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D4.2: Report on the description and the evaluation of
baseline algorithms for bi-modal authentication

Abstract:
This deliverable describes state-of-the-art fusion approaches for an audio-visual based

biometric person authentication system. Two very different fusion approaches have been
investigated, namely, joint-score based and normalization-based approaches. Both ap-
proaches were implemented using logistic regression. They were validated using both
state-of-the-art face and speaker verification classifiers on the publicly available BANCA
bimodal database. A preliminary analysis on the expert outputs show that the speaker
verification expert is several orders better than the face verification expert. Nevertheless,
both fusion approaches can still provide a marginal improvement over the best single ex-
pert. Although the normalization-based approach has already been investigated elsewhere
in the literature, a novelty in this report is that the link between this approach with the
Naive Bayes principle is clarified from a Bayesian perspective.
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1 Introduction

Portable electronic devices such as mobile phones and PDAs are becoming important means
to provide wireless access to the Internet and other telecommunication networks anytime,
anywhere. Very often, such access requires the verification of the user’s identity in order
to ensure that the person is really who he/she claims to be. While knowledge-based
authentication such as PINs or passwords can be used, they can be forgotten, or easily
compromised when shared, copied or stolen. In comparison, biometrics is a more effective
alternative because it is by far a more natural, reliable and friendly means of authentication.
Thanks to the availability of cameras and microphones in today’s mobile devices, audio-
and visual-based biometrics such as face and speech can be readily used for this purpose.

In this context, we aim to develop and evaluate new mobile services that are secured
by bi-modal speech and face biometrics. We shall call this problem “mobile biometry”
(Mobio). Due to the device mobility, the problem of biometric authentication is much
more challenging for at least two reasons: First, it has to deal with changing and often
uncontrolled environments, e.g., external noise and varying illumination conditions. Under
such conditions, a biometric query data can appear very differently from the one acquired
during enrollment (template). As a consequence, the device performance can degrade
drastically. Second, mobile devices have limited memory and CPU resources. This provides
a natural constraint on the size of biometric template/model1 and the type of processing
algorithms (which favor those of low computation).

One possible way to improve the authentication performance is by using more than one
biometrics, also known as multimodal biometrics in the literature [RNJ06] (and references
herein).

2 Multimodal Biometric Fusion

Combining several systems is a well studied subject in pattern recognition [TH94] in gen-
eral; in applications related to audio-visual speech processing [Luc02] [Lue97, CR98]; in
speech recognition – examples of methods are multi-band [Cer99], multi-stream [Dup00,
Hag01], front-end multi-feature [Shi01] approaches and the union model [MS03]; in the
form of ensemble [Bro03]; in audio-visual person authentication [San02]; and, in multi-
biometrics [Nan05, Poh06, Kry07, Ric07, RNJ06] (and references herein), among others.
In fact, one of the earliest work addressing multimodal biometric fusion was reported in
1978 [Fej78]. Therefore, biometric fusion has a history of more than 30 years.

1We use the term “template” when referring to the stored features representing a person’s biometric trait
whereas the term “model” as a more general concept in order to refer to the parameters of a discriminative
classifier or a statistical model, or that of an intermediate feature extraction process such as the Eigenspace
analysis.
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2.1 Fusion Techniques

In the literature, there are several methods to combine multimodal information. These
methods are known as fusion techniques. Common fusion techniques include fusion at the
feature level (extracted or internal representation of the data stream) or score level (output
of a single system). Between the two, the latter is more commonly used in the literature.

Some studies further categorize three levels of score level fusion [BF95], namely, fusion
using the scores directly, using a set of most probable category labels (called abstract level)
or using the single most probable categorical label (called decision level). We will focus
on the score level for two reasons: the last two cases can be derived from the score and
more importantly, by using only labels instead of scores, precious information is lost, thus
resulting in inferior performance [LLJ+05].

