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D4.6: Description and Evaluation of Baseline
Algorithms for Model Adaptation

Abstract:
This deliverable examines two solutions to guard against the change of the quality of

biometric samples, in particular, as a result of changing acquisition environment as well as
that of acquisition devices (i.e., matching between enrollment and query samples collected
using different devices). The two solutions are model-level and score-level adaptation. The
model-level adaptation attempts to update the parameters of the expert systems whereas
the score-level adaptation merely post-processes the output of the baseline system. Al-
though the potential of model-level adaptation is immense, e.g., reducing the error rate
by as much as half, it requires additional labeled training data. In this study, manually
labeled training data samples are considered, leading to a supervised adaptation strategy.
This provides an upper bound of the achievable performance (with respect to an unsuper-
vised strategy). The score-level adaptation we implemented is based on logistic regression.
In comparison to the model-level adaptation strategy, the score-level adaptation one does
not require labeled training data samples. However, the latter does require additional
operational data reflecting the actual operational scenarios. With this procedure, our ex-
periments based on the BANCA bimodal database reports that the improvement achievable
(in terms of reduction in Equal Error Rate with repect to the baseline non-adaptive system)
is 27% for the face expert and 42% for the speech expert.
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1 Introduction

1.1 Motivations

Portable electronic devices such as mobile phones and PDAs are becoming important means
to provide wireless access to the Internet and other telecommunication networks anytime,
anywhere. Very often, such access requires the verification of the user’s identity in order
to ensure that the person is really whom he/she claims to be. While knowledge-based
authentication such as PINs or passwords can be used, they can be forgotten, or easily
compromised when shared, copied or stolen. In comparison, biometrics is a more effective
alternative because it is by far a more natural, reliable and friendly means of authentication.
Thanks to the availability of cameras and microphones in today’s mobile devices, audio-
and visual-based biometrics such as face and speech can be readily used for this purpose.

In this context, we aim to develop and evaluate new mobile services that are secured by
bi-modal speech and face biometrics. We shall call this problem “mobile biometry” (Mo-
bio). Due to the device mobility, the problem of biometric authentication is much more
challenging for at least two reasons: First, it has to deal with changing and often uncon-
trolled environments, e.g., external noise and varying illumination conditions. Under such
conditions, a biometric query data can appear very differently from the one acquired during
enrollment (referred to as reference model or template). As a consequence, the device per-
formance can degrade drastically. Second, mobile devices have limited memory and CPU
resources. This provides a natural constraint on the size of biometric template/model1 and
the type of processing algorithms (which favor those of low computation).

1.2 Handling Variations in Biometric Samples

In order to guard against the degradation due to changing acquisition environment and/or
devices, there are two somewhat opposing approaches being used in practice:

• by compensation, i.e., reducing the effect of a degrading factor as well as working on
invariant feature representation

• by tracking the change, i.e., explicitly considering the change at all levels of the
architecture

The first strategy seeks to rectify the change as much as possible. For instance, for face ver-
ification, one applies illumination normalization to guard against changes in illumination,
or pose correction to rectify a given pose to a frontal one.

In the second strategy, one admits that a degrading factor cannot be completely re-
moved. As a result, one attempts to track the change and update the system parameters
as and when necessary. Several questions can arise when adopting this strategy:

1We use the term “template” when referring to the stored features representing a person’s biometric trait
whereas the term “model” as a more general concept in order to refer to the parameters of a discriminative
classifier or a statistical model, or that of an intermediate feature extraction process such as eigenspace
analysis.

MOBIO D4.6: page 7 of 26



MOBIO [214324] D4.6: Baseline Model Adaptation

• Should the parameters of the existing model be overwritten?

• When several models are available, how can they be used jointly during inference?

• What criterion should be used to determine if a model needs to be updated?

The above issues are partially addressed in [PWKR09]. In summary, the first issue
depends very much on the quality or an aspect of the degrading factor. For instance,
in the case of face recognition, one would maintain a set of parameters for a given (dis-
cretized) head pose. Unfortunately, in practice, the noise affecting a face image sample
is a composite factor, consisting of a given pose, illumination conditions, a given facial
expression and a particular camera type (with a particular camera setting). As a result,
ideally, one should maintain a model for the same composite factor (consisting of the same
pose, the same illumination condition, the same facial expression) and the same camera
type/configuration. As can be observed, the space of variation is possibly infinitesimal
but can be finitely quantified via clustering, i.e., clustering the quality measures from a
very large database of face images [PWKR09]. Then, ideally, one should maintain a set of
parameters for each cluster of quality measures.

