wc & op 0.0% 0.0% 0.0% 0.0%
wc PCA & op 0.7% 0.0% 1.9% 0.7%
wc & th 0.0% 0.7% 0.7% 0.0%
wc PCA & th 2.3% 0.7% 2.9% 2.3%

Table 11: Baseline equal error rates (EERs) (%) for trained fusion of 2D-face and fingerprint
modalities.
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8 Multi-Modal Biometrics: 2D-Face and 3D-Face

In this section we explore the score-level fusion of 2D and 3D-face recognition systems.
A multi-modal system comprising different approaches to face recognition is especially
attractive because the degree of cooperation required from the user is lower than that
required by a multi-modal system using different modalities, for example iris and fingerprint
recognizers. However, systems using the same modality (the face) may yield correlated
scores, thus limiting to some degree the potential benefits of multi-modal fusion.

8.1 The Systems

We again applied fixed and trained fusion rules as described in Section 6.1.3 except where
svoice and wvoice are replaced by scores and weights corresponding to the 3D-face modality.
The 2D-face recognition system is again the same as that reported in Section 6.1.1 whereas
the 3D-face recognition system is summarised below. The fusion system is the UNICA
fusion system described in Section 6.1.3.

8.1.1 3D-Face System

The 3D-face recognition system for the baseline evaluation was developed in the Multimedia
Image Group, EURECOM. This system uses a sparser representation of dense 3D facial
scans and hence makes the comparison between faces easier for recognition. First a generic
face is warped using the Thin Plate Spline (TPS) method for each 3D scan to remove the
‘common’ face shape information. For each face, 15 fiducial points are considered. Next,
the generic face is aligned and scaled on to each face based on the set of points. Then
it is coarsely warped to make the two surfaces as close as possible. Assuming that the
two surfaces are in sufficient alignment and the correspondences are found as the closest
vertices, 136 more point-pairs are obtained. Finally, the generic face is warped based on a
total of 151 point-pairs. Thus, each 3D-face model can be represented with the 3D vector
of size 151× 3 which is obtained from the warping parameters in x, y and z directions for
each control point.

In order to measure the similarity between facial surfaces, the angle between the two
warping vectors and the difference between their magnitudes and angles are calculated.
This results in two distance vectors of size 151×1 for any pair of faces. Central tendencies
of these vectors are fused and a decision is made based on the nearest neighbour approach.

8.2 The FRGC Database

The specification of the FRGC database can be found in [26]. A subject session consists of
four controlled still images, two uncontrolled still images, and one three-dimensional image.
The controlled images were acquired in a studio setting and are full frontal facial images
taken under two lighting conditions. Facial expressions are neutral or smiling. On the other
hand, the uncontrolled images were taken in varying illumination conditions. Each set of
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Dataset Total patterns Genuine Users Impostors EER

Training 2D 6,420,817 18,770 0.29% 6,402,047 99.71% 8.82%
Training 3D 6,420,817 18,770 0.29% 6,402,047 99.71% 15.97%

Testing 2D 9,631,225 28,142 0.29% 9,603,083 99.71% 8.78%
Testing 3D 9,631,225 28,142 0.29% 9,603,083 99.71% 15.82%

Table 12: FRGC datasets: samples, classes and baseline equal error rates (EERs).

uncontrolled images contains smiling or neutral expressions. A Vivid 900/910 sensor is used
to capture 3D images. It is a structured light sensor that captures a 640×480 range sampled
and registered colour images. All 3D images were taken under controlled illumination
conditions appropriate to the sensor. Subjects stood or were seated approximately 1.5
meters from the sensor.

The database consists of training and validation sets. The training set also consists
of two parts which are a large still training set and a 3D training set. There are 222
subjects in the large still training set and 466 subjects in the validation set. The database
includes 12, 776 images/videos in the large still training set, with 6,388 controlled still
images and 6,388 uncontrolled still images. It includes 943 × 8 images/videos in the 3D
training set that contains 3D scans, and controlled and uncontrolled still images. The
3D training set is for training 3D and 3D-to-2D algorithms. The validation set contains
images from 466 subjects collected in 4007 subject sessions. In the validation set, there
are 4007 × 8 images/videos. Finally, the database contains static and colourful subjects
and consists of single faces. Images are in JPEG format and the resolution is 1704× 2272
or 1200× 1600. The FRGC database can be obtained by contacting the FRGC Liaison at
frgc@nist.gov. More information on how to access this database can be obtained from the
FRGC website [1].

A summary of the database structure is illustrated in Table 12 which shows the number
of samples, the samples per class and the baseline EER for each dataset and for both 2D
and 3D modes.