2.2 Feature Level versus Score Level Fusion

Although information fusion at the feature level is certainly much richer, exploiting such in-
formation by concatenation, for instance, may result in the curse of dimensionality [Bis99,
Sec. 8.6]. In brief, it states that combined information (feature vector) may have a too
high dimension that the problem cannot be solved easily by a given classifier. Further-
more, not all feature types are compatible at this level, i.e., of the same dimension, type
and sampling rate. The feature level fusion certainly merits a thorough investigation but
will not be addressed here. This issue will be addressed in the deliverables D4.3 and D4.4.

On the other hand, working at the score level conceals both the problems of curse
of dimensionality and feature compatibility. Furthermore, the algorithms developed at
the score level can be independent of any biometric system. Being aware that the only
information retained is score, any additional information desired to be tapped must be fed
externally. It should be noted that the feature level fusion converges to the score level fusion
by assuming independence among the biometric feature sets. This assumption is perfectly
acceptable in the context of multimodal biometric fusion but does not hold when the
feature sets are derived from the same biometric sample. In this situation, the dependency
at the feature level will certainly occur at the score level. Consequently, such dependency
can still be handled at the score level. For the audio-visual based fusion problem treated
here, although there are two biometric modalities, both of them are obtained from the
same video recordings. As a result, a certain degree of dependency is expected.

2.3 Fusion Techniques

While many fusion classifiers have been used in the literature, as summarized in [RNJ06],
as baseline fusion techniques, we have opted for a linear discriminative classifier, and in
particular, logistic regression. It is, in essence, a weighted sum fusion with the non-linear
sigmoid (or logistic) function. To our best knowledge, non-linear fusion classifiers have not
been reported to outperform linear fusion classifiers [PB03]. A plausible explanation of
this is the fusion problem in the expert output space can be solved using a linear decision
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boundary. In fact, a direct examination of the data, after appropriately processing the
expert outputs, does suggest such a conjecture (see Figure 3, for instance).

2.3.1 Joint-score Based Fusion

Let y1 be the face expert (verification classifier) output whereas y2 be that of the speech
expert. It is convenient to stack the expert outputs together to form a vector y =
[y1, y2, . . . , M ]′ for combining M expert outputs.

Note that the discussion here is intended to be very general in two ways. First, the
fusion approaches to be discussed are applicable to any number of expert outputs, although
we only deal with M = 2 here. Second, as long as posterior probability is concerned, any
non-linear classifier giving probabilistic output can be used. For the purpose of illustration,
logistic regression is used. This is not a limitation because, for instance, non-linearity can be
introduced into logistic regression by expanding the observation space using a polynomial
function, e.g., [KPF+07].

The logistic regression classifier gives the following output:

yLR
com ≡ P (C|y) =

1

1 + exp(−g(y))
, (1)

where

g(y) =
M∑

i=1

βiyi + β0, (2)

and the weight parameters βi are optimized using gradient ascent to maximize the likeli-
hood of the training data given the LR model [Dob90].

We shall refer to (1) as the joint-score based fusion, as opposed to the normalization-
based approach [JNR05]. The normalization-based approach is based on the premise that
the expert outputs are independent and hence can be processed separately. In the proba-
bilistic sense, this implies the use of the Naive Bayes principle.

2.3.2 Normalization-based Fusion

In order to show how the normalization-based approach works, we shall use the logistic re-
gression classifier already presented but applied to each expert output individually. Hence,
for (1), we shall use the term yi instead of y, thus estimating P (C|yi), for each i. In this
context, for (2), one only needs to estimate two parameters (i.e., β1 and β0) for each expert
i.