The second issue can be handled using a Bayesian framework. In essence, this consists
of finding how probable that a face image belongs to a cluster of image quality (as found
by clustering the quality measures) and the correct model is used for inference (i.e., testing
the hypothesis that the model belongs to a particular claimed identity).

The third issue is addressed using a semi-supervised learning technique. In the case
of bimodal authentication involving face and speech, one can employ the “co-training”
algorithm [BM98]. The algorithm attempts to label a test data point using either a face or
a speech expert. The labeled data point can then be used to train the expert systems. In
this way, a test data point can then be incorporated as part of the training, thus capturing
the needed variation not observed during training (enrollment). An obstacle to the wide
deployment of the co-training strategy is that the labeling process may be erroneous. As
a result, an impostor may be mislabeled as a legitimate client, hence hampering the dis-
criminative power of the updated model in recognizing its true claimed identity [FMJ+00].

1.3 Objectives

The objective of this study is to examine the effect of supervised adaptation. This provides
the most optimistic scenario where all test data points are known a priori and only the
data points of the true claimed identity are used to adapt the client model. This is opposed
to unsupervised adaptation where the identity of the biometric sample is not known. We
thus expect that the performance of supervised adaptation to be much better than the
baseline non-adaptive approach and that the performance of the unsupervised adaptation
to be somewhere between the two. Thus, the supervised adaptation provides the upper
bound of the achievable performance, which is the primary objective of this study.

In general, adaptation can be performed at the model level or at the score level. At
the model level, one simply updates the model parameters. At the score level, one post-
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(a) Controlled (b) Adverse (c) Degraded

Figure 1: The three scenarios of the BANCA database.

processes an expert (classifier) output so that one only needs a common decision threshold
despite changes in signal quality. The secondary objective of this study is to examine the
effect of score level adaptation.

We validated our experiments using the existing bimodal face and speech BANCA
database [BBBB+03]. This database contains three acquisition conditions, namely con-
trolled, adverse and degraded conditions. With respect to the controlled conditions, the
adverse ones are due to acquisition in a noisy environment whereas the degraded ones are
due to the use of a different acquisition device. The impact of these three conditions are
clearly visible in Figure 1.

1.4 Organization

This report is organized as follows: Section 2 presents the model-level and the score-level
adaptation strategies. Section 3 provides some experimental evidence of our approach on
the BANCA database. Finally, Section 4 concludes the report.

2 Methodology

We shall structure the discussions here into two parts: model-level adaptation and score-
level adaptation.

2.1 Model-level Adaptation

The model-level adaptation will update an existing model with the new incoming data:

update: model, data → new model

The update operation can easily be motivated by the maximum a posteriori (MAP) prin-
ciple. Let θ be the parameter of a model, and p(θ|x) be the likelihood of the distribution
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model. Then, the MAP principle can be summarized as maximizing the posterior proba-
bility of the model parameter (θ) given the data:

p(θnew|x) ∝ p(x|θold)p(θold). (1)

A peaky distribution of p(θnew|x) is important in order to ensure that the parameter
value can be estimated with sufficient confidence. As an example, if the data is normally
distributed, p(x|θold) is the likelihood of a Gaussian distribution and θ consists of mean and
covariance defined for the variable x. The old parameter, θold = arg maxθ p(θ), corresponds
to the maximum likelihood estimate of the (mean and covariance) parameters up to the
last observed sample. The updated parameters, θnew, is then computed using (1). In order
to see that this is a recursive formulation, let us define a sequence of ordered samples
{x1, x2, . . . , xT}. Assuming that the samples are independently and identically distributed
(i.i.d.), the maximum likelihood estimate of θ given samples up to T can be estimated from
p(θ|x1 : xT ), which can be calculated as follows:

p(θ|x1 : xT ) ∝
T

∏

i=1

p(xi|θ)p(θ)

∝
T

∏

i=2

p(xi|θ)p(θ|x1)

∝
T

∏

i=3

p(xi|θ)p(θ|x1, x2)

∝ ...

∝ p(xT |θ)p(θ|x1 : xT−1) (2)

where p(θ|x1) ∝ p(x1|θ)p(θ).