8.3 Performance Evaluation

We investigated the same score-level fusion rules outlined in Section 6, where the outputs
of individual recognition systems are combined through a ‘fusion rule’.

8.3.1 Setup

The experimental setup is exactly as described in Section 6.3.1 for UNICA fusion except
that svoice and wvoice are replaced by scores and weights corresponding to the 3D-face
modality.
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8.3.2 Results

Results are illustrated in Table 13 and in the DET plots in Figures 17 and 18. Improvements
are not as significant as in other modalities, such as the fusion of face and voice recognition
systems reported in Section 6. In this case the high correlation between the two sets of
scores impacts on the potential of fusion. Among explored rules, only LRR obtains a small
performance improvement. For trained rules the DET curves for WAR, WPR and LBF
often overlap.

Note that these observations do not necessarily detract from the potential of fused
2D and 3D-face recognition systems as a countermeasure against spoofing, since different
attacks may not be as successful in fooling one system as another. In other words, a
multi-modal biometric systems employing 2D and 3D-face images, may be viewed as an
‘intrinsically robust’ biometric system against spoofing attacks. These aspects will be
addressed later in the project and in future deliverables.
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Figure 17: Detection error trade-off (DET) profiles for 2D and 3D-face multi-modal bio-
metric performance using fixed fusion rules.
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Figure 18: Detection error trade-off (DET) profiles for 2D and 3D-face multi-modal bio-
metric performance using trained fusion rules.

Dataset EER

SAR 9.0%
SPR 8.4%
MinR 8.8%
MaxR 15.8%
BayesR 9.4%

WAR 9.5%
WPR 9.3%
LRR 7.9%
LBF 9.3%

Table 13: EER for different fusion rules applied to the 2D and 3D-face multi-modal bio-
metric.
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9 Multi-Modal Biometrics: ECG and EEG

We evaluate in this section the performance of the fusion of electro-physiological modali-
ties, namely EEG and ECG. A similar evaluation was conducted in [34] but on a limited
database, which took into account data from only 4 subjects. We have significantly in-
creased the number of subjects as described in Section 5 and recalled herein.

Electro-physiological authentication is an emergent biometric modality, taking into ac-
count at this moment EEG and ECG signals. Their main feature is that these signals
can only be generated by a living subject and are not based on external physical traits as
most of current biometric technologies. The purpose herein is to generate a baseline for
the posterior evaluation of the spoofing attack effect on the fusion of both modalities. The
main challenge of the EEG-ECG fusion is to tackle very different performance levels of
the mono-modal authentication, where ECG presents significantly outperforms EEG (see
Table 5.3.2).

9.1 The MITSfusion system

A description of the MITSfusion system can be found in Section 6.1.2.

9.2 The Databases

Starlab has gathered 2 different databases: Eyes-closed DB and Task-Performing DB. In
both cases EEG and ECG data were collected using the ENOBIO sensor, which consists
of 4 active electrodes: 2 in the forehead (Fp1 and Fp2 locations) for EEG, 1 in the left
wrist for ECG and finally the last one in the right earlobe as a reference. The first dataset
(Eyes-closed), was recorded in a controlled environment where the subjects were asked
to sit, relax and close their eyes. In the second dataset (Task-performing), signals were
gathered while subjects kept their eyes open, sitting on a chair, and were free to perform a
number of office activities (such as answering the phone, keystroke, drinking water, using
the mouse...). The reader is referred to Section 5 for more details. The two databases were
used for the evaluation of ECG and EEG as a multi-modal biometric.

9.3 Performance Evaluation

The evaluation was conducted using the two databases in a similar fashion to the approach
described in Section 6.3.1. We used the MITSfusion system with just one node, where its
features are determined in the training phase. Hence we have to assess:

• Employed fusion operator FO0.

• Usage of personalized operators vs. a general one.

• Optimal parameter set p0 (or superset in case of personalized ones).

TABULARASA D3.2: page 58 of 65



TABULA RASA [257289] D3.2: Evaluation of baseline non-ICAO biometric systems

9.3.1 Setup

We undertook the following procedure:

1. We apply all available fusion operators as FO0.

2. For each fusion operator we look for the parameter set p0 and superset {p01, . . . ,p0L}
that maximize the AUC.

3. We compute the average AUC over subjects when:

(a) Applying a unique parameter set p0, which we denote as AUCg.

(b) Applying a parameter superset {p01, . . . ,p0L}, which we denote as AUCp.

4. We select the fusion operator with maximal AUCp.

5. If the difference between AUCp and AUCg is less than 3%, we personalize the op-
erator, i.e. FO0 is parameterized with p0. If not, we parameterized it with one
parameter for each subject, i.e. {p01, . . . ,p0L}.