If one applies the logit transform to the posterior probability for each expert output i,
one obtains the following form

g(yi) = log

{
P (C|yi)

1 − P (C|yi)

}

= log

{
P (C|yi)

P (I|yi)

}

, (3)

which is, in essence, a log-likelihood ratio test.
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From the Bayes rule, it can be recognized that the posterior probability can, alterna-
tively, be estimated via the following relationship:

P (C|yi) =
P (C)p(yi|C)

∑

k=C,I P (k)p(yi|k)
∝ P (C)p(yi|C), (4)

where P (k) for k ∈ {C, I} is the prior class probability according to the training data
and p(yi|k) is the density of expert output i, which can be estimated using any density
estimator, e.g., Gaussian Mixture Models (GMM), Parzen windows, k-nearest neighbour,
etc [Bis99]. Using the same approach, it can also be deduced that

P (I|yi) ∝ P (I)p(yi|I). (5)

Writing (3) using (4) and (5), we obtain:

g(yi) = log

{
p(yi|C)P (C)

p(yi|I)P (I)

}

. (6)

Therefore, we observe that the logit transform simply maps the posterior probability to an
output which could have been otherwise achieved using a Bayes classifier (hence requiring
the estimation of p(yi|k) for both classes k) implementing a standard log-likelihood ratio
test.

The normalization-based fusion to be used in this deliverable will actually take the sum
of all g(yi)’s, i.e.,

ysum
com =

M∑

i=1

g(yi) (7)

where M = 2 in our case (bimodal fusion). To show the significance of (7) as a realization of
the Naive Bayes principle (to an ignorable constant), we shall again consider the case if the
post-processed expert output (in the log-likelihood ratio domain) was actually estimated
using a Bayesian classifier, via (6). Then, (7) can be rewritten as:

ysum
com =

M∑

i=1

log

{
p(yi|C)P (C)

p(yi|I)P (I)

}

= log

{∏M

i=1 p(yi|C)
∏M

i=1 p(yi|I)

}

+ M log

{
P (C)

P (I)

}

︸ ︷︷ ︸

. (8)

The output ysum
com is, however, different from the usual Naive Bayes classifier which is:

ynaive
com = log

{∏M

i=1 p(yi|C)
∏M

i=1 p(yi|I)

}

+ log

{
P (C)

P (I)

}

︸ ︷︷ ︸

(9)

Comparing (9) to (8), it is immediate apparent that ysum
com is more than ynaive

com by a constant

term of (M − 1) log
{

P (C)
P (I)

}

. This term is constant because it is independent of a test data
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point, but dependent only on the training data, noting that the log prior ratio term in (9)
corresponds to that of the training data set. Therefore, strictly speaking, in order to apply
the Naive Bayes principle using the sum of logits, as in (7), one should compute the log
ratio as follows:

ynaive
com =

M∑

i=1

g(yi) − (M − 1) log

{
P (C)

P (I)

}

Fortunately, in all cases, the underbraced constants in both (9) and (8) are immaterial
since for any combined score ycom, the following decision is used:

decision(ycom) =

{
accept if ycom > ∆
reject otherwise,

(10)

where the optimal decision threshold ∆ is optimized separately depending on the cost of
false acceptance and false rejection (to be discussed in Section 3.3). As can be observed, the
adjustment for the threshold ∆ is to compensate for the different application-dependent
costs (of false acceptance and false rejection), which will affect the log prior ratio during
testing. Therefore, the log prior ratio represents an external prior knowledge which, in any
case, is likely to be different from that of the training data. An important implication as
well as advantage of this is that, even though the class priors have changed, one does not
need to retrain the fusion classifier. This justifies a separate optimization procedure for
setting the global decision threshold.

3 Experiments

3.1 Database

In order to be consistent with the previous deliverables (D3.1 and D3.2), we shall use the
same database, baseline systems and experimental protocols. The database used here is
the BANCA database [MKS+04a]. This is a bimodal database recording from a camcorder,
registering 52 people reading text-prompted sentences as well answering short questions.
The sample images, for all three conditions are shown in Figure 1.

A consequence of this BANCA database setting is that the face verification problem
becomes extremely challenging, compared to the speaker verification problem. This is
because in both the adverse and degraded conditions, the noise due to the environmental
conditions affecting the speech modality, which are all indoor recordings, is still relatively
unimportant.