Comparing (1) and (2), we observe that

p(θnew|x) = p(θ|x1 : xT )

and

p(θold|x) = p(θ|x1 : xT−1).

In other words, the MAP principle enables one to compute the new parameters from the
old ones, given a new sample observation, under the i.i.d. assumption.

More details regarding the MAP principle applied to many parametric family of distri-
butions can be found in classical references such as [DHS01, Bis07]. Apart from the above
distributions, the mixture of Gaussian distribution, or Gaussian Mixture Model (GMM),
and in particular, the GMM with MAP adaptation [RQD00] which serves as the face and
speech expert that we will use (see also Section 3.1), is a realization of the MAP principle.
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Figure 2: The fitted score distributions p(y|k,Q) for the three scenarios Q = {Mc,Ua, Ud}
and k ∈ {G, I}, for (a) the face modality and (b) the speech modality.

2.2 Score-level Adaptation

Under changing signal quality, it is natural to ask how a particular type of acquisition
conditions can affect the score. In order to do so, let the condition type be Q. Thus, for
the BANCA database, Q will denote either controlled, adverse or degraded scenario (to be
further described in Section 3.2), hence 3 discrete states. For other databases, the number
of states in Q will have to found by using a clustering algorithm.

It is then instructive to examine the impact of Q on the class-conditional score distri-
butions, which we denote as p(y|k,Q) where k denotes the class of match scores, which
can be either genuine or impostor matching, i.e., k ∈ {G, I}. The fitted distributions using
Parzen windows are shown in Figures 2(a) and (b) for the face and speech modalities,
respectively.

As can be observed, in both cases, the genuine and impostor score distributions are
much more separated for the controlled scenario than the remaining two scenarios. This
corresponds well to our expectation that the performance under the controlled scenario is
better than the remaining two other scenarios.

In order to design a score normalization procedure using p(y|k,Q), one can use a gen-
erative approach or a discriminative approach. In the first case, one needs to compute the
following posterior probability:

P (G|y,Q) =
p(y|G, Q)P (G)

∑

k p(y|k,Q)P (k)
(3)

where P (k) is a prior class probability that needs to be defined.
If the state of Q is not known, it can be estimated from a set of quality measures,

which quantify the signal quality such as contrast, brightness, reliability of face detection,
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etc [PBK09, PBK10]. Let us denote the vector of quality measures by q. Then, one has to
estimate the posterior P (Q|q), which can be learned using a supervised or an unsupervised
(clustering-based) approach. Once this quantity is available, instead of calculating (3), one
can still calculate the posterior probability of a genuine class in the following way:

P (G|y, q) =
P (G)

∑

Q p(y|G, Q)P (Q|q)
∑

k P (k)
∑

Q p(y|k,Q)P (Q|q) (4)

The sum over all the states in Q is necessary because Q is not observed. This is a realization
of the sum rule and is known as variable marginalization in the literature of Bayesian
network [DHS01] or graphical models [Bis07]. It can be observed that by setting P (Q =
Q∗|q) to 1 (taking a particular realization Q∗) and P (Q|q) = 0 for Q 6= Q∗, (4) becomes
(3).

Rather than using the generative approach as described in this section up to this point,
we shall introduce a discriminative approach, avoiding the need to estimate p(y|k,Q)
altogether. Recalling that the objective is to estimate the posterior probability as shown
in the left hand side of (3). This can be done more directly using logistic regression, i.e.,

P (G|y,Q) =
1

1 + exp (−(gQ(y)))
(5)

where
gQ(y) = w

(Q)
1 y + w

(Q)
0

and w
(Q)
1 is a scaling factor and w

(Q)
0 is known as bias of logistic regression. These two

parameters can be estimated using the maximum likelihood principle, i.e., maximizing (5)
with respect to the two parameters, given a set of labeled training data. The realization
of this principle for logistic regression is called gradient ascent (increasing the likelihood
of the model given the data) [HTF01]. The logistic regression can also be seen as a single
layer neuron, hence, whose parameters can be estimated using gradient descent, thus giving
raise to an optimization algorithm called iterative re-weighted least square (minimizing the
neuron output with respect to its target value) [Bis07]. Our implementation is based on
Matlab using the gradient ascent approach.