In this case we used the Eyes-Closed DB as a development dataset and the Task-
Performing DB as a test/evaluation dataset. The development dataset was used for opti-
mising the features used in the MITSfusion system (see procedure in Section 6.3.1). This
selection is motivated by its applicability in a real use case scenario, where the subjects
enroll in eyes-closed condition, but are authenticated later in a more uncontrolled protocol.

It is worth pointing out that the evaluation setup used for the multi-modal evaluation
is by far more pessimistic than the one used in the mono-modal EEG and ECG evaluation.
This is because we used a setup closer to use-case conditions for the multi-modal evaluation.
Hence two data sets acquired in two very different conditions, namely eyes closed and task
performing, are used respectively for development and test/evaluation in the multi-modal
setup, which becomes therefore more risky. In case a direct comparison between mono-
modal results and multi-modal fusion one is needed, the reader can hypothesize with a high
degree of confidence that multi-modal performance would improve with respect to the level
given as outlined below if using exactly the same setup. However it is not the objective
of this project to compare mono-modal/multi-modal performance, but the computation of
a baseline performance for comparison with the results under spoofing attacks and with
countermeasures.

9.3.2 Results

As a result of the application of the assessment procedure on the development data set,
i.e. Eyes-Closed DB, we selected the uni-norm fusion operator. The operator is not per-
sonalized and the optimal parameter set is (e, p) = (0.9, 3), where e defines the application
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Data Set modality EER (%)

Eyes-Closed EEG 20
Eyes-Closed ECG 4
Eyes-Closed fusion dev 4

Task-Performing EEG 27
Task-Performing ECG 14
Task-Performing fusion test 0.6

Table 14: Equal Error Rate (EER) of the multi-modal fusion of EEG and ECG modalities
in the development (Eyes-Closed - fusion dev) and test (Task-Performing - fusion test)
data sets. Performance of the fused modalities is given for the sake of comparison.

scope of each norm, and p is the exponent in the Yager norms expression as defined in
equation (6):

z =


max{0, 1− ((1− x1)

p + (1− x2)
p)1/p} : x1, x2 ∈ [0, e]× [0, e, ]

min{1, (xp
1 + xp

2)
1/p} : x1, x2 ∈ [e, 1]× [e, 1]

x1+x2

2
: otherwise

A summary of the results is given in Table 14 which shows the EERs for the two
datasets. Figure 19 shows the corresponding DET curve for the test data set. Results are
seen to improve compared to performance for the two individual modalities. In case of the
development data set, and due to the much better performance of the ECG modality with
respect to the EEG (see Table 14), the fusion adapts to emphasise the ECG modality. In
the test data set, where EEG and ECG present a more similar performance in the mono-
modal authentication (see Table 14), the fusion result clearly outperforms both modalities
in spite of using a riskier setup as explained in Section 9.3.1.
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Figure 19: DET curve on the test data set, i.e. Task-performing DB.
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10 Summary

Presented in this document are equal error rates (EERs) and detection error trade-off
(DET) profiles for all non-ICAO mono-modal and multi-modal biometrics assessed in the
TABULA RASA project. Together they form the baselines for all future work in spoofing
and countermeasures. We re-iterate that traditional biometrics research is not the goal in
this project and thus we do not necessarily seek recognition performance which is superior
to the baseline. We seek to show how (i) the baseline performance deteriorates in the face
of spoofing and, more importantly, (ii) how countermeasures may be effectively harnessed
to reduce the gap between performance under spoofing and the baseline performance pre-
sented here.

The different baseline systems show a variation in performance between 0%2 and 27%
EER. While it is not the objective to compare the performance of each modality a summary
of the EERs for each biometric is listed in Table 15.

Modality Database System Subset EER (%)

Voice NIST’06 ALIZE male 5.9
female 5.4

MOBIO ALIZE male 15.2
female 18.4

Gait USOU USOU - 6.0
UOULU - 4.5

Vein and Fingerprint TabulaRasaVP FingerVP - 0.0
Electro-physiology Eyes-closed StarFast EEG 20.0

ECG 4.0
Task-performing StarFast EEG 27.0

ECG 14.0
2D-Face and Voice MOBIO MITSfusion male 6.0

female 10.2
UNICA fusion male 7.3

female 11.8
2D-Face and Fingerprint BioSecure UNICA fusion ca0/op 0.0
2D-Face and 3D-Face FRGC UNICA fusion - 0.9
ECG and EEG Task-performing MITSfusion - 0.6

Table 15: A summary of EERs for all non-ICAO mono-modal and multi-modal biometrics
addressed in TABULA RASA.

2Note the discussion of statistical significance in Section 4.3.2
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