A novel aspect concerning the usage of this database, unlike precedent efforts in [MKS+04a]
or [MKS+04b], is that video sequences are actually used here, rather than still images ex-
tracted from the video sequence.
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(a) Controlled (b) Adverse (c) Degraded

Figure 1: Automatically cropped face images from the three conditions in the BANCA
databases, namely controlled, adverse and degraded conditions. Following the “P-
protocol”, the face models were trained only on the data set captured under the controlled
condition, but tested on all three conditions.

3.2 Baseline Systems

The face and speaker verification baseline systems are Bayesian classifiers whose class-
conditional densities are approximated using Gaussian Mixture Models (GMMs) with the
Maximum a posteriori adaptation [RQD00]. This is a long-standing state-of-the-art clas-
sifier for the speaker verification, but since then, has also been successfully used for the
face verification problem [CSM03]. The face verification problem can benefit from this
approach mainly thanks to parts-based local feature descriptors, as illustrated in Figure 2.
The parts-based approach first divides an image into overlapping or non-overlapping blocks
of image. For each block of image, its texture is described using a local feature descriptor.
The local feature descriptors used here are based on a post-processed subset of Discrete
Cosine Transform features called “DCTMod2” [SP02].

Let X ≡ {xi|i = 1, . . . , N} be a sequence of N feature frames and each feature frame
is denoted by xi (for the i-th frame). For the face modality, a feature frame is a vector
containing the DCT coefficients of a block of image. For the speech modality, a feature
frame contains Mel-scale Cepstral Coefficients [RJ93]. These features are a short-term
representation of spectral envelopes filtered by a set of filters motivated by the human
auditory system.

Let p(x|ωo) be the likelihood function of the world or background model and p(x|ωj)
be the model for the claimed identity j ∈ {1, . . . , J}2. In parts-based face or speaker

2Note that we use a different notation here, i.e., ωj , to denote the classes, as compared to Section 2,
where k ∈ {C, I} was used. The reason is that in the fusion process, one considers only binary classification,
i.e., a person is either a genuine person (client), claiming to be the reference identity, or an impostor. In
essence, there is only a single fusion classifier for all the enrollees in the database. For the baseline expert,
on the other hand, the system designer needs to design an expert for each enrollee. As a result, it is
necessary to distinguish models of different enrollees using ωj .
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Input Image Image Blocks

Features (DCT) from Blocks

Figure 2: A flow chart of describing the extraction of feature vectors from the face image
for the parts-based approach.

verification, both p(x|ωo) and p(x|ωj), for any j, are estimated using a Gaussian Mixture
Model (GMM) [Bis99]. The world model is first obtained from a large pool of sequences
{X} contributed by a large and possibly separate population of users (possibly from an
external database than the one used for enrollment/testing). Each client-specific model is
then obtained by adapting the world model upon the presentation of the enrollment data
of a specfici user/client.

The GMM-based Bayesian classifier applies the log-likelihood ratio test, which is opti-
mal in the Neyman-Pearson sense [DHS01]:

y =
1

N

∑

i

log

{
p(xi|ωj)

p(xi|ωo)

}

(11)

An important assumption here is that all feature frames are independently and identically
distributed. An interpretation of this is that, thanks to the part-based approach, the
relative location of an eye to the noise, or any two salient facial features are unimportant.
Because of this, a practical advantage offered by this approach is that it is fairly robust
to imperfectly found centers of the eye coordinates (needed for cropping a face from the
background) given by a face detector.

If the score y is greater than a pre-specified threshold, one declares that the query data
X belongs to the model j. Hence, this will result in an acceptance decision. Otherwise,
one rejects the hypothesis and hence rejects the identity claim. The details of the face
verification system can be found in Section A.

The speaker verification classifier used here differs from the face one in the following
ways. First, the variability across sessions are removed thanks to now a standard technique
called factor analysis [KBD05, VBS05, MSFB07]. This technique is applied to all training
and test data prior to building a (client-specific) GMM model.