In the case of unknown Q, just as in the case of the generative approach, i.e., (4), we
can still infer Q from the quality measures q, i.e.,:

P (G|y, q) =
∑

Q

p(G|y,Q)P (Q|q) (6)

Note that (6) converges to (5) when the state of Q (i.e, the condition) is known.

2.3 Summary

In this section, we have discussed two types of adaptation strategies, i.e., model-level and
score-level adaptation. The model-level adaptation consists of changing the model param-
eters directly, whereas the score-level adaptation aims to calibrate the scores of different
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Input Image Image Blocks

Features (DCT) from Blocks

Figure 3: A flow chart of describing the extraction of feature vectors from the face image
for the parts-based approach.

conditions (Q) to a common one, in terms of posterior probability of being a genuine user
(client). Such a calibration is necessary when the different acquisition conditions/scenarios
give raise to different genuine and impostor score distributions, as shown in Figure 2. We
have described a generative as well as a discriminative approach to realize the score-level
adaptation. The advantage of using a discriminative approach, as realized using logistic re-
gression, is that one no longer needs to estimate the condition-dependent class-conditional
score distributions. This reduces significantly the number of parameters that are needed
to be estimated. For each version of the approaches, we also elaborate on the possibility
of using quality measures to identify the conditions (Q). However, in this report, such
an elaborate version is not used because the conditions are assumed to be known. In the
experimental section, (5) is used as a representative method of the score-level adaptation
strategy.

3 Experiments

3.1 Baseline Systems

The face and speaker verification baseline systems (also referred to as experts) are Bayesian
classifiers whose class-conditional densities are approximated using Gaussian Mixture Mod-
els (GMMs) with the Maximum a posteriori adaptation [RQD00]. This is a long-standing
state-of-the-art classifier for the speaker verification, but since then, has also been suc-
cessfully used for the face verification problem [CSM03]. The face verification problem
can benefit from this approach mainly thanks to parts-based local feature descriptors, as
illustrated in Figure 3. The parts-based approach first divides an image into overlapping
or non-overlapping blocks of image. For each block of image, its texture is described
using a local feature descriptor. The local feature descriptors used here are based on a
post-processed subset of Discrete Cosine Transform features called “DCTMod2” [SP02].
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Let X ≡ {xi|i = 1, . . . , N} be a sequence of N feature frames and each feature frame
is denoted by xi (for the i-th frame). For the face modality, a feature frame is a vector
containing the DCT coefficients of a block of image. For the speech modality, a feature
frame contains Mel-scale Cepstral Coefficients [RJ93]. These features are a short-term
representation of spectral envelopes filtered by a set of filters motivated by the human
auditory system.

Let p(x|ωo) be the likelihood function of the world or background model and p(x|ωj)
be the model for the claimed identity j ∈ {1, . . . , J}2. In parts-based face or speaker
verification, both p(x|ωo) and p(x|ωj), for any j, are estimated using a Gaussian Mixture
Model (GMM) [Bis99]. The world model is first obtained from a large pool of sequences
{X} contributed by a large and possibly separate population of users (possibly from an
external database than the one used for enrollment/testing). Each client-specific model is
then obtained by adapting the world model upon the presentation of the enrollment data
of a specific user/client.

The GMM-based Bayesian classifier applies the log-likelihood ratio test, which is opti-
mal in the Neyman-Pearson sense [DHS01]:

y =
1

N

∑

i

log

{

p(xi|ωj)

p(xi|ωo)

}

(7)

An important assumption here is that all feature frames are independently and identically
distributed. An interpretation of this is that, thanks to the part-based approach, the
relative location of an eye to the nose, or any two salient facial features are unimportant.
Because of this, a practical advantage offered by this approach is that it is fairly robust
to imperfectly found centers of the eye coordinates (needed for cropping a face from the
background) given by a face detector.

If the score y is greater than a pre-specified threshold, one declares that the query data
X belongs to the model j. Hence, this will result in an acceptance decision. Otherwise,
one rejects the hypothesis and hence rejects the identity claim. The details of the face
verification system can be found in Section A.

The speaker verification classifier used here differs from the face one in the following
ways. First, the variability across sessions are removed thanks to now a standard technique
called factor analysis [KBD05, VBS05, MSFB07]. This technique is applied to all training
and test data prior to building a (client-specific) GMM model.