Second, rather than using the log-likelihood ratio test as in (11), a client-specific SVM
is used instead. The SVM is designed to classify features not at the sequence level (in the
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space {X}) but at the so-called “GMM supervector” space. If a GMM has C components,
the observation in this space consists of the mean vectors of all the C Gaussian components
concatenated together to form a supervector. A supervector is thus a vector of fixed-size
that is independent of the length of the speech utterance, hence allowing the speaker
verification problem to be solved using discriminative approaches (which are well suited
for classification problems with fixed-size observations). During training as well as testing,
the GMM supervectors are submitted to the channel compensation technique via factor
analysis. The SVM is thus trained to distinguish the supervector of one user versus all
other users, with the impact of channel variability significantly reduced. As a result, the
output of the speaker verification system used here is in terms of margin, i.e., how far
a supervector (in the implicitly embedded space defined by a given kernel) is from the
optimal decision boundary separating the claimed user identity from the rest of the users
(clients) in the database. The details of the speaker verification system can be found in
Section B.

3.3 Evaluation Metrics

We use two types of curves in order to compare the performance: the Detection Error Trade-
off (DET) curve [MDK+97] and the Expected Performance Curve (EPC) [BM04]. A DET
curve is actually a Receiver Operator Curve (ROC) curve plotted on a scale defined by the
inverse of a cumulative Gaussian density function, but otherwise similar in all aspects. We
have opted to use EPC because it has been pointed out in [BM04] that two DET curves
resulting from two systems are not comparable. This is because such comparison does not
take into account how the decision thresholds are selected. EPC turns out to be able to
make such comparison possible. Furthermore, the performance across different data sets,
resulting in several EPCs, can be merged into a single EPC [PB05]. Although reporting
performance in EPC is more meaningful than DET as far as performance comparison is
concerned, it is relatively new and has not gained a widespread acceptance in the biometric
community. As such, we shall also report performance in DET curves, but using only a
subset of operating points.

The EPC curve, however, is less convenient to use because it requires two sets of match
scores, one used for tuning the threshold (for a given operating cost), and the other used
for assessing the performance. In our context, with the two-fold cross-validation defined
on the database (as determined by g1 and g2), these two match scores can be conveniently
used.

According to [BM04], one possible, and often used criterion is the weighted error rate
(WER), defined by:

WER(β, ∆) = β FAR(∆) + (1 − β) FRR(∆), (12)

where FAR is the false acceptance rate, FRR is the false rejection rate at a given threshold
∆ and β ∈ [0, 1] is a user-specified coefficient which balances FAR and FRR. The WER
criterion generalizes the criterion used in the annual NIST’s speaker evaluation [MPC05]
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as well as the three operating points used in the past face verification competitions on the
BANCA database [MKS+04b, MKS+04a], which used only three coefficients of β:

β =
1

1 + R
for R = {0.1, 1, 10}

which yields approximately β = {0.9, 0.5, 0.1}, respectively. Rather than just using the
above specific β values, in this study, we use β ∈ {0.1, 0.2, . . . , 0.8, 0.9}.

The procedure to calculate an EPC is as follows: Use g1 to generate the development
match scores; and g2, the evaluation counterpart. For each chosen β, the development score
set is used to minimize (12) in order to obtain an operational threshold. This threshold
is then applied to the evaluation set in order to obtain the final pair of false acceptance
rate (FAR) and false rejection rate (FRR). The EPC curve simply plots half total error
rate (HTER) versus β, where HTER is the average of FAR and FRR. Alternatively, the
generalization performance can also be reported in WER (as done in the previous BANCA
face competitions). To plot the corresponding DET curve, we use the pair of FAR and FRR
of all the operating points, as determined by β. Note that this DET curve is a subset (in
fact discrete version) of a conventional continuous DET curve because the latter is plotted
from continuous empirical functions of FAR and FRR. By plotting the discrete version of
the DET curve, we establish a direct correspondence between EPC and DET, satisfying
both camps of biometric practitioners, while retaining the advantage of EPC which makes
performance comparison between systems less biased.

3.4 Analysis

At the score-level fusion, the bimodal face and speech fusion problem is greatly simplified
to solving a two dimensional problem defined by the expert output. The data for the g1
data set is shown in Figure 3.

Since both the face and speaker verification experts rely on the same input signal,
i.e., from the same video, we expect that there is a certain degree of correlation. On the
other hand, a counter argument is that since both modalities are affected by different noise
sources, it is reasonable to expect both modalities to be independent. This motivated us
to perform a correlation-based analysis.

The result of correlation, conditioned on each class (subjecting to being genuine or
impostor matching) are shown in Figures 4(a) and (b). For the client class, unfortunately,
we observed that the marginal distribution is not Gaussian. As a result, the measured
correlation may not reflect well the true underlying dependency (the latter being the real
criterion of interest).

As an exploratory study, we applied the Gaussian Copula model [CLV04] to better
uncover the underlying correlation structure. This consists of first transforming each expert
output scores to a uniform distribution, and then reprojecting back the scores to a Gaussian
distribution. After this transformation, the marginal of the transformed outputs will be
a standard normal distribution. The pairwise correlation between the two expert outputs
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Figure 3: The face and speech bimodal fusion problem. The x-axis is the output of the face
verification expert whereas the y-axis is that of the speaker one. Blue plus signs denote
client accesses where red dot denote impostor accesses.

can then be measured in this space. The pairwise scatter plots of the transformed outputs
conditioned for each class are shown in Figures 4(c) and (d).

As can be observed, the correlation for the client match scores are relatively high, i.e.,
0.38 according to the Gaussian Copula model (or 0.40 in the original space), but are relative
low for the impostor scores, i.e., 0.10 (resp. 0.11).

The correlation of the client scores is considered weak, but never the less exists (a
strong correlation would achieve 0.95 or higher, for instance). One could also conclude that
there exists no correlation between the experts for the impostor scores. This is perfectly
acceptable. An interpretation of this is that the face of person A and the speech of person
B are not related to each other under zero-effort impersonation. This, however, may not
hold under active/informed impostor attack. Unfortunately, no data is available to validate
this conjecture3

3The MOBIO database could be used for this purpose.
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Figure 4: A pair-wise scatter plot of the bimodal expert outputs subject-
ing to impostor or genuine (client) matching in the original space as well
as the Gaussian marginal space obtained after applying the Gaussian
Copula transformation.

3.5 Fusion Results

This section reports the performance of the joint-score based fusion (using (1)) versus the
normalization-based fusion (using (7)). The results are shown in Figure 5 using both DET
and EPC curves. As can be observed, the face verification expert is many more times worse
than the speaker verification expert. This is because the scenarios defined for the BANCA
database is such that the degradation in the face modality is much more drastic than the
speech modality. However, as can be observed, on both cases, the fusion classifier was able
to benefit from both modalities in order to further improve over the speech modality, albeit
insignificantly.

Both the two fusion classifiers have similar performance, although, according to the
correlation study reported in Section 3.4, one would expect that the joint-score approach
to outperform the normalization-based approach. This result is not particularly surprising
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Figure 5: The pooled performance of the baseline systems as well as fusion systems, assessed
on both the g1 and g2 data set, using (a) DET and (b) EPC curves. The experiments were
carried out using the P-protocol. IDIAP-gmm512 refers to the face verification expert; LIA
UBM-GMM, a speaker verification expert; joint-idiap, the joint-score based fusion; and,
separate-unis, the normalization-based fusion.

as various independent researchers have previously shown the effectiveness of the Naive
Bayes principle even under dependent features.

4 Conclusions

This deliverable provides a very first baseline of bimodal fusion of a video-based biomet-
ric authentication/verification system. This was validated using both state-of-the-art face
and speaker verification classifiers on the publicly available BANCA bimodal database.
We have implemented two fusion classifiers using two very different approaches, namely,
joint-score based and normalization-based fusion strategies, implemented using logistic
regression. Although the normalization-based approach has already been investigated else-
where [JNR05], the link between this approach with the Naive Bayes principle has not
been clarified. We formally show this link using a Bayesian framework.