Second, rather than using the log-likelihood ratio test as in (7), a client-specific SVM
is used instead. The SVM is designed to classify features not at the sequence level (in the
space {X}) but at the so-called “GMM supervector” space. If a GMM has C components,

2Note that we use a different notation here, i.e., ωj , to denote the classes, as compared to Section 2,
where k ∈ {C, I} was used. The reason is that in the fusion process, one considers only binary classification,
i.e., a person is either a genuine person (client), claiming to be the reference identity, or an impostor. In
essence, there is only a single fusion classifier for all the enrollees in the database. For the baseline expert,
on the other hand, the system designer needs to design an expert for each enrollee. As a result, it is
necessary to distinguish models of different enrollees using ωj .
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the observation in this space consists of the mean vectors of all the C Gaussian components
concatenated together to form a supervector. A supervector is thus a vector of fixed-size
that is independent of the length of the speech utterance, hence allowing the speaker
verification problem to be solved using discriminative approaches (which are well suited
for classification problems with fixed-size observations). During training as well as testing,
the GMM supervectors are submitted to the channel compensation technique via factor
analysis. The SVM is thus trained to distinguish the supervector of one user versus all
other users, with the impact of channel variability significantly reduced. As a result, the
output of the speaker verification system used here is in terms of margin, i.e., how far
a supervector (in the implicitly embedded space defined by a given kernel) is from the
optimal decision boundary separating the claimed user identity from the rest of the users
(clients) in the database. The details of the speaker verification system can be found in
Section B.

3.2 Database

In order to be consistent with the previous deliverables (D3.1 and D3.2), we shall use the
same database, experts and similar experimental protocols3. The database used here is the
BANCA database [MKS+04a]. This is a bimodal database recording from a camcorder,
registering 52 people reading text-prompted sentences as well as answering short questions.
The sample images, for all three conditions are shown in Figure 1.

A consequence of this BANCA database setting is that the face verification problem
becomes extremely challenging, compared to the speaker verification problem. This is
because in both the adverse and degraded conditions, the noise due to the environmental
conditions affecting the speech modality, which are all indoor recordings, is still relatively
unimportant in comparison with the face modality.

A novel aspect concerning the usage of this database, unlike precedent efforts in [MKS+04a]
or [MKS+04b], is that video sequences are actually used here, rather than still images ex-
tracted from the video sequence.

3.3 Experimental Protocols

In order to compare adaptive versus non-adaptive (baseline) systems, we had to modify the
P and G experimental protocols. For each subject, there are 4 sessions of recordings per
scenario, and there are 3 scenarios, i.e., controlled, adverse and degraded; these sessions are
labeled 1–4, 5–8 and 9–12, respectively. The P protocol treats session 1 as the enrollment
session and the remaining 2–12 as the query sessions (i.e, the test data). The G protocol,
on the other hand, uses sessions 1, 5 and 9 for enrollment whereas sessions 2–4, 6–8 and
10–12 as the test data. The G protocol represents the ideal scenario where the enrollment
data contains all the possible variations observable during testing (query). In comparison,
in the P protocol, the experts only have the enrollment data for the controlled scenario,

3Modification to the protocol is imperative.
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hence, is lacking in the observable variability during testing under the adverse and degraded
scenarios.

The modification introduced here are as follows:

• Baseline non-adaptive system: The system is trained on session 1 but then is tested
only on sessions 2–4, 6–8 and 10–12 (corresponding to the three scenarios).

• Supervised model-level adaptation: The system is trained on sessions 1 and is then
tested on sessions 2–4, 6–8 and 10–12.

• Score-level adaptation: The system is trained on session 1 but then is tested only
on sessions 2–4, 6–8 and 10–12. To realize this protocol, the output of the baseline
non-adaptive systems are used (hence, its model parameters are not modified). In
order to train the logistic regression, taking the output of the baseline system as
input, we rely on the two-fold cross validated score data defined on the protocols:
when the g1 (resp. g2) data set is used for testing, g2 (resp. g1) is used for training.

In essence, the above modified protocols uses the same test data sets as that of the original
G protocol, but differ slightly in the training data set.