Our experiments suggest that the performance of a multimodal biometric fusion system
is better than that of any single best expert. In our case, this performance gain is marginal
because the speech expert is an order of magnitude better than the face expert. This is
consistent with the findings in the literature, e.g., [KHDM98, RNJ06].

MOBIO D4.2: page 18 of 28



MOBIO [214324] D4.2: Baseline Bimodal Authentication

Acknowledgments

We would like to thank the following partners for their contributions to this deliverable:
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A Parts-Based Gaussian Mixture Model (PB-GMM)

for Face Verification

The first face verification baseline model implementation presented in this report combines
part-based approaches and GMM modeling. Parts-based approaches divide the face into
blocks, or parts, and treats each block as a separate observation of the same underlying
signal (the face). According to this technique, a feature vector is obtained from each block
by applying the Discrete Cosine Transform (DCT) and the distribution of these feature vec-
tors is then modelled using GMMs. Several advances have been made upon this technique,
for instance, Cardinaux et al. [CSM03] proposed the use of background model adaptation
while Lucey and Chen [LC04] examined a method to retain part of the structure of the
face utilising the parts-based framework as well as proposing a relevance based adaptation.

Feature Extraction

The feature extraction algorithm is described by the following steps. The face is nor-
malised, registered and cropped. This cropped and normalised face is divided into blocks
(parts) and from each block (part) a feature vector is obtained. Each feature vector is
treated as a separate observation of the same underlying signal (in this case the face) and
the distribution of the feature vectors is modelled using GMMs. This process is illustrated
in Figure 2.

The feature vectors from each block are obtained by applying the DCT. Even advanced
feature extraction methods such as the DCTmod2 method [SP02] use the DCT as their ba-
sis feature vector; the DCTmod2 feature vectors incorporate spatial information within the
feature vector by using the deltas from neighbouring blocks. The advantage of using only
DCT feature vectors is that each DCT coefficient can be considered to be a frequency re-
sponse from the image (or block). This property is exploited by the JPEG standard [PM93]
where the coefficients are ranked in ascending order of their frequency.

Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model adaptation
of GMMs [CSM03, LC04]. The use of background model adaptation is not new to the field
of biometric authentication; in fact, it is commonly used in the field of speaker verifica-
tion [DPMR00]. Background model adaptation first trains a world (background) model
Ωworld from a set of faces and then derives the client model for the ith client Ωi

client by
adapting the world model to match the observations of the client.

Two common methods of performing adaptation are mean only adaptation [Rey97] and
full adaptation [LG96]. Mean only adaptation is often used when there are few obser-
vations available because adapting the means of each mixture component requires fewer
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observations to derive a useful approximation. Full adaptation is used where there are
sufficient observations to adapt all the parameters of each mode. Mean only adaptation is
the method chosen for this work as it requires fewer observations to perform adaptation,
this is the same adaptation method employed by Cardinaux et al. [CSM03].

Verification

To verify an observation, x, it is scored against both the client (Ωi
client) and world (Ωmodel)

model, this is true even for methods that do not perform background models adaptation
[SP02]. The two models, Ωi

client and Ωworld, produce a log-likelihood score which is then
combined using the log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client)) − ln(p(x | Ωworld)), (13)

to produce a single score. This score is used to assign the observation to the world class
of faces (not the client) or the client class of faces (it is the client) and consequently a
threshold τ has to be applied to the score h(x) to declare (verify) that x matches to the
ith client model Ωi

client, i.e if h(x) ≥ τ .
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B Gaussian Mixture Model-Support Vector Machine

Based Speaker Verification

The use of GMM in a GMM-UBM framework has been a standard approach in the speaker
verification [BBF+04]. In addition to this framework, the Latent Factor Analysis (LFA) is
systematically applied for all systems in training and testing [KBD05, VBS05, MSFB07].
From the resulting session compensated model it is possible to extract supervectors by
concatenating Gaussian means. These supervectors can be used directly in a SVM clas-
sifier. This association between the factor analysis and SVM allows to benefit from the
FA decomposition power and SVM classification power. The implemented baseline system
uses Z-T-norm for score normalization.

Feature extraction

The signal is characterized by 50 coefficients including 19 linear frequency cepstral co-
efficients (LFCC), their first derivative, their first 11 coefficients of second derivatives and
the delta-energy. They are obtained as follows: 24 filter bank coefficients are first com-
puted over 20ms Hamming windowed frames at a 10ms frame rate. Bandwidth is limited
to the 300-3400Hz range.

Here, the energy coefficients are first normalized using a mean removal and variance nor-
malization in order to fit a 0-mean and 1-variance distribution. The energy component is
then used to train a three component GMM, which aims at selecting informative frames.
The most energized frames are selected through the GMM. Once the speech segments of a
signal are selected, a final process is applied in order to refine the speech segmentation:
1- overlapped speech segments between both the sides of a conversation are removed,
2- morphological rules are applied on speech segments to avoid too short ones, adding or
removing some speech frames.

Finally, the parameter vectors are normalized to fit a 0-mean and 1-variance distribu-
tion. The mean and variance estimators used for the normalization are computed file by
file on all the frames kept after applying the frame removal processing.

World models

Two GMM world models are used, one for males and one for females. The two GMM
are trained using Fisher English Training Speech Part 1 (LDC:LDC2004S13), and consists
of about 10 million speech frames each for males and females.

Resulting world models are 512 gender dependent GMM’s with diagonal covariance ma-
trices. For a better separation of initial classes, frames are randomly selected among the
entire learning signal via a probability followed by an iteration of the EM algorithm, to
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estimate the GMM parameters. During the estimation of the world model parameters,
instead of using all the learning signals in their temporal order, 10% of frames is selected
randomly at each new iteration. For the two last iterations, the entire signal is classically
used in its temporal order. During all the process, a variance flooring is applied so that no
variance value is less than 0.5.

Client, test and impostor models with Factor Analysis

A speaker model can be decomposed into three different components: world, a speaker
dependent and session dependent components [KBD05, VBS05, MSFB07]. A GMM mean
super-vector is defined as the concatenation of the GMM component means. In the follow-
ing, (h, s) will indicate the session h of the speaker s. The latent factor analysis model,
can be written as:

m(h,s) = m + Dys + Ux(h,s), (14)

where m(h,s) is the session-speaker dependent super-vector mean, D is S × S diagonal
matrix (S is the dimension of the supervector), ys the speaker vector (its size equal S), U
is the session variability matrix of low rank R (a S × R matrix) and x(h,s) are the session
factors, a R vector. Both ys and x(h,s) are normally distributed among N (0, I). D satis-
fies the following equation I = τDtΣ−1D where τ is the relevance factor required in the
standard MAP adaptation.

The client model is obtained by performing the decomposition of equation 14 and by
retaining only the speaker dependent components:

ms = m + Dys, (15)

The success of the factor analysis model relies on a good estimation of the U matrix,
thanks to a sufficiently high amount of data, where a high number of different recordings
per speaker is available. In these experiments the U matrix is trained by using about 240
speakers (120 males and 120 females) coming from NIST’04. For each speaker about 20
sessions are considered.

Kernel based scoring and SVM modeling

By using (15), the factor analysis model estimates supervectors containing only speaker
information, normalized with respect to the session variability. A probabilistic distance
kernel that computes a distance between GMM’s, well suited for a SVM classifier. Let Xs

and Xs
′ be two sequences of speech data corresponding to speakers s and s′, the kernel

formulation is given below.

K(Xs,Xs
′) =

M∑

g=1

(√
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This kernel is valid when only means of GMM models are varying (weights and covari-
ance are taken from the world model). ms is taken here from the model in eq. 15, i.e.
ms = m + Dys.

The LIA SpkDet toolkit benefits from the LIBSVM [CL01] library to induce SVM and
to classify instances. SVM models are trained with an infinite (very large in practice) C
parameter thus avoiding classification error on the training data (hard margin behavior).
The negative labeled examples are speakers from the normalization cohort.
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