3.4 Results

This section presents the results of supervised adaptation as a representative method of the
modal-level adaptation strategy as well as the logistic regression of (5) as a representative
method of the score-level adaptation strategy. The results are shown in Figure 4. As
can be observed, the supervised adaptation (labeled here as the oracle) can significantly
outperform the baseline systems without any adaptation. For instance, for the face expert,
the reduction is from 19.37% to 9.69% of EER, hence a reduction of 99.9%. For the speech
expert, the reduction is from 4.80% to 2.29%, or reduction of 110%. In both cases, the
error rate is roughly halved and the amount of training data between the baseline and the
supervised adaptation is at a ratio of 1 : 3.

Interestingly, the performance of the score-level adaptation (labeled here as the base-
line system with quality normalization) can also improve the performance of the baseline
systems, especially in regions around the Equal Error Rate (EER) where False Acceptance
Rate and False Rejection Rate are roughly equal. The relative reduction in this case is
26.5% for the face expert and 42.0% for the speech expert. In comparison with the model-
level supervised adaptation, the score-level adaptation is unsupervised, i.e., the subject
identity of the training sessions in 5 and 9 are unknown. However, what is known here
is the condition in training (which can be controlled, adverse or degraded). Although the
condition in test is not required, for instance using (6), the availability of this informa-
tion simplifies the procedure to (5). Between these two variations, according to [PBK09],
(5) gives slightly better generalization performance. This means that rather than having
to guess the condition, when this knowledge is available, it should always be used to its
advantage.
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Figure 4: The Performance of baseline, oracle (supervised adaptation) and score normalized
system for (a) the face and (b) the speech system. The EER of these 3 systems are 19.37%,
9.69% and 15.31%, respectively, for the face modality; and are 4.80%, 2.29% and 3.38% for
the speech modality. The relative improvement from the baseline to the score-normalized
system is 26.5% for the face modality and 42.0% for the speech modality.

3.5 Discussions

It is worth examining why the score-level adaptation may work. Such an adaptation can
be seen as a score normalization procedure:

decision(y) =

{

accept if Φ(y) > ∆
reject otherwise,

(8)

where ∆ is the accept/reject decision threshold and Φ(y) is a score normalization procedure,
which, in our case is P (G|y,Q). Rather than using the posterior probability, one could

have used the logit transform of P (G|y,Q), which corresponds to log P (G|y,Q)
1−P (G|y,Q)

. This is a
monotonic transform, hence will not have any impact on the performance, i.e., making
decisions based on P (G|y,Q) or the log odd is exactly equivalent. However, the log odd
has a nice interpretation (which is the very reason why logistic regression is very popular).
We shall let Φ(y) be the log-odd:

Φ(y) = log
P (G|y,Q)

1 − P (G|y,Q)
= w

(Q)
1 y + w

(Q)
0
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Hence, we observe that Φ(y) is a linear function of the score, controlled by Q. The decision
function (8) can therefore be alternatively written as:

decision(y) =

{

accept if y >
∆−w

(Q)
0

w
(Q)
1

reject otherwise,
(9)

Hence, we observe that the score-level adaptation has the implicit effect of refining the
global decision threshold based on the condition Q. This implies that adaptively changing
the decision threshold based on quality is beneficial.

In practice, by calculating the posterior probability, as realized using logistic regression,
the parameters w

(Q)
i for i ∈ {0, 1} are completely determined by the training data and are

dependent on the conditions Q. Hence, our approach is completely data driven, i.e., as long
as there are additional training data points, the parameters can be optimally determined.

It remains the question of how many state of conditions Q, there are. One solution is to
collect as many operational data samples as possible and then find the number of clusters
of quality states by clustering each sample based on a set of designed quality measures, q.
If a GMM is used as a clustering algorithm, it will approximate the following density:

p(q) =
∑

Q

P (Q)p(q|Q)

where p(q|Q) is likelihood of a Gaussian distribution and P (Q) is the component prior
probability. The number of components in Q can be found via cross-validation. This
provides a data-driven approach to estimate the number of states (or clusters) in Q so that
for each state Q one can train P (G|y,Q).

4 Conclusions

This deliverable examines the merit of model-level and score-level adaptation, in particular,
using the supervised model-level adaptation and quality-based score normalization based on
logistic regression for each case. Our experimental results show that supervised adaptation
can reduce the generalization error by half whilst it demands two times more the amount
of enrollment data (according to our experimental setting). On the other hand, the score-
level adaptation does not require additional enrollment data (for the specific client) but
requires a vast amount of the additional operational data samples that are representative
of the operational scenarios. Despite the reliance of score-level adaptation on the baseline
non-adaptive expert systems, the mere adaptation of score can still mitigate the effect of
variation of conditions, causing significant changes in the class-conditional score distribu-
tions (as is evident in Figure 2) from one operational conditions to another. We show that
this score-level adaptation procedure produces the same effect as adaptively changing the
decision threshold according to the condition in an implicit manner. Although explicitly
doing so is possible, our implicit approach has several advantages. Firstly, by outputting
posterior probability, our approach is easier to interpret, especially when presented to a
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human operator for further actions. Second, by outputting a real number (rather than
a binary decision), the output can further be processed, for instance, for the purpose of
bimodal fusion. Third, when the operational condition is unknown, our approach can still
be used (via (6)).
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A Parts-Based Gaussian Mixture Model (PB-GMM)

for Face Verification

The first face verification baseline model implementation presented in this report combines
part-based approaches and GMM modeling. Parts-based approaches divide the face into
blocks, or parts, and treats each block as a separate observation of the same underlying
signal (the face). According to this technique, a feature vector is obtained from each block
by applying the Discrete Cosine Transform (DCT) and the distribution of these feature vec-
tors is then modelled using GMMs. Several advances have been made upon this technique,
for instance, Cardinaux et al. [CSM03] proposed the use of background model adaptation
while Lucey and Chen [LC04] examined a method to retain part of the structure of the
face utilising the parts-based framework as well as proposing a relevance based adaptation.

Feature Extraction

The feature extraction algorithm is described by the following steps. The face is nor-
malised, registered and cropped. This cropped and normalised face is divided into blocks
(parts) and from each block (part) a feature vector is obtained. Each feature vector is
treated as a separate observation of the same underlying signal (in this case the face) and
the distribution of the feature vectors is modelled using GMMs. This process is illustrated
in Figure 3.

The feature vectors from each block are obtained by applying the DCT. Even advanced
feature extraction methods such as the DCTmod2 method [SP02] use the DCT as their ba-
sis feature vector; the DCTmod2 feature vectors incorporate spatial information within the
feature vector by using the deltas from neighbouring blocks. The advantage of using only
DCT feature vectors is that each DCT coefficient can be considered to be a frequency re-
sponse from the image (or block). This property is exploited by the JPEG standard [PM93]
where the coefficients are ranked in ascending order of their frequency.

Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model adaptation
of GMMs [CSM03, LC04]. The use of background model adaptation is not new to the field
of biometric authentication; in fact, it is commonly used in the field of speaker verifica-
tion [DPMR00]. Background model adaptation first trains a world (background) model
Ωworld from a set of faces and then derives the client model for the ith client Ωi

client by
adapting the world model to match the observations of the client.

Two common methods of performing adaptation are mean only adaptation [Rey97] and
full adaptation [LG96]. Mean only adaptation is often used when there are few obser-
vations available because adapting the means of each mixture component requires fewer

MOBIO D4.6: page 22 of 26



MOBIO [214324] D4.6: Baseline Model Adaptation

observations to derive a useful approximation. Full adaptation is used where there are
sufficient observations to adapt all the parameters of each mode. Mean only adaptation is
the method chosen for this work as it requires fewer observations to perform adaptation,
this is the same adaptation method employed by Cardinaux et al. [CSM03].

Verification

To verify an observation, x, it is scored against both the client (Ωi
client) and world (Ωmodel)

model, this is true even for methods that do not perform background models adaptation
[SP02]. The two models, Ωi

client and Ωworld, produce a log-likelihood score which is then
combined using the log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client)) − ln(p(x | Ωworld)), (10)

to produce a single score. This score is used to assign the observation to the world class
of faces (not the client) or the client class of faces (it is the client) and consequently a
threshold τ has to be applied to the score h(x) to declare (verify) that x matches to the
ith client model Ωi

client, i.e if h(x) ≥ τ .
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B Gaussian Mixture Model-Support Vector Machine

Based Speaker Verification

The use of GMM in a GMM-UBM framework has been a standard approach in the speaker
verification [BBF+04]. In addition to this framework, the Latent Factor Analysis (LFA) is
systematically applied for all systems in training and testing [KBD05, VBS05, MSFB07].
From the resulting session compensated model it is possible to extract supervectors by
concatenating Gaussian means. These supervectors can be used directly in a SVM clas-
sifier. This association between the factor analysis and SVM allows to benefit from the
FA decomposition power and SVM classification power. The implemented baseline system
uses Z-T-norm for score normalization.

Feature extraction

The signal is characterized by 50 coefficients including 19 linear frequency cepstral co-
efficients (LFCC), their first derivative, their first 11 coefficients of second derivatives and
the delta-energy. They are obtained as follows: 24 filter bank coefficients are first com-
puted over 20ms Hamming windowed frames at a 10ms frame rate. Bandwidth is limited
to the 300-3400Hz range.

Here, the energy coefficients are first normalized using a mean removal and variance nor-
malization in order to fit a 0-mean and 1-variance distribution. The energy component is
then used to train a three component GMM, which aims at selecting informative frames.
The most energized frames are selected through the GMM. Once the speech segments of a
signal are selected, a final process is applied in order to refine the speech segmentation:
1- overlapped speech segments between both the sides of a conversation are removed,
2- morphological rules are applied on speech segments to avoid too short ones, adding or
removing some speech frames.

Finally, the parameter vectors are normalized to fit a 0-mean and 1-variance distribu-
tion. The mean and variance estimators used for the normalization are computed file by
file on all the frames kept after applying the frame removal processing.

World models

Two GMM world models are used, one for males and one for females. The two GMM
are trained using Fisher English Training Speech Part 1 (LDC:LDC2004S13), and consists
of about 10 million speech frames each for males and females.

Resulting world models are 512 gender dependent GMM’s with diagonal covariance ma-
trices. For a better separation of initial classes, frames are randomly selected among the
entire learning signal via a probability followed by an iteration of the EM algorithm, to
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estimate the GMM parameters. During the estimation of the world model parameters,
instead of using all the learning signals in their temporal order, 10% of frames is selected
randomly at each new iteration. For the two last iterations, the entire signal is classically
used in its temporal order. During all the process, a variance flooring is applied so that no
variance value is less than 0.5.

Client, test and impostor models with Factor Analysis

A speaker model can be decomposed into three different components: world, a speaker
dependent and session dependent components [KBD05, VBS05, MSFB07]. A GMM mean
super-vector is defined as the concatenation of the GMM component means. In the follow-
ing, (h, s) will indicate the session h of the speaker s. The latent factor analysis model,
can be written as:

m(h,s) = m + Dys + Ux(h,s), (11)

where m(h,s) is the session-speaker dependent super-vector mean, D is S × S diagonal
matrix (S is the dimension of the supervector), ys the speaker vector (its size equal S), U
is the session variability matrix of low rank R (a S × R matrix) and x(h,s) are the session
factors, a R vector. Both ys and x(h,s) are normally distributed among N (0, I). D satis-
fies the following equation I = τDtΣ−1D where τ is the relevance factor required in the
standard MAP adaptation.

The client model is obtained by performing the decomposition of equation 11 and by
retaining only the speaker dependent components:

ms = m + Dys, (12)

The success of the factor analysis model relies on a good estimation of the U matrix,
thanks to a sufficiently high amount of data, where a high number of different recordings
per speaker is available. In these experiments the U matrix is trained by using about 240
speakers (120 males and 120 females) coming from NIST’04. For each speaker about 20
sessions are considered.

Kernel based scoring and SVM modeling

By using (12), the factor analysis model estimates supervectors containing only speaker
information, normalized with respect to the session variability. A probabilistic distance
kernel that computes a distance between GMM’s, well suited for a SVM classifier. Let Xs

and Xs
′ be two sequences of speech data corresponding to speakers s and s′, the kernel

formulation is given below.

K(Xs,Xs
′) =

M
∑

g=1

(√
αgΣ

− 1
2

g mg
s

)t(√
αgΣ

− 1
2

g mg

s′

)

. (13)
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This kernel is valid when only means of GMM models are varying (weights and covari-
ance are taken from the world model). ms is taken here from the model in eq. 12, i.e.
ms = m + Dys.

The LIA SpkDet toolkit benefits from the LIBSVM [CL01] library to induce SVM and
to classify instances. SVM models are trained with an infinite (very large in practice) C
parameter thus avoiding classification error on the training data (hard margin behavior).
The negative labeled examples are speakers from the normalization cohort.

MOBIO D4.6: page 26 of 